File size: 6,027 Bytes
073edba
7f8bfb2
 
073edba
76d149a
7f8bfb2
 
073edba
 
 
 
 
 
 
 
 
 
 
 
7f8bfb2
073edba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f8bfb2
073edba
 
 
 
 
 
 
7f8bfb2
 
073edba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f8bfb2
 
073edba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f8bfb2
 
 
 
76d149a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import time
from loguru import logger
from fastapi import FastAPI, HTTPException
from contextlib import asynccontextmanager

from models import RerankRequest, RerankResponse, RerankResult
from core import ModelManager


model_manager = None

@asynccontextmanager
async def lifespan(app: FastAPI):
    """Application lifespan manager with model preloading."""
    global model_manager
    
    # Startup
    logger.info("Starting reranking API...")
    try:
        model_manager = ModelManager("config.yaml")
        await model_manager.preload_all_models()
        logger.success("Reranking API startup complete!")
    except Exception as e:
        logger.error(f"Failed to initialize models: {e}")
        raise
    
    yield
    
    # Shutdown
    logger.info("Shutting down reranking API...")


app = FastAPI(
    title="Multi-Model Reranking API",
    description="""
High-performance API for document reranking using multiple state-of-the-art models.

βœ… **Supported Models:**
- **Jina Reranker V2**: Multilingual reranker optimized for search
- **BGE Reranker V2**: High-performance multilingual reranking
- **Qwen3 Reranker**: Instruction-based reranking with reasoning

πŸš€ **Features:**
- Multiple reranking models preloaded at startup
- Batch document reranking with relevance scoring
- Fast prototyping app
- Optional instruction-based reranking (Qwen3)
- Comprehensive performance metrics
- Zero cold start delay

πŸ“Š **Input/Output:**
- Input: Query + documents + optional instruction
- Output: Ranked documents with relevance scores

**Warning**: Not use production!.
    """,
    version="1.0.0",
    lifespan=lifespan
)


# -------------------------
# API Endpoints
# -------------------------

@app.post("/rerank", response_model=RerankResponse, tags=["Reranking"])
async def rerank_documents(request: RerankRequest):
    """
    Rerank documents based on relevance to query.
    
    This endpoint takes a query and list of documents, then returns them
    ranked by relevance using the specified reranking model.
    
    Args:
        request: RerankRequest containing query, documents, and model info
        
    Returns:
        RerankResponse with ranked documents, scores, and metadata
        
    Example:
        ```json
        {
            "query": "machine learning algorithms",
            "documents": [
                "Deep learning uses neural networks",
                "Weather forecast for tomorrow",
                "Supervised learning with labeled data"
            ],
            "model_id": "jina-reranker-v2"
        }
        ```
    """
    if not request.query.strip():
        raise HTTPException(400, "Query cannot be empty")
    
    if not request.documents:
        raise HTTPException(400, "Documents list cannot be empty")
    
    valid_docs = [(i, doc.strip()) for i, doc in enumerate(request.documents) if doc.strip()]
    if not valid_docs:
        raise HTTPException(400, "No valid documents found after filtering empty strings")
    
    try:
        start_time = time.time()
        
        model = model_manager.get_model(request.model_id)
        original_indices, documents = zip(*valid_docs)
        logger.info(f"Query: {request.query.strip()}")
        logger.info(f"Document: {list(documents)}")
        scores = model.rerank(
            query=request.query.strip(),
            documents=list(documents),
            instruction=request.instruction
        )
        
        results = []
        for i, (orig_idx, doc, score) in enumerate(zip(original_indices, documents, scores)):
            results.append(RerankResult(
                text=doc,
                score=score,
                index=orig_idx
            ))
        
        results.sort(key=lambda x: x.score, reverse=True)
        
        if request.top_k:
            results = results[:request.top_k]
        
        processing_time = time.time() - start_time
        
        logger.info(
            f"Reranked {len(documents)} documents in {processing_time:.3f}s "
            f"using {request.model_id}"
        )
        
        return RerankResponse(
            results=results,
            query=request.query.strip(),
            model_id=request.model_id,
            processing_time=processing_time,
            total_documents=len(request.documents),
            returned_documents=len(results)
        )
        
    except ValueError as e:
        raise HTTPException(400, str(e))
    except Exception as e:
        logger.error(f"Reranking failed: {e}")
        raise HTTPException(500, f"Reranking failed: {str(e)}")


@app.get("/models", tags=["Models"])
async def list_models():
    """
    List all available reranking models.
    
    Returns information about all configured models including their
    loading status and capabilities.
    
    Returns:
        List of model information dictionaries
    """
    try:
        return model_manager.list_models()
    except Exception as e:
        logger.error(f"Failed to list models: {e}")
        raise HTTPException(500, str(e))


@app.get("/health", tags=["Monitoring"])
async def health_check():
    """
    Check API health and model status.
    
    Returns comprehensive health information including model loading
    status and system metrics.
    
    Returns:
        Health status dictionary
    """
    try:
        models = model_manager.list_models()
        loaded_models = [m for m in models if m['loaded']]
        
        return {
            "status": "ok",
            "total_models": len(models),
            "loaded_models": len(loaded_models),
            "available_models": [m['id'] for m in loaded_models],
            "models_info": models
        }
    except Exception as e:
        logger.error(f"Health check failed: {e}")
        return {
            "status": "error",
            "error": str(e)
        }
    
@app.get("/")
async def root():
    return {"message": "Welcome to the Multi-Model Reranking API. Visit /docs for API documentation.", "version": "1.0.0"}