Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Finish documenting the API endpoints
Browse files- server/main.py +78 -75
- server/model_api.py +4 -0
server/main.py
CHANGED
|
@@ -8,7 +8,7 @@ import utils.path_fixes as pf
|
|
| 8 |
from utils.f import ifnone
|
| 9 |
|
| 10 |
from data_processing import from_model
|
| 11 |
-
from
|
| 12 |
|
| 13 |
app = connexion.FlaskApp(__name__, static_folder="client/dist", specification_dir=".")
|
| 14 |
flask_app = app.app
|
|
@@ -36,10 +36,24 @@ def send_static_client(path):
|
|
| 36 |
## CONNEXION API ##
|
| 37 |
# ======================================================================
|
| 38 |
def get_model_details(**request):
|
| 39 |
-
model
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
info = deets.
|
| 43 |
nlayers = info.num_hidden_layers
|
| 44 |
nheads = info.num_attention_heads
|
| 45 |
|
|
@@ -53,9 +67,36 @@ def get_model_details(**request):
|
|
| 53 |
"payload": payload_out,
|
| 54 |
}
|
| 55 |
|
| 56 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
model = request["model"]
|
| 58 |
-
details =
|
| 59 |
|
| 60 |
sentence = request["sentence"]
|
| 61 |
layer = int(request["layer"])
|
|
@@ -69,17 +110,42 @@ def get_attention_and_meta(**request):
|
|
| 69 |
"payload": payload_out
|
| 70 |
}
|
| 71 |
|
| 72 |
-
|
| 73 |
def update_masked_attention(**request):
|
| 74 |
-
"""
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
"""
|
| 79 |
payload = request["payload"]
|
| 80 |
|
| 81 |
model = payload['model']
|
| 82 |
-
details =
|
| 83 |
|
| 84 |
tokens = payload["tokens"]
|
| 85 |
sentence = payload["sentence"]
|
|
@@ -101,69 +167,6 @@ def update_masked_attention(**request):
|
|
| 101 |
"payload": payload_out,
|
| 102 |
}
|
| 103 |
|
| 104 |
-
|
| 105 |
-
def nearest_embedding_search(**request):
|
| 106 |
-
"""Return the token text and the metadata in JSON"""
|
| 107 |
-
model = request["model"]
|
| 108 |
-
corpus = request["corpus"]
|
| 109 |
-
|
| 110 |
-
try:
|
| 111 |
-
details = from_pretrained(model)
|
| 112 |
-
except KeyError as e:
|
| 113 |
-
return {'status': 405, "payload": None}
|
| 114 |
-
|
| 115 |
-
try:
|
| 116 |
-
cc = from_model(model, corpus)
|
| 117 |
-
except FileNotFoundError as e:
|
| 118 |
-
return {
|
| 119 |
-
"status": 406,
|
| 120 |
-
"payload": None
|
| 121 |
-
}
|
| 122 |
-
|
| 123 |
-
q = np.array(request["embedding"]).reshape((1, -1)).astype(np.float32)
|
| 124 |
-
layer = int(request["layer"])
|
| 125 |
-
heads = list(map(int, list(set(request["heads"]))))
|
| 126 |
-
k = int(request["k"])
|
| 127 |
-
|
| 128 |
-
out = cc.search_embeddings(layer, q, k)
|
| 129 |
-
|
| 130 |
-
payload_out = [o.to_json(layer, heads) for o in out]
|
| 131 |
-
|
| 132 |
-
return {
|
| 133 |
-
"status": 200,
|
| 134 |
-
"payload": payload_out
|
| 135 |
-
}
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
def nearest_context_search(**request):
|
| 139 |
-
"""Return the token text and the metadata in JSON"""
|
| 140 |
-
model = request["model"]
|
| 141 |
-
corpus = request["corpus"]
|
| 142 |
-
print("CORPUS: ", corpus)
|
| 143 |
-
|
| 144 |
-
try:
|
| 145 |
-
details = from_pretrained(model)
|
| 146 |
-
except KeyError as e:
|
| 147 |
-
return {'status': 405, "payload": None}
|
| 148 |
-
|
| 149 |
-
try:
|
| 150 |
-
cc = from_model(model, corpus)
|
| 151 |
-
except FileNotFoundError as e:
|
| 152 |
-
return {'status': 406, "payload": None}
|
| 153 |
-
|
| 154 |
-
q = np.array(request["context"]).reshape((1, -1)).astype(np.float32)
|
| 155 |
-
layer = int(request["layer"])
|
| 156 |
-
heads = list(map(int, list(set(request["heads"]))))
|
| 157 |
-
k = int(request["k"])
|
| 158 |
-
|
| 159 |
-
out = cc.search_contexts(layer, heads, q, k)
|
| 160 |
-
payload_out = [o.to_json(layer, heads) for o in out]
|
| 161 |
-
|
| 162 |
-
return {
|
| 163 |
-
"status": 200,
|
| 164 |
-
"payload": payload_out,
|
| 165 |
-
}
|
| 166 |
-
|
| 167 |
app.add_api("swagger.yaml")
|
| 168 |
|
| 169 |
# Setup code
|
|
|
|
| 8 |
from utils.f import ifnone
|
| 9 |
|
| 10 |
from data_processing import from_model
|
| 11 |
+
from model_api import get_details
|
| 12 |
|
| 13 |
app = connexion.FlaskApp(__name__, static_folder="client/dist", specification_dir=".")
|
| 14 |
flask_app = app.app
|
|
|
|
| 36 |
## CONNEXION API ##
|
| 37 |
# ======================================================================
|
| 38 |
def get_model_details(**request):
|
| 39 |
+
"""Get important information about a model, like the number of layers and heads
|
| 40 |
+
|
| 41 |
+
Args:
|
| 42 |
+
request['model']: The model name
|
| 43 |
+
|
| 44 |
+
Returns:
|
| 45 |
+
{
|
| 46 |
+
status: 200,
|
| 47 |
+
payload: {
|
| 48 |
+
nlayers (int)
|
| 49 |
+
nheads (int)
|
| 50 |
+
}
|
| 51 |
+
}
|
| 52 |
+
"""
|
| 53 |
+
mname = request['model']
|
| 54 |
+
deets = get_details(mname)
|
| 55 |
|
| 56 |
+
info = deets.config
|
| 57 |
nlayers = info.num_hidden_layers
|
| 58 |
nheads = info.num_attention_heads
|
| 59 |
|
|
|
|
| 67 |
"payload": payload_out,
|
| 68 |
}
|
| 69 |
|
| 70 |
+
def get_attentions_and_preds(**request):
|
| 71 |
+
"""For a sentence, at a layer, get the attentions and predictions
|
| 72 |
+
|
| 73 |
+
Args:
|
| 74 |
+
request['model']: Model name
|
| 75 |
+
request['sentence']: Sentence to get the attentions for
|
| 76 |
+
request['layer']: Which layer to extract from
|
| 77 |
+
|
| 78 |
+
Returns:
|
| 79 |
+
{
|
| 80 |
+
status: 200
|
| 81 |
+
payload: {
|
| 82 |
+
aa: {
|
| 83 |
+
att: Array((nheads, ntoks, ntoks))
|
| 84 |
+
left: [{
|
| 85 |
+
text (str),
|
| 86 |
+
topk_words (List[str]),
|
| 87 |
+
topk_probs (List[float])
|
| 88 |
+
}, ...]
|
| 89 |
+
right: [{
|
| 90 |
+
text (str),
|
| 91 |
+
topk_words (List[str]),
|
| 92 |
+
topk_probs (List[float])
|
| 93 |
+
}, ...]
|
| 94 |
+
}
|
| 95 |
+
}
|
| 96 |
+
}
|
| 97 |
+
"""
|
| 98 |
model = request["model"]
|
| 99 |
+
details = get_details(model)
|
| 100 |
|
| 101 |
sentence = request["sentence"]
|
| 102 |
layer = int(request["layer"])
|
|
|
|
| 110 |
"payload": payload_out
|
| 111 |
}
|
| 112 |
|
|
|
|
| 113 |
def update_masked_attention(**request):
|
| 114 |
+
"""From tokens and indices of what should be masked, get the attentions and predictions
|
| 115 |
+
|
| 116 |
+
payload = request['payload']
|
| 117 |
+
|
| 118 |
+
Args:
|
| 119 |
+
payload['model'] (str): Model name
|
| 120 |
+
payload['tokens'] (List[str]): Tokens to pass through the model
|
| 121 |
+
payload['sentence'] (str): Original sentence the tokens came from
|
| 122 |
+
payload['mask'] (List[int]): Which indices to mask
|
| 123 |
+
payload['layer'] (int): Which layer to extract information from
|
| 124 |
+
|
| 125 |
+
Returns:
|
| 126 |
+
{
|
| 127 |
+
status: 200
|
| 128 |
+
payload: {
|
| 129 |
+
aa: {
|
| 130 |
+
att: Array((nheads, ntoks, ntoks))
|
| 131 |
+
left: [{
|
| 132 |
+
text (str),
|
| 133 |
+
topk_words (List[str]),
|
| 134 |
+
topk_probs (List[float])
|
| 135 |
+
}, ...]
|
| 136 |
+
right: [{
|
| 137 |
+
text (str),
|
| 138 |
+
topk_words (List[str]),
|
| 139 |
+
topk_probs (List[float])
|
| 140 |
+
}, ...]
|
| 141 |
+
}
|
| 142 |
+
}
|
| 143 |
+
}
|
| 144 |
"""
|
| 145 |
payload = request["payload"]
|
| 146 |
|
| 147 |
model = payload['model']
|
| 148 |
+
details = get_details(model)
|
| 149 |
|
| 150 |
tokens = payload["tokens"]
|
| 151 |
sentence = payload["sentence"]
|
|
|
|
| 167 |
"payload": payload_out,
|
| 168 |
}
|
| 169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
app.add_api("swagger.yaml")
|
| 171 |
|
| 172 |
# Setup code
|
server/model_api.py
CHANGED
|
@@ -6,6 +6,10 @@ from transformers import AutoConfig, AutoTokenizer, AutoModelWithLMHead, AutoMod
|
|
| 6 |
from transformer_formatter import TransformerOutputFormatter
|
| 7 |
from utils.f import delegates, pick, memoize
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
def get_model_tok(mname):
|
| 10 |
conf = AutoConfig.from_pretrained(mname, output_attentions=True, output_past=False)
|
| 11 |
tok = AutoTokenizer.from_pretrained(mname, config=conf)
|
|
|
|
| 6 |
from transformer_formatter import TransformerOutputFormatter
|
| 7 |
from utils.f import delegates, pick, memoize
|
| 8 |
|
| 9 |
+
@memoize
|
| 10 |
+
def get_details(mname):
|
| 11 |
+
return ModelDetails(mname)
|
| 12 |
+
|
| 13 |
def get_model_tok(mname):
|
| 14 |
conf = AutoConfig.from_pretrained(mname, output_attentions=True, output_past=False)
|
| 15 |
tok = AutoTokenizer.from_pretrained(mname, config=conf)
|