Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| - step: | |
| name: Execute python examples/run_glue.py | |
| image: pytorch/pytorch:nightly-devel-cuda10.0-cudnn7 | |
| command: | |
| - python /valohai/repository/utils/download_glue_data.py --data_dir=/glue_data | |
| - pip install -e . | |
| - pip install -r examples/requirements.txt | |
| - python examples/run_glue.py --do_train --data_dir=/glue_data/{parameter-value:task_name} {parameters} | |
| parameters: | |
| - name: model_type | |
| pass-as: --model_type={v} | |
| type: string | |
| default: bert | |
| - name: model_name_or_path | |
| pass-as: --model_name_or_path={v} | |
| type: string | |
| default: bert-base-uncased | |
| - name: task_name | |
| pass-as: --task_name={v} | |
| type: string | |
| default: MRPC | |
| - name: max_seq_length | |
| pass-as: --max_seq_length={v} | |
| description: The maximum total input sequence length after tokenization. Sequences longer than this will be truncated, sequences shorter will be padded. | |
| type: integer | |
| default: 128 | |
| - name: per_gpu_train_batch_size | |
| pass-as: --per_gpu_train_batch_size={v} | |
| description: Batch size per GPU/CPU for training. | |
| type: integer | |
| default: 8 | |
| - name: per_gpu_eval_batch_size | |
| pass-as: --per_gpu_eval_batch_size={v} | |
| description: Batch size per GPU/CPU for evaluation. | |
| type: integer | |
| default: 8 | |
| - name: gradient_accumulation_steps | |
| pass-as: --gradient_accumulation_steps={v} | |
| description: Number of updates steps to accumulate before performing a backward/update pass. | |
| type: integer | |
| default: 1 | |
| - name: learning_rate | |
| pass-as: --learning_rate={v} | |
| description: The initial learning rate for Adam. | |
| type: float | |
| default: 0.00005 | |
| - name: adam_epsilon | |
| pass-as: --adam_epsilon={v} | |
| description: Epsilon for Adam optimizer. | |
| type: float | |
| default: 0.00000001 | |
| - name: max_grad_norm | |
| pass-as: --max_grad_norm={v} | |
| description: Max gradient norm. | |
| type: float | |
| default: 1.0 | |
| - name: num_train_epochs | |
| pass-as: --num_train_epochs={v} | |
| description: Total number of training epochs to perform. | |
| type: integer | |
| default: 3 | |
| - name: max_steps | |
| pass-as: --max_steps={v} | |
| description: If > 0, set total number of training steps to perform. Override num_train_epochs. | |
| type: integer | |
| default: -1 | |
| - name: warmup_steps | |
| pass-as: --warmup_steps={v} | |
| description: Linear warmup over warmup_steps. | |
| type: integer | |
| default: -1 | |
| - name: logging_steps | |
| pass-as: --logging_steps={v} | |
| description: Log every X updates steps. | |
| type: integer | |
| default: 25 | |
| - name: save_steps | |
| pass-as: --save_steps={v} | |
| description: Save checkpoint every X updates steps. | |
| type: integer | |
| default: -1 | |
| - name: output_dir | |
| pass-as: --output_dir={v} | |
| type: string | |
| default: /valohai/outputs | |
| - name: evaluate_during_training | |
| description: Run evaluation during training at each logging step. | |
| type: flag | |
| default: true | |
| - name: do_lower_case | |
| description: Set this flag if you are using an uncased model. | |
| type: flag | |