Spaces:
Runtime error
Runtime error
| from gradio_client import Client | |
| import gradio as gr | |
| import os, uuid, json, random, time | |
| import datetime | |
| from huggingface_hub import hf_api, CommitScheduler, HfApi | |
| from pathlib import Path | |
| # deckify_private = "ByMatthew/deckify_private" | |
| deckify_private = "eth-zurich-cle/deckify_private" | |
| repo_id = "eth-zurich-cle/scideck-dataset" | |
| feedback_file = Path("output_data/") / f"output_{uuid.uuid4()}.json" | |
| feedback_folder = feedback_file.parent | |
| scheduler = CommitScheduler( | |
| # repo_id="eth-zurich-cle/deckify-dataset", | |
| repo_id=repo_id, | |
| repo_type="dataset", | |
| folder_path=feedback_folder, | |
| path_in_repo="output_data", | |
| every=10, | |
| ) | |
| # scheduler = CommitScheduler( | |
| # repo_id="eth-zurich-cle/deckify-dataset", | |
| # repo_type="dataset", | |
| # folder_path=feedback_folder, | |
| # path_in_repo="input_data", | |
| # every=10, | |
| # ) | |
| api = HfApi() | |
| def check_password(username, password): | |
| if password == os.environ["ACCESS"]: | |
| return True | |
| else: | |
| return False | |
| def func(file, number_of_pages, secret): | |
| if secret != os.environ["ACCESS"]: | |
| return "Wrong password, please try again" | |
| date_string = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") | |
| # use only the filename form an absolute path basename | |
| dir, filename = os.path.split(file) | |
| print(f"dir: {dir}, filename: {filename}") | |
| unique_filename = f"{filename.split('.')[0]}_{date_string}.{filename.split('.')[-1]}" | |
| print(unique_filename) | |
| api.upload_file( | |
| # path_or_fileobj="/path/to/local/folder/README.md", | |
| path_or_fileobj=file, | |
| path_in_repo=f"input_files/{unique_filename}", | |
| repo_id=repo_id, | |
| repo_type="dataset", | |
| ) | |
| space_runtime = hf_api.get_space_runtime(deckify_private, token=read_key) | |
| print(f"Space runtime: {space_runtime}") | |
| if not space_runtime.stage == "RUNNING": # might need to check lowercase or something | |
| space_runtime_after_restart = hf_api.restart_space(deckify_private, token=read_key) | |
| print(f"Space runtime after restart: {space_runtime_after_restart}") | |
| max_retries = 20 | |
| retry_delay = 10 | |
| success = False | |
| for i in range(max_retries): | |
| space_runtime = hf_api.get_space_runtime(deckify_private, token=read_key) | |
| print(f"Space runtime: {space_runtime}") | |
| if space_runtime.stage == "RUNNING": | |
| success = True | |
| break | |
| time.sleep(retry_delay) | |
| if not success: | |
| return "Failed to start the private space in time. Please try again later." | |
| client = Client(deckify_private, hf_token=read_key) | |
| print(f"Client: {client}") | |
| # output, parsed_document = client.predict(file, number_of_pages) | |
| output, latex_output, latex_time, openai_time = client.predict(file, number_of_pages) | |
| if "Error" in output: | |
| return output | |
| # generate a random sequence of numbers | |
| # s = "".join([str(random.randint(0, 9)) for i in range(10)]) | |
| # with open(f"{s}.tex", "w", encoding="utf-8") as f: | |
| # f.write(text) | |
| save_output(unique_filename, output, number_of_pages, date_string) | |
| temp_string = "% The following slides are generated with [[SCIDECK]](https://huggingface.co/spaces/eth-zurich-cle/Scideck)" | |
| temp_string += "\n% Generated on " + date_string | |
| temp_string += "\n%" + "-"*100 + "\n" | |
| output = temp_string + output | |
| return output | |
| def save_output(unique_filename: str, output: str, num_pages:int, date_string: str, latex_output: str, latex_time: float, openai_time: float) -> None: | |
| # Append outputs and using a thread lock to avoid concurrent writes from different users. | |
| with scheduler.lock: | |
| with feedback_file.open("a") as f: | |
| f.write(json.dumps({"input_name": unique_filename, "output": output, | |
| "num_pages": num_pages, "timestamp": date_string, | |
| "latex": latex_output, "latex_extraction_time": latex_time, | |
| "openai_call_time": openai_time})) | |
| f.write("\n") | |
| def upload_file(file): | |
| print(file) | |
| return file.name | |
| # 📝 If you get an error message, you can send me email with the PDF file attached to this email address: <b>nkoisheke [at] ethz [dot] ch</b>, and I will generate the slides for you. If there are any other issues or questions, please do not hesitate to contact me 🤗 <br> | |
| description = r""" | |
| <h3> SCIDECK is a tool that allows you to convert your PDF files into a presentation deck.</h3> | |
| <br> | |
| ❗️❗️❗️[<b>Important</b>] Instructions:<br> | |
| 1️⃣ <b>Upload the PDF document</b>: Select the PDF file you want to convert into slides.<br> | |
| 2️⃣ <b>Specify the number of pages</b>: Indicate the range of pages you'd like to include in the slide generation. <b>Set it to 0</b> if you want to include all pages. <br> | |
| 3️⃣ <b>Enter the password provided in the invite email.</b><br> | |
| 4️⃣ <b>Click the Generate button</b>: Initiate the slide generation process by clicking the designated "Generate" button.<br> | |
| 5️⃣ <b>Be patient 🙂</b>: Generating the slides could take between 1 minute and 5 minutes.<br> | |
| 6️⃣ <b>Download the slides</b>: Once the slides are generated, you can download them by clicking the "Copy" button.<br> | |
| 7️⃣ <b>Feedback</b>: Please fill out the following [[Feedback Form]](https://docs.google.com/forms/d/e/1FAIpQLScFVZJeNSa9L4t8z5B8whzoLvlNpb95bQdroIPID7aNdv0i4w/viewform?fbzx=-3656849655817576014) <br> | |
| 📝 If you have any other issues or questions, please do not hesitate to contact us at ..... 🤗 <br> | |
| Disclaimer: The uploaded files along with the generated outputs will be stored in order to evaluate and improve the service. <br> | |
| Note: If the background process is not running, it may take up to 3 min for it to start. <br> | |
| ver 0.1 | |
| """ | |
| # 🖼️ Some examples of slides generated using <b>SCIDECK</b> are shown below: <br> | |
| # 1. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [[Paper]](https://arxiv.org/pdf/1502.03167.pdf) [[Slides]](https://drive.google.com/file/d/1Zt5FFH0nKxut-LyEr9pNAIdtgR_lBtIj/view?usp=sharing) <br> | |
| # 2. Attention Is All You Need [[Paper]](https://arxiv.org/pdf/1706.03762.pdf) [[Slides]](https://drive.google.com/file/d/1xKgohh_QKV9pD_XjDuXR566h0VJ1S7WI/view?usp=sharing) <br> | |
| # 3. Denoising Diffusion Probabilistic Models [[Paper]](https://arxiv.org/pdf/2006.11239.pdf) [[Slides]](https://drive.google.com/file/d/1D2ZfoJpHR3kP0JdsYyjxUq-vjVMV-KTO/view?usp=sharing) <br> | |
| read_key = os.environ.get("HF_TOKEN", None) | |
| if __name__ == "__main__": | |
| # client = Client.duplicate("ByMatthew/deckify_private", hf_token=read_key) | |
| temp = "<h1> SCIDECK: Generate slides (LaTeX Beamer) from PDF</h1>" | |
| with gr.Blocks() as demo: | |
| gr.Markdown(temp) | |
| gr.Image("demo.png", width=600, show_download_button=False, show_label=False) | |
| gr.Markdown(description) | |
| file_output = gr.File() | |
| upload_button = gr.UploadButton("Click to Upload a PDF File", file_types=["file"], file_count="single", size="sm") | |
| upload_button.upload(upload_file, upload_button, file_output) | |
| number_of_pages = gr.Number(label="Number of pages") | |
| secret = gr.Textbox(label="Password", type="password") | |
| output = gr.Textbox(label="Output", show_copy_button=True, interactive=False) | |
| genereate_slides_btn = gr.Button("Generate slides") | |
| genereate_slides_btn.click(fn=func, inputs=[upload_button, number_of_pages, secret], outputs=output, api_name="genereate_slides") | |
| demo.queue(max_size=30) | |
| demo.launch() |