Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,13 +2,34 @@ import gradio as gr
|
|
| 2 |
import spaces
|
| 3 |
import os, torch, io
|
| 4 |
import json
|
| 5 |
-
|
|
|
|
| 6 |
import httpx
|
|
|
|
| 7 |
# print("Make sure you've downloaded unidic (python -m unidic download) for this WebUI to work.")
|
| 8 |
from melo.api import TTS
|
| 9 |
import tempfile
|
| 10 |
import wave
|
| 11 |
from pydub import AudioSegment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def fetch_text(url):
|
| 14 |
prefix_url = "https://r.jina.ai/"
|
|
@@ -16,41 +37,70 @@ def fetch_text(url):
|
|
| 16 |
response = httpx.get(url, timeout=60.0)
|
| 17 |
return response.text
|
| 18 |
|
|
|
|
| 19 |
@spaces.GPU
|
| 20 |
-
def synthesize(
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
models = {
|
| 24 |
-
|
| 25 |
}
|
| 26 |
-
speakers = [
|
| 27 |
|
| 28 |
combined_audio = AudioSegment.empty()
|
| 29 |
-
conversation = json.loads(
|
| 30 |
for i, turn in enumerate(conversation["conversation"]):
|
| 31 |
bio = io.BytesIO()
|
| 32 |
text = turn["text"]
|
| 33 |
speaker = speakers[i % 2]
|
| 34 |
-
speaker_id = models[
|
| 35 |
-
models[
|
|
|
|
|
|
|
| 36 |
bio.seek(0)
|
| 37 |
audio_segment = AudioSegment.from_file(bio, format="wav")
|
| 38 |
combined_audio += audio_segment
|
| 39 |
|
| 40 |
-
final_audio_path =
|
| 41 |
-
combined_audio.export(final_audio_path, format=
|
| 42 |
return final_audio_path
|
| 43 |
|
| 44 |
-
|
| 45 |
with gr.Blocks() as demo:
|
| 46 |
-
gr.Markdown(
|
| 47 |
-
gr.Markdown(
|
| 48 |
-
gr.Markdown(
|
| 49 |
with gr.Group():
|
| 50 |
text = gr.Textbox(label="Article Link")
|
| 51 |
-
btn = gr.Button(
|
| 52 |
aud = gr.Audio(interactive=False)
|
| 53 |
btn.click(synthesize, inputs=[text], outputs=[aud])
|
| 54 |
|
| 55 |
demo.queue(api_open=True, default_concurrency_limit=10).launch(show_api=True)
|
| 56 |
-
|
|
|
|
| 2 |
import spaces
|
| 3 |
import os, torch, io
|
| 4 |
import json
|
| 5 |
+
|
| 6 |
+
os.system("python -m unidic download")
|
| 7 |
import httpx
|
| 8 |
+
|
| 9 |
# print("Make sure you've downloaded unidic (python -m unidic download) for this WebUI to work.")
|
| 10 |
from melo.api import TTS
|
| 11 |
import tempfile
|
| 12 |
import wave
|
| 13 |
from pydub import AudioSegment
|
| 14 |
+
from transformers import (
|
| 15 |
+
AutoModelForCausalLM,
|
| 16 |
+
AutoTokenizer,
|
| 17 |
+
TextIteratorStreamer,
|
| 18 |
+
BitsAndBytesConfig,
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
quantization_config = BitsAndBytesConfig(
|
| 22 |
+
load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 26 |
+
"NousResearch/Hermes-2-Pro-Llama-3-8B",
|
| 27 |
+
quantization_config=quantization_config,
|
| 28 |
+
token=token,
|
| 29 |
+
)
|
| 30 |
+
tok = AutoTokenizer.from_pretrained("NousResearch/Hermes-2-Pro-Llama-3-8B", token=token)
|
| 31 |
+
terminators = [tok.eos_token_id, tok.convert_tokens_to_ids("<|eot_id|>")]
|
| 32 |
+
|
| 33 |
|
| 34 |
def fetch_text(url):
|
| 35 |
prefix_url = "https://r.jina.ai/"
|
|
|
|
| 37 |
response = httpx.get(url, timeout=60.0)
|
| 38 |
return response.text
|
| 39 |
|
| 40 |
+
|
| 41 |
@spaces.GPU
|
| 42 |
+
def synthesize(article_url, progress=gr.Progress()):
|
| 43 |
+
text = fetch_text(article_url)
|
| 44 |
+
template = """
|
| 45 |
+
{
|
| 46 |
+
"conversation": [
|
| 47 |
+
{"speaker": "", "text": ""},
|
| 48 |
+
{"speaker": "", "text": ""}
|
| 49 |
+
]
|
| 50 |
+
}
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
chat = [
|
| 54 |
+
{
|
| 55 |
+
"role": "user",
|
| 56 |
+
"content": f"{text} \n Convert the text as Elaborate Conversation between two people as Podcast.\nfollowing this template \n {template}",
|
| 57 |
+
}
|
| 58 |
+
]
|
| 59 |
+
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
| 60 |
+
model_inputs = tok([messages], return_tensors="pt").to(device)
|
| 61 |
+
|
| 62 |
+
text = model.generate(
|
| 63 |
+
model_inputs,
|
| 64 |
+
max_new_tokens=1024,
|
| 65 |
+
do_sample=True,
|
| 66 |
+
temperature=0.9,
|
| 67 |
+
eos_token_id=terminators,
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
speed = 1.0
|
| 71 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 72 |
models = {
|
| 73 |
+
"EN": TTS(language="EN", device=device),
|
| 74 |
}
|
| 75 |
+
speakers = ["EN-Default", "EN-US"]
|
| 76 |
|
| 77 |
combined_audio = AudioSegment.empty()
|
| 78 |
+
conversation = json.loads(text)
|
| 79 |
for i, turn in enumerate(conversation["conversation"]):
|
| 80 |
bio = io.BytesIO()
|
| 81 |
text = turn["text"]
|
| 82 |
speaker = speakers[i % 2]
|
| 83 |
+
speaker_id = models["EN"].hps.data.spk2id[speaker]
|
| 84 |
+
models["EN"].tts_to_file(
|
| 85 |
+
text, speaker_id, bio, speed=speed, pbar=progress.tqdm, format="wav"
|
| 86 |
+
)
|
| 87 |
bio.seek(0)
|
| 88 |
audio_segment = AudioSegment.from_file(bio, format="wav")
|
| 89 |
combined_audio += audio_segment
|
| 90 |
|
| 91 |
+
final_audio_path = "final.mp3"
|
| 92 |
+
combined_audio.export(final_audio_path, format="mp3")
|
| 93 |
return final_audio_path
|
| 94 |
|
| 95 |
+
|
| 96 |
with gr.Blocks() as demo:
|
| 97 |
+
gr.Markdown("# Not Ready to USE")
|
| 98 |
+
gr.Markdown("# Turn Any Article into Podcast")
|
| 99 |
+
gr.Markdown("## Easily convert articles from URLs into listenable audio Podcast.")
|
| 100 |
with gr.Group():
|
| 101 |
text = gr.Textbox(label="Article Link")
|
| 102 |
+
btn = gr.Button("Podcasitfy", variant="primary")
|
| 103 |
aud = gr.Audio(interactive=False)
|
| 104 |
btn.click(synthesize, inputs=[text], outputs=[aud])
|
| 105 |
|
| 106 |
demo.queue(api_open=True, default_concurrency_limit=10).launch(show_api=True)
|
|
|