| import gradio as gr | |
| import pandas as pd | |
| banner_url = "https://huggingface.co/spaces/elmresearchcenter/open_universal_arabic_asr_leaderboard/resolve/main/banner.png" | |
| BANNER = f'<div style="display: flex; justify-content: space-around;"><img src="{banner_url}" alt="Banner" style="width: 10vw; max-width: 600px;"> </div>' | |
| INTRODUCTION_TEXT = "📖**Open Universal Arabic ASR Leaderboard**📖 benchmarks multi-dialect Arabic ASR models on various multi-dialect datasets.<br>Apart from the WER%/CER% for each test set, we also report the Average WER%/CER% and rank the models based on the Average WER, from lowest to highest.<br>To reproduce the benchmark numbers and request a model that is not listed, you can launch an issue/PR in our [GitHub repo](https://github.com/Natural-Language-Processing-Elm/open_universal_arabic_asr_leaderboard)😊.<br>For more detailed analysis such as models' robustness, speaker adaption, model efficiency and memory usage, please check our [paper](https://arxiv.org/pdf/2412.13788)." | |
| CITATION_BUTTON_TEXT = """ | |
| @article{wang2024open, | |
| title={Open Universal Arabic ASR Leaderboard}, | |
| author={Wang, Yingzhi and Alhmoud, Anas and Alqurishi, Muhammad}, | |
| journal={arXiv preprint arXiv:2412.13788}, | |
| year={2024} | |
| } | |
| """ | |
| METRICS_TAB_TEXT = METRICS_TAB_TEXT = """ | |
| ## Metrics | |
| We report both the Word Error Rate (WER) and Character Error Rate (CER). | |
| ## Reproduction | |
| The Open Universal Arabic ASR Leaderboard will be a continuous benchmark project. | |
| \nWe open-source the evaluation scripts at our [GitHub repo](https://github.com/Natural-Language-Processing-Elm/open_universal_arabic_asr_leaderboard). | |
| \nPlease launch a discussion in our GitHub repo to let us know if you want to learn about the performance of a new model. | |
| ## Benchmark datasets | |
| | Test Set | Num Dialects | Test (h) | | |
| |-------------------------------------------------------------------------------------------------|----------------|-------------| | |
| | [SADA](https://www.kaggle.com/datasets/sdaiancai/sada2022) | 10 | 10.7 | | |
| | [Common Voice 18.0](https://commonvoice.mozilla.org/en/datasets) | 25 | 12.6 | | |
| | [MASC (Clean-Test)](https://ieee-dataport.org/open-access/masc-massive-arabic-speech-corpus) | 7 | 10.5 | | |
| | [MASC (Noisy-Test)](https://ieee-dataport.org/open-access/masc-massive-arabic-speech-corpus) | 8 | 14.9 | | |
| | [MGB-2](http://www.mgb-challenge.org/MGB-2.html) | Unspecified | 9.6 | | |
| | [Casablanca](https://huggingface.co/datasets/UBC-NLP/Casablanca) | 8 | 7.7 | | |
| ## In-depth Analysis | |
| We also provide a comprehensive analysis of the models' robustness, speaker adaptation, inference efficiency and memory consumption. | |
| \nPlease check our [paper](https://arxiv.org/pdf/2412.13788) to learn more. | |
| """ | |
| def styled_message(message): | |
| return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>" | |
| UPDATES = "Sep 30th 2025:[New models included: Qwen3-Omni-30B-A3B-Instruct<br>Sep 22th 2025:[New models included: Voxtral-mini and Voxtral-Small]<br>Jan 11th 2025:[New models included: Nvidia Parakeet-CTC-XXL-1.1B-Universal and Nvidia Parakeet-CTC-XXL-1.1B-Concat]<br>Jan 11th 2025:[New dataset included: Casablanca]" | |
| results = { | |
| "Model": ["Qwen/Qwen3-Omni-30B-A3B-Instruct", "nvidia-conformer-ctc-large-arabic (lm)", "mistralai/Voxtral-Small-24B-2507", "nvidia-conformer-ctc-large-arabic (greedy)", "openai/whisper-large-v3", "facebook/seamless-m4t-v2-large", "openai/whisper-large-v3-turbo", "openai/whisper-large-v2", "openai/whisper-large", "mistralai/Voxtral-Mini-3B-2507", "asafaya/hubert-large-arabic-transcribe", "openai/whisper-medium", "nvidia-Parakeet-ctc-1.1b-concat", "nvidia-Parakeet-ctc-1.1b-universal", "facebook/mms-1b-all", "openai/whisper-small", "whitefox123/w2v-bert-2.0-arabic-4", "jonatasgrosman/wav2vec2-large-xlsr-53-arabic", "speechbrain/asr-wav2vec2-commonvoice-14-ar"], | |
| "Average WER⬇️": [30.71, 32.91, 34.47, 34.74, 36.86, 38.16, 40.05, 40.20, 42.57, 42.58, 45.50, 45.57, 46.54, 51.96, 54.54, 55.13, 58.13, 60.98, 65.74], | |
| "Average CER": [13.67, 13.84, 15.29, 13.37, 17.21, 17.03, 18.87, 19.55, 20.49, 19.90, 17.35, 22.27, 23.88, 25.19, 21.45, 21.68, 27.62, 25.61, 30.93], | |
| "SADA WER": [44.82, 44.52, 50.82, 47.26, 55.96, 62.52, 60.36, 57.46, 63.24, 63.65, 67.82, 67.71, 70.70, 73.58, 77.48, 78.02, 87.34, 86.82, 88.54], | |
| "SADA CER": [26.11, 23.76, 28.85, 22.54, 34.62, 37.61, 37.67, 36.59, 40.16, 35.89, 31.83, 43.83, 46.70, 49.48, 37.50, 33.17, 56.75, 44.20, 50.28], | |
| "Common Voice\nWER": [11.46, 8.80, 15.25, 10.60, 17.83, 21.70, 25.73, 21.77, 26.04, 22.12, 8.01, 28.07, 26.34, 40.01, 26.52, 24.18, 41.79, 23.00, 29.17], | |
| "Common Voice\nCER": [4.28, 2.77, 5.54, 3.05, 5.74, 6.24, 10.89, 7.44, 9.61, 8.44, 2.37, 10.38, 9.82, 14.64, 7.21, 6.79, 15.75, 6.64, 9.85], | |
| "MASC(clean-test)\nWER": [21.47, 23.74, 23.96, 24.12, 24.66, 25.04, 25.51, 27.25, 28.89, 28.37, 32.94, 29.99, 30.49, 36.16, 38.82, 35.93, 37.82, 42.75, 49.10], | |
| "MASC(clean-test)\nCER": [5.59, 5.63, 7.06, 5.63, 7.24, 7.19, 7.55, 8.28, 9.05, 8.73, 7.15, 8.98, 8.41, 10.29, 10.36, 9.01, 11.92, 11.87, 16.37], | |
| "MASC(noisy-test)\nWER": [30.85, 34.29, 34.43, 35.64, 34.63, 33.24, 37.16, 38.55, 40.79, 41.27, 50.16, 42.91, 45.95, 50.03, 57.33, 56.36, 53.28, 64.27, 69.57], | |
| "MASC(noisy-test)\nCER": [11.28, 11.07, 12.22, 11.02, 12.89, 11.92, 13.93, 15.49, 16.31, 16.44, 15.62, 17.49, 18.72, 20.09, 19.76, 19.43, 21.93, 24.17, 30.17], | |
| "MGB-2 WER": [13.09, 17.20, 16.03, 19.69, 16.26, 20.23, 17.75, 25.17, 24.28, 22.56, 37.51, 29.32, 24.94, 30.68, 39.16, 48.64, 40.66, 56.29, 64.37], | |
| "MGB-2 CER": [6.20, 6.87, 7.41, 7.46, 7.74, 9.37, 8.34, 13.48, 12.10, 10.46, 11.07, 14.82, 9.87, 11.36, 13.48, 15.56, 19.39, 20.44, 26.56], | |
| "Casablanca\nWER": [62.55, 68.90, 66.30, 71.13, 71.81, 66.25, 73.79, 71.01, 72.18, 77.52, 76.53, 75.44, 80.80, 81.30, 87.95, 87.64, 87.88, 92.72, 93.68], | |
| "Casablanca\nCER": [28.53, 32.97, 30.64, 30.50, 35.04, 29.85, 34.83, 36.00, 35.71, 39.43, 36.03, 38.12, 49.77, 45.31, 40.41, 46.12, 39.99, 46.33, 52.36], | |
| } | |
| original_df = pd.DataFrame(results) | |
| original_df.sort_values(by="Average WER⬇️", inplace=True) | |
| TYPES = ['str', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'] | |
| LEADERBOARD_CSS = """ | |
| html, body { | |
| overflow-y: auto !important; | |
| } | |
| #leaderboard-table th .header-content { | |
| min-width: 150px; | |
| white-space: nowrap; | |
| } | |
| """ | |
| def request_model(model_text): | |
| return styled_message("🤗 Please launch a discussion in our GitHub repo, thank you. 🤗") | |
| with gr.Blocks(fill_width=False, fill_height=False, css=LEADERBOARD_CSS) as demo: | |
| gr.HTML(BANNER, elem_id="banner") | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| with gr.TabItem("🏅 Leaderboard", elem_id="od-benchmark-tab-table", id=0): | |
| leaderboard_table = gr.Dataframe( | |
| value=original_df, | |
| datatype=TYPES, | |
| elem_id="leaderboard-table", | |
| interactive=False, | |
| visible=True, | |
| ) | |
| with gr.TabItem("📈 Metrics", elem_id="od-benchmark-tab-table", id=1): | |
| gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text") | |
| with gr.TabItem("✉️✨ Request a model here!", elem_id="od-benchmark-tab-table", id=2): | |
| with gr.Column(): | |
| gr.Markdown("# ✉️✨ Request results for a new model here!", elem_classes="markdown-text") | |
| model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)") | |
| mdw_submission_result = gr.Markdown() | |
| btn_submit = gr.Button(value="🚀 Request") | |
| btn_submit.click(request_model, [model_name_textbox], mdw_submission_result) | |
| gr.Markdown(UPDATES, elem_classes="markdown-text") | |
| with gr.Row(): | |
| with gr.Accordion("📙 Citation", open=False): | |
| gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, lines=7, | |
| label="Copy the BibTeX snippet to cite this source", | |
| elem_id="citation-button", | |
| show_copy_button=True, | |
| ) | |
| demo.launch(allowed_paths=["banner.png"], ssr_mode=False) |