Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""app.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1740ajnCP_JU3oCXfVpmvKcaHdtlYWp9S
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
!pip install gradio
|
| 11 |
+
!pip install transformers
|
| 12 |
+
!pip install spacy
|
| 13 |
+
import gradio as gr
|
| 14 |
+
import re
|
| 15 |
+
import spacy
|
| 16 |
+
from transformers import pipeline
|
| 17 |
+
|
| 18 |
+
!pip install unidecode
|
| 19 |
+
|
| 20 |
+
from unidecode import unidecode
|
| 21 |
+
|
| 22 |
+
# Load spaCy's English model
|
| 23 |
+
nlp = spacy.load("en_core_web_sm")
|
| 24 |
+
|
| 25 |
+
def preprocess_text(text):
|
| 26 |
+
doc = nlp(text.lower()) # Tokenize and lowercase the text
|
| 27 |
+
tokens = [token.text for token in doc if not token.is_punct] # Remove punctuation
|
| 28 |
+
return tokens
|
| 29 |
+
|
| 30 |
+
# Load the multilingual model for question answering
|
| 31 |
+
qa_model = pipeline("question-answering", model="deepset/xlm-roberta-large-squad2")
|
| 32 |
+
|
| 33 |
+
# Function to generate the answer based on question and uploaded context
|
| 34 |
+
def answer_question(question, context):
|
| 35 |
+
try:
|
| 36 |
+
preprocessed_context = preprocess_text(context)
|
| 37 |
+
result = qa_model(question=question, context=" ".join(preprocessed_context))
|
| 38 |
+
return result['answer']
|
| 39 |
+
except Exception as e:
|
| 40 |
+
return f"Error: {str(e)}"
|
| 41 |
+
|
| 42 |
+
# Gradio interface
|
| 43 |
+
def qa_app(text_file, question):
|
| 44 |
+
try:
|
| 45 |
+
with open(text_file.name, 'r') as file:
|
| 46 |
+
context = file.read()
|
| 47 |
+
return answer_question(question, context)
|
| 48 |
+
except Exception as e:
|
| 49 |
+
return f"Error reading file: {str(e)}"
|
| 50 |
+
|
| 51 |
+
# Create Gradio interface with updated syntax
|
| 52 |
+
iface = gr.Interface(
|
| 53 |
+
fn=qa_app, # The function that processes input
|
| 54 |
+
inputs=[gr.File(label="Upload your text file"), gr.Textbox(label="Enter your question")],
|
| 55 |
+
outputs="text",
|
| 56 |
+
title="Multilingual Question Answering",
|
| 57 |
+
description="Upload a text file and ask a question based on its content."
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# Launch the Gradio app
|
| 61 |
+
iface.launch()
|
| 62 |
+
|