Spaces:
Running
Running
Create generateColab.py
Browse files- engine/generateColab.py +120 -0
engine/generateColab.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import requests
|
| 3 |
+
import torch
|
| 4 |
+
import time
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import imageio
|
| 9 |
+
from dotenv import load_dotenv
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
load_dotenv("config.txt")
|
| 13 |
+
|
| 14 |
+
path_to_base_model = "models/checkpoint/gpu-model/base/dreamdrop-v1.safetensors"
|
| 15 |
+
path_to_inpaint_model = "models/checkpoint/gpu-model/inpaint/dreamdrop-inpainting.safetensors"
|
| 16 |
+
|
| 17 |
+
xl = os.getenv("xl")
|
| 18 |
+
|
| 19 |
+
if xl == "True":
|
| 20 |
+
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, StableDiffusionXLInpaintPipeline
|
| 21 |
+
pipe_t2i = StableDiffusionXLPipeline.from_single_file(path_to_base_model, torch_dtype=torch.float16, use_safetensors=True)
|
| 22 |
+
pipe_t2i = pipe_t2i.to("cuda")
|
| 23 |
+
|
| 24 |
+
pipe_i2i = StableDiffusionXLImg2ImgPipeline.from_single_file(path_to_base_model, torch_dtype=torch.float16, use_safetensors=True)
|
| 25 |
+
pipe_i2i = pipe_i2i.to("cuda")
|
| 26 |
+
|
| 27 |
+
pipe_inpaint = StableDiffusionXLInpaintPipeline.from_single_file(path_to_inpaint_model, torch_dtype=torch.float16, use_safetensors=True)
|
| 28 |
+
pipe_inpaint = pipe_inpaint.to("cuda")
|
| 29 |
+
else:
|
| 30 |
+
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipeline
|
| 31 |
+
pipe_t2i = StableDiffusionPipeline.from_single_file(path_to_base_model, torch_dtype=torch.float16, use_safetensors=True)
|
| 32 |
+
pipe_t2i = pipe_t2i.to("cuda")
|
| 33 |
+
|
| 34 |
+
pipe_i2i = StableDiffusionImg2ImgPipeline.from_single_file(path_to_base_model, torch_dtype=torch.float16, use_safetensors=True)
|
| 35 |
+
pipe_i2i = pipe_i2i.to("cuda")
|
| 36 |
+
|
| 37 |
+
pipe_inpaint = StableDiffusionInpaintPipeline.from_single_file(path_to_inpaint_model, torch_dtype=torch.float16, use_safetensors=True)
|
| 38 |
+
pipe_inpaint = pipe_inpaint.to("cuda")
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
pipe_t2i.load_lora_weights(pretrained_model_name_or_path_or_dict="models/lora", weight_name="epic_noiseoffset.safetensors")
|
| 42 |
+
pipe_t2i.fuse_lora(lora_scale=0.1)
|
| 43 |
+
|
| 44 |
+
pipe_i2i.load_lora_weights(pretrained_model_name_or_path_or_dict="models/lora", weight_name="epic_noiseoffset.safetensors")
|
| 45 |
+
pipe_i2i.fuse_lora(lora_scale=0.1)
|
| 46 |
+
|
| 47 |
+
pipe_inpaint.load_lora_weights(pretrained_model_name_or_path_or_dict="models/lora", weight_name="epic_noiseoffset.safetensors")
|
| 48 |
+
pipe_inpaint.fuse_lora(lora_scale=0.1)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def gpugen(prompt, mode, guidance, width, height, num_images, i2i_strength, inpaint_strength, i2i_change, inpaint_change, init=None, inpaint_image=None, progress = gr.Progress(track_tqdm=True)):
|
| 52 |
+
if mode == "Fast":
|
| 53 |
+
steps = 30
|
| 54 |
+
elif mode == "High Quality":
|
| 55 |
+
steps = 45
|
| 56 |
+
else:
|
| 57 |
+
steps = 20
|
| 58 |
+
results = []
|
| 59 |
+
seed = random.randint(1, 9999999)
|
| 60 |
+
if not i2i_change and not inpaint_change:
|
| 61 |
+
num = random.randint(100, 99999)
|
| 62 |
+
start_time = time.time()
|
| 63 |
+
for _ in range(num_images):
|
| 64 |
+
image = pipe_t2i(
|
| 65 |
+
prompt=prompt,
|
| 66 |
+
negative_prompt="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
| 67 |
+
num_inference_steps=steps,
|
| 68 |
+
guidance_scale=guidance,
|
| 69 |
+
width=width, height=height,
|
| 70 |
+
seed=seed,
|
| 71 |
+
).images
|
| 72 |
+
image[0].save(f"outputs/{num}_txt2img_gpu{_}.jpg")
|
| 73 |
+
results.append(image[0])
|
| 74 |
+
end_time = time.time()
|
| 75 |
+
execution_time = end_time - start_time
|
| 76 |
+
return results, f"Time taken: {execution_time} sec."
|
| 77 |
+
elif inpaint_change and not i2i_change:
|
| 78 |
+
imageio.imwrite("output_image.png", inpaint_image["mask"])
|
| 79 |
+
|
| 80 |
+
num = random.randint(100, 99999)
|
| 81 |
+
start_time = time.time()
|
| 82 |
+
for _ in range(num_images):
|
| 83 |
+
image = pipe_inpaint(
|
| 84 |
+
prompt=prompt,
|
| 85 |
+
image=inpaint_image["image"],
|
| 86 |
+
mask_image=inpaint_image["mask"],
|
| 87 |
+
negative_prompt="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
| 88 |
+
num_inference_steps=steps,
|
| 89 |
+
guidance_scale=guidance,
|
| 90 |
+
strength=inpaint_strength,
|
| 91 |
+
width=width, height=height,
|
| 92 |
+
seed=seed,
|
| 93 |
+
).images
|
| 94 |
+
image[0].save(f"outputs/{num}_inpaint_gpu{_}.jpg")
|
| 95 |
+
results.append(image[0])
|
| 96 |
+
end_time = time.time()
|
| 97 |
+
execution_time = end_time - start_time
|
| 98 |
+
return results, f"Time taken: {execution_time} sec."
|
| 99 |
+
|
| 100 |
+
else:
|
| 101 |
+
num = random.randint(100, 99999)
|
| 102 |
+
start_time = time.time()
|
| 103 |
+
for _ in range(num_images):
|
| 104 |
+
image = pipe_i2i(
|
| 105 |
+
prompt=prompt,
|
| 106 |
+
negative_prompt="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
| 107 |
+
image=init,
|
| 108 |
+
num_inference_steps=steps,
|
| 109 |
+
guidance_scale=guidance,
|
| 110 |
+
width=width, height=height,
|
| 111 |
+
strength=i2i_strength,
|
| 112 |
+
seed=seed,
|
| 113 |
+
).images
|
| 114 |
+
image[0].save(f"outputs/{num}_img2img_gpu{_}.jpg")
|
| 115 |
+
results.append(image[0])
|
| 116 |
+
end_time = time.time()
|
| 117 |
+
execution_time = end_time - start_time
|
| 118 |
+
return results, f"Time taken: {execution_time} sec."
|
| 119 |
+
|
| 120 |
+
|