Spaces:
Runtime error
Runtime error
| import argparse | |
| import copy | |
| import itertools | |
| import logging | |
| import math | |
| import os | |
| import random | |
| import shutil | |
| from pathlib import Path | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint | |
| import torchvision.transforms.v2 as transforms_v2 | |
| import transformers | |
| from accelerate import Accelerator | |
| from accelerate.logging import get_logger | |
| from accelerate.utils import set_seed | |
| from huggingface_hub import create_repo, upload_folder | |
| from packaging import version | |
| from peft import LoraConfig, PeftModel, get_peft_model | |
| from PIL import Image | |
| from PIL.ImageOps import exif_transpose | |
| from torch.utils.data import Dataset | |
| from tqdm.auto import tqdm | |
| from transformers import AutoTokenizer, CLIPTextModel | |
| import diffusers | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DDPMScheduler, | |
| DPMSolverMultistepScheduler, | |
| StableDiffusionInpaintPipeline, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.optimization import get_scheduler | |
| from diffusers.utils import check_min_version, is_wandb_available | |
| from diffusers.utils.import_utils import is_xformers_available | |
| if is_wandb_available(): | |
| import wandb | |
| # Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
| check_min_version("0.20.1") | |
| logger = get_logger(__name__) | |
| def make_mask(images, resolution, times=30): | |
| mask, times = torch.ones_like(images[0:1, :, :]), np.random.randint(1, times) | |
| min_size, max_size, margin = np.array([0.03, 0.25, 0.01]) * resolution | |
| max_size = min(max_size, resolution - margin * 2) | |
| for _ in range(times): | |
| width = np.random.randint(int(min_size), int(max_size)) | |
| height = np.random.randint(int(min_size), int(max_size)) | |
| x_start = np.random.randint(int(margin), resolution - int(margin) - width + 1) | |
| y_start = np.random.randint(int(margin), resolution - int(margin) - height + 1) | |
| mask[:, y_start : y_start + height, x_start : x_start + width] = 0 | |
| mask = 1 - mask if random.random() < 0.5 else mask | |
| return mask | |
| def save_model_card( | |
| repo_id: str, | |
| images=None, | |
| base_model=str, | |
| repo_folder=None, | |
| ): | |
| img_str = "" | |
| for i, image in enumerate(images): | |
| image.save(os.path.join(repo_folder, f"image_{i}.png")) | |
| img_str += f"\n" | |
| yaml = f""" | |
| --- | |
| license: creativeml-openrail-m | |
| base_model: {base_model} | |
| prompt: "a photo of sks" | |
| tags: | |
| - stable-diffusion-inpainting | |
| - stable-diffusion-inpainting-diffusers | |
| - text-to-image | |
| - diffusers | |
| - realfill | |
| - diffusers-training | |
| inference: true | |
| --- | |
| """ | |
| model_card = f""" | |
| # RealFill - {repo_id} | |
| This is a realfill model derived from {base_model}. The weights were trained using [RealFill](https://realfill.github.io/). | |
| You can find some example images in the following. \n | |
| {img_str} | |
| """ | |
| with open(os.path.join(repo_folder, "README.md"), "w") as f: | |
| f.write(yaml + model_card) | |
| def log_validation( | |
| text_encoder, | |
| tokenizer, | |
| unet, | |
| args, | |
| accelerator, | |
| weight_dtype, | |
| epoch, | |
| ): | |
| logger.info(f"Running validation... \nGenerating {args.num_validation_images} images") | |
| # create pipeline (note: unet and vae are loaded again in float32) | |
| pipeline = StableDiffusionInpaintPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| tokenizer=tokenizer, | |
| revision=args.revision, | |
| torch_dtype=weight_dtype, | |
| ) | |
| # set `keep_fp32_wrapper` to True because we do not want to remove | |
| # mixed precision hooks while we are still training | |
| pipeline.unet = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) | |
| pipeline.text_encoder = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) | |
| pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) | |
| pipeline = pipeline.to(accelerator.device) | |
| pipeline.set_progress_bar_config(disable=True) | |
| # run inference | |
| generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed) | |
| target_dir = Path(args.train_data_dir) / "target" | |
| target_image, target_mask = target_dir / "target.png", target_dir / "mask.png" | |
| image, mask_image = Image.open(target_image), Image.open(target_mask) | |
| if image.mode != "RGB": | |
| image = image.convert("RGB") | |
| images = [] | |
| for _ in range(args.num_validation_images): | |
| image = pipeline( | |
| prompt="a photo of sks", | |
| image=image, | |
| mask_image=mask_image, | |
| num_inference_steps=25, | |
| guidance_scale=5, | |
| generator=generator, | |
| ).images[0] | |
| images.append(image) | |
| for tracker in accelerator.trackers: | |
| if tracker.name == "tensorboard": | |
| np_images = np.stack([np.asarray(img) for img in images]) | |
| tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") | |
| if tracker.name == "wandb": | |
| tracker.log({"validation": [wandb.Image(image, caption=str(i)) for i, image in enumerate(images)]}) | |
| del pipeline | |
| torch.cuda.empty_cache() | |
| return images | |
| def parse_args(input_args=None): | |
| parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
| parser.add_argument( | |
| "--pretrained_model_name_or_path", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="Path to pretrained model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="Revision of pretrained model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--tokenizer_name", | |
| type=str, | |
| default=None, | |
| help="Pretrained tokenizer name or path if not the same as model_name", | |
| ) | |
| parser.add_argument( | |
| "--train_data_dir", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="A folder containing the training data of images.", | |
| ) | |
| parser.add_argument( | |
| "--num_validation_images", | |
| type=int, | |
| default=4, | |
| help="Number of images that should be generated during validation with `validation_conditioning`.", | |
| ) | |
| parser.add_argument( | |
| "--validation_steps", | |
| type=int, | |
| default=100, | |
| help=( | |
| "Run realfill validation every X steps. RealFill validation consists of running the conditioning" | |
| " `args.validation_conditioning` multiple times: `args.num_validation_images`." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="realfill-model", | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
| parser.add_argument( | |
| "--resolution", | |
| type=int, | |
| default=512, | |
| help=( | |
| "The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
| " resolution" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
| ) | |
| parser.add_argument("--num_train_epochs", type=int, default=1) | |
| parser.add_argument( | |
| "--max_train_steps", | |
| type=int, | |
| default=None, | |
| help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
| ) | |
| parser.add_argument( | |
| "--checkpointing_steps", | |
| type=int, | |
| default=500, | |
| help=( | |
| "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" | |
| " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" | |
| " training using `--resume_from_checkpoint`." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--checkpoints_total_limit", | |
| type=int, | |
| default=None, | |
| help=("Max number of checkpoints to store."), | |
| ) | |
| parser.add_argument( | |
| "--resume_from_checkpoint", | |
| type=str, | |
| default=None, | |
| help=( | |
| "Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
| ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| parser.add_argument( | |
| "--gradient_checkpointing", | |
| action="store_true", | |
| help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
| ) | |
| parser.add_argument( | |
| "--unet_learning_rate", | |
| type=float, | |
| default=2e-4, | |
| help="Learning rate to use for unet.", | |
| ) | |
| parser.add_argument( | |
| "--text_encoder_learning_rate", | |
| type=float, | |
| default=4e-5, | |
| help="Learning rate to use for text encoder.", | |
| ) | |
| parser.add_argument( | |
| "--scale_lr", | |
| action="store_true", | |
| default=False, | |
| help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
| ) | |
| parser.add_argument( | |
| "--lr_scheduler", | |
| type=str, | |
| default="constant", | |
| help=( | |
| 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
| ' "constant", "constant_with_warmup"]' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
| ) | |
| parser.add_argument( | |
| "--lr_num_cycles", | |
| type=int, | |
| default=1, | |
| help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
| ) | |
| parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") | |
| parser.add_argument( | |
| "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
| ) | |
| parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
| parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
| parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
| parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
| parser.add_argument( | |
| "--hub_model_id", | |
| type=str, | |
| default=None, | |
| help="The name of the repository to keep in sync with the local `output_dir`.", | |
| ) | |
| parser.add_argument( | |
| "--logging_dir", | |
| type=str, | |
| default="logs", | |
| help=( | |
| "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
| " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--allow_tf32", | |
| action="store_true", | |
| help=( | |
| "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
| " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--report_to", | |
| type=str, | |
| default="tensorboard", | |
| help=( | |
| 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
| ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--wandb_key", | |
| type=str, | |
| default=None, | |
| help=("If report to option is set to wandb, api-key for wandb used for login to wandb "), | |
| ) | |
| parser.add_argument( | |
| "--wandb_project_name", | |
| type=str, | |
| default=None, | |
| help=("If report to option is set to wandb, project name in wandb for log tracking "), | |
| ) | |
| parser.add_argument( | |
| "--mixed_precision", | |
| type=str, | |
| default=None, | |
| choices=["no", "fp16", "bf16"], | |
| help=( | |
| "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
| " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
| " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
| ), | |
| ) | |
| parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
| parser.add_argument( | |
| "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
| ) | |
| parser.add_argument( | |
| "--set_grads_to_none", | |
| action="store_true", | |
| help=( | |
| "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" | |
| " behaviors, so disable this argument if it causes any problems. More info:" | |
| " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--lora_rank", | |
| type=int, | |
| default=16, | |
| help=("The dimension of the LoRA update matrices."), | |
| ) | |
| parser.add_argument( | |
| "--lora_alpha", | |
| type=int, | |
| default=27, | |
| help=("The alpha constant of the LoRA update matrices."), | |
| ) | |
| parser.add_argument( | |
| "--lora_dropout", | |
| type=float, | |
| default=0.0, | |
| help="The dropout rate of the LoRA update matrices.", | |
| ) | |
| parser.add_argument( | |
| "--lora_bias", | |
| type=str, | |
| default="none", | |
| help="The bias type of the Lora update matrices. Must be 'none', 'all' or 'lora_only'.", | |
| ) | |
| if input_args is not None: | |
| args = parser.parse_args(input_args) | |
| else: | |
| args = parser.parse_args() | |
| env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
| if env_local_rank != -1 and env_local_rank != args.local_rank: | |
| args.local_rank = env_local_rank | |
| return args | |
| class RealFillDataset(Dataset): | |
| """ | |
| A dataset to prepare the training and conditioning images and | |
| the masks with the dummy prompt for fine-tuning the model. | |
| It pre-processes the images, masks and tokenizes the prompts. | |
| """ | |
| def __init__( | |
| self, | |
| train_data_root, | |
| tokenizer, | |
| size=512, | |
| ): | |
| self.size = size | |
| self.tokenizer = tokenizer | |
| self.ref_data_root = Path(train_data_root) / "ref" | |
| self.target_image = Path(train_data_root) / "target" / "target.png" | |
| self.target_mask = Path(train_data_root) / "target" / "mask.png" | |
| if not (self.ref_data_root.exists() and self.target_image.exists() and self.target_mask.exists()): | |
| raise ValueError("Train images root doesn't exists.") | |
| self.train_images_path = list(self.ref_data_root.iterdir()) + [self.target_image] | |
| self.num_train_images = len(self.train_images_path) | |
| self.train_prompt = "a photo of sks" | |
| self.transform = transforms_v2.Compose( | |
| [ | |
| transforms_v2.ToImage(), | |
| transforms_v2.RandomResize(size, int(1.125 * size)), | |
| transforms_v2.RandomCrop(size), | |
| transforms_v2.ToDtype(torch.float32, scale=True), | |
| transforms_v2.Normalize([0.5], [0.5]), | |
| ] | |
| ) | |
| def __len__(self): | |
| return self.num_train_images | |
| def __getitem__(self, index): | |
| example = {} | |
| image = Image.open(self.train_images_path[index]) | |
| image = exif_transpose(image) | |
| if not image.mode == "RGB": | |
| image = image.convert("RGB") | |
| if index < len(self) - 1: | |
| weighting = Image.new("L", image.size) | |
| else: | |
| weighting = Image.open(self.target_mask) | |
| weighting = exif_transpose(weighting) | |
| image, weighting = self.transform(image, weighting) | |
| example["images"], example["weightings"] = image, weighting < 0 | |
| if random.random() < 0.1: | |
| example["masks"] = torch.ones_like(example["images"][0:1, :, :]) | |
| else: | |
| example["masks"] = make_mask(example["images"], self.size) | |
| example["conditioning_images"] = example["images"] * (example["masks"] < 0.5) | |
| train_prompt = "" if random.random() < 0.1 else self.train_prompt | |
| example["prompt_ids"] = self.tokenizer( | |
| train_prompt, | |
| truncation=True, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| return_tensors="pt", | |
| ).input_ids | |
| return example | |
| def collate_fn(examples): | |
| input_ids = [example["prompt_ids"] for example in examples] | |
| images = [example["images"] for example in examples] | |
| masks = [example["masks"] for example in examples] | |
| weightings = [example["weightings"] for example in examples] | |
| conditioning_images = [example["conditioning_images"] for example in examples] | |
| images = torch.stack(images) | |
| images = images.to(memory_format=torch.contiguous_format).float() | |
| masks = torch.stack(masks) | |
| masks = masks.to(memory_format=torch.contiguous_format).float() | |
| weightings = torch.stack(weightings) | |
| weightings = weightings.to(memory_format=torch.contiguous_format).float() | |
| conditioning_images = torch.stack(conditioning_images) | |
| conditioning_images = conditioning_images.to(memory_format=torch.contiguous_format).float() | |
| input_ids = torch.cat(input_ids, dim=0) | |
| batch = { | |
| "input_ids": input_ids, | |
| "images": images, | |
| "masks": masks, | |
| "weightings": weightings, | |
| "conditioning_images": conditioning_images, | |
| } | |
| return batch | |
| def main(args): | |
| if args.report_to == "wandb" and args.hub_token is not None: | |
| raise ValueError( | |
| "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." | |
| " Please use `huggingface-cli login` to authenticate with the Hub." | |
| ) | |
| logging_dir = Path(args.output_dir, args.logging_dir) | |
| accelerator = Accelerator( | |
| gradient_accumulation_steps=args.gradient_accumulation_steps, | |
| mixed_precision=args.mixed_precision, | |
| log_with=args.report_to, | |
| project_dir=logging_dir, | |
| ) | |
| if args.report_to == "wandb": | |
| if not is_wandb_available(): | |
| raise ImportError("Make sure to install wandb if you want to use it for logging during training.") | |
| wandb.login(key=args.wandb_key) | |
| wandb.init(project=args.wandb_project_name) | |
| # Make one log on every process with the configuration for debugging. | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| logger.info(accelerator.state, main_process_only=False) | |
| if accelerator.is_local_main_process: | |
| transformers.utils.logging.set_verbosity_warning() | |
| diffusers.utils.logging.set_verbosity_info() | |
| else: | |
| transformers.utils.logging.set_verbosity_error() | |
| diffusers.utils.logging.set_verbosity_error() | |
| # If passed along, set the training seed now. | |
| if args.seed is not None: | |
| set_seed(args.seed) | |
| # Handle the repository creation | |
| if accelerator.is_main_process: | |
| if args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| if args.push_to_hub: | |
| repo_id = create_repo( | |
| repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
| ).repo_id | |
| # Load the tokenizer | |
| if args.tokenizer_name: | |
| tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False) | |
| elif args.pretrained_model_name_or_path: | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="tokenizer", | |
| revision=args.revision, | |
| use_fast=False, | |
| ) | |
| # Load scheduler and models | |
| noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
| text_encoder = CLIPTextModel.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision | |
| ) | |
| vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision) | |
| unet = UNet2DConditionModel.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision | |
| ) | |
| config = LoraConfig( | |
| r=args.lora_rank, | |
| lora_alpha=args.lora_alpha, | |
| target_modules=["to_k", "to_q", "to_v", "key", "query", "value"], | |
| lora_dropout=args.lora_dropout, | |
| bias=args.lora_bias, | |
| ) | |
| unet = get_peft_model(unet, config) | |
| config = LoraConfig( | |
| r=args.lora_rank, | |
| lora_alpha=args.lora_alpha, | |
| target_modules=["k_proj", "q_proj", "v_proj"], | |
| lora_dropout=args.lora_dropout, | |
| bias=args.lora_bias, | |
| ) | |
| text_encoder = get_peft_model(text_encoder, config) | |
| vae.requires_grad_(False) | |
| if args.enable_xformers_memory_efficient_attention: | |
| if is_xformers_available(): | |
| import xformers | |
| xformers_version = version.parse(xformers.__version__) | |
| if xformers_version == version.parse("0.0.16"): | |
| logger.warning( | |
| "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
| ) | |
| unet.enable_xformers_memory_efficient_attention() | |
| else: | |
| raise ValueError("xformers is not available. Make sure it is installed correctly") | |
| if args.gradient_checkpointing: | |
| unet.enable_gradient_checkpointing() | |
| text_encoder.gradient_checkpointing_enable() | |
| # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
| def save_model_hook(models, weights, output_dir): | |
| if accelerator.is_main_process: | |
| for model in models: | |
| sub_dir = ( | |
| "unet" | |
| if isinstance(model.base_model.model, type(accelerator.unwrap_model(unet).base_model.model)) | |
| else "text_encoder" | |
| ) | |
| model.save_pretrained(os.path.join(output_dir, sub_dir)) | |
| # make sure to pop weight so that corresponding model is not saved again | |
| weights.pop() | |
| def load_model_hook(models, input_dir): | |
| while len(models) > 0: | |
| # pop models so that they are not loaded again | |
| model = models.pop() | |
| sub_dir = ( | |
| "unet" | |
| if isinstance(model.base_model.model, type(accelerator.unwrap_model(unet).base_model.model)) | |
| else "text_encoder" | |
| ) | |
| model_cls = ( | |
| UNet2DConditionModel | |
| if isinstance(model.base_model.model, type(accelerator.unwrap_model(unet).base_model.model)) | |
| else CLIPTextModel | |
| ) | |
| load_model = model_cls.from_pretrained(args.pretrained_model_name_or_path, subfolder=sub_dir) | |
| load_model = PeftModel.from_pretrained(load_model, input_dir, subfolder=sub_dir) | |
| model.load_state_dict(load_model.state_dict()) | |
| del load_model | |
| accelerator.register_save_state_pre_hook(save_model_hook) | |
| accelerator.register_load_state_pre_hook(load_model_hook) | |
| # Enable TF32 for faster training on Ampere GPUs, | |
| # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
| if args.allow_tf32: | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| if args.scale_lr: | |
| args.unet_learning_rate = ( | |
| args.unet_learning_rate | |
| * args.gradient_accumulation_steps | |
| * args.train_batch_size | |
| * accelerator.num_processes | |
| ) | |
| args.text_encoder_learning_rate = ( | |
| args.text_encoder_learning_rate | |
| * args.gradient_accumulation_steps | |
| * args.train_batch_size | |
| * accelerator.num_processes | |
| ) | |
| # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | |
| if args.use_8bit_adam: | |
| try: | |
| import bitsandbytes as bnb | |
| except ImportError: | |
| raise ImportError( | |
| "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
| ) | |
| optimizer_class = bnb.optim.AdamW8bit | |
| else: | |
| optimizer_class = torch.optim.AdamW | |
| # Optimizer creation | |
| optimizer = optimizer_class( | |
| [ | |
| {"params": unet.parameters(), "lr": args.unet_learning_rate}, | |
| {"params": text_encoder.parameters(), "lr": args.text_encoder_learning_rate}, | |
| ], | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| weight_decay=args.adam_weight_decay, | |
| eps=args.adam_epsilon, | |
| ) | |
| # Dataset and DataLoaders creation: | |
| train_dataset = RealFillDataset( | |
| train_data_root=args.train_data_dir, | |
| tokenizer=tokenizer, | |
| size=args.resolution, | |
| ) | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset, | |
| batch_size=args.train_batch_size, | |
| shuffle=True, | |
| collate_fn=collate_fn, | |
| num_workers=1, | |
| ) | |
| # Scheduler and math around the number of training steps. | |
| overrode_max_train_steps = False | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if args.max_train_steps is None: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| overrode_max_train_steps = True | |
| lr_scheduler = get_scheduler( | |
| args.lr_scheduler, | |
| optimizer=optimizer, | |
| num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | |
| num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | |
| num_cycles=args.lr_num_cycles, | |
| power=args.lr_power, | |
| ) | |
| # Prepare everything with our `accelerator`. | |
| unet, text_encoder, optimizer, train_dataloader = accelerator.prepare( | |
| unet, text_encoder, optimizer, train_dataloader | |
| ) | |
| # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision | |
| # as these weights are only used for inference, keeping weights in full precision is not required. | |
| weight_dtype = torch.float32 | |
| if accelerator.mixed_precision == "fp16": | |
| weight_dtype = torch.float16 | |
| elif accelerator.mixed_precision == "bf16": | |
| weight_dtype = torch.bfloat16 | |
| # Move vae to device and cast to weight_dtype | |
| vae.to(accelerator.device, dtype=weight_dtype) | |
| # We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if overrode_max_train_steps: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| # Afterwards we recalculate our number of training epochs | |
| args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| # We need to initialize the trackers we use, and also store our configuration. | |
| # The trackers initializes automatically on the main process. | |
| if accelerator.is_main_process: | |
| tracker_config = vars(copy.deepcopy(args)) | |
| accelerator.init_trackers("realfill", config=tracker_config) | |
| # Train! | |
| total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num batches each epoch = {len(train_dataloader)}") | |
| logger.info(f" Num Epochs = {args.num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
| logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
| logger.info(f" Total optimization steps = {args.max_train_steps}") | |
| global_step = 0 | |
| first_epoch = 0 | |
| # Potentially load in the weights and states from a previous save | |
| if args.resume_from_checkpoint: | |
| if args.resume_from_checkpoint != "latest": | |
| path = os.path.basename(args.resume_from_checkpoint) | |
| else: | |
| # Get the mos recent checkpoint | |
| dirs = os.listdir(args.output_dir) | |
| dirs = [d for d in dirs if d.startswith("checkpoint")] | |
| dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
| path = dirs[-1] if len(dirs) > 0 else None | |
| if path is None: | |
| accelerator.print( | |
| f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
| ) | |
| args.resume_from_checkpoint = None | |
| initial_global_step = 0 | |
| else: | |
| accelerator.print(f"Resuming from checkpoint {path}") | |
| accelerator.load_state(os.path.join(args.output_dir, path)) | |
| global_step = int(path.split("-")[1]) | |
| initial_global_step = global_step | |
| first_epoch = global_step // num_update_steps_per_epoch | |
| else: | |
| initial_global_step = 0 | |
| progress_bar = tqdm( | |
| range(0, args.max_train_steps), | |
| initial=initial_global_step, | |
| desc="Steps", | |
| # Only show the progress bar once on each machine. | |
| disable=not accelerator.is_local_main_process, | |
| ) | |
| for epoch in range(first_epoch, args.num_train_epochs): | |
| unet.train() | |
| text_encoder.train() | |
| for step, batch in enumerate(train_dataloader): | |
| with accelerator.accumulate(unet, text_encoder): | |
| # Convert images to latent space | |
| latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample() | |
| latents = latents * 0.18215 | |
| # Convert masked images to latent space | |
| conditionings = vae.encode(batch["conditioning_images"].to(dtype=weight_dtype)).latent_dist.sample() | |
| conditionings = conditionings * 0.18215 | |
| # Downsample mask and weighting so that they match with the latents | |
| masks, size = batch["masks"].to(dtype=weight_dtype), latents.shape[2:] | |
| masks = F.interpolate(masks, size=size) | |
| weightings = batch["weightings"].to(dtype=weight_dtype) | |
| weightings = F.interpolate(weightings, size=size) | |
| # Sample noise that we'll add to the latents | |
| noise = torch.randn_like(latents) | |
| bsz = latents.shape[0] | |
| # Sample a random timestep for each image | |
| timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) | |
| timesteps = timesteps.long() | |
| # Add noise to the latents according to the noise magnitude at each timestep | |
| # (this is the forward diffusion process) | |
| noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
| # Concatenate noisy latents, masks and conditionings to get inputs to unet | |
| inputs = torch.cat([noisy_latents, masks, conditionings], dim=1) | |
| # Get the text embedding for conditioning | |
| encoder_hidden_states = text_encoder(batch["input_ids"])[0] | |
| # Predict the noise residual | |
| model_pred = unet(inputs, timesteps, encoder_hidden_states).sample | |
| # Compute the diffusion loss | |
| assert noise_scheduler.config.prediction_type == "epsilon" | |
| loss = (weightings * F.mse_loss(model_pred.float(), noise.float(), reduction="none")).mean() | |
| # Backpropagate | |
| accelerator.backward(loss) | |
| if accelerator.sync_gradients: | |
| params_to_clip = itertools.chain(unet.parameters(), text_encoder.parameters()) | |
| accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
| optimizer.step() | |
| lr_scheduler.step() | |
| optimizer.zero_grad(set_to_none=args.set_grads_to_none) | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| progress_bar.update(1) | |
| if args.report_to == "wandb": | |
| accelerator.print(progress_bar) | |
| global_step += 1 | |
| if accelerator.is_main_process: | |
| if global_step % args.checkpointing_steps == 0: | |
| # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
| if args.checkpoints_total_limit is not None: | |
| checkpoints = os.listdir(args.output_dir) | |
| checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
| checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
| # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
| if len(checkpoints) >= args.checkpoints_total_limit: | |
| num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
| removing_checkpoints = checkpoints[0:num_to_remove] | |
| logger.info( | |
| f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
| ) | |
| logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
| for removing_checkpoint in removing_checkpoints: | |
| removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
| shutil.rmtree(removing_checkpoint) | |
| save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
| accelerator.save_state(save_path) | |
| logger.info(f"Saved state to {save_path}") | |
| if global_step % args.validation_steps == 0: | |
| log_validation( | |
| text_encoder, | |
| tokenizer, | |
| unet, | |
| args, | |
| accelerator, | |
| weight_dtype, | |
| global_step, | |
| ) | |
| logs = {"loss": loss.detach().item()} | |
| progress_bar.set_postfix(**logs) | |
| accelerator.log(logs, step=global_step) | |
| if global_step >= args.max_train_steps: | |
| break | |
| # Save the lora layers | |
| accelerator.wait_for_everyone() | |
| if accelerator.is_main_process: | |
| pipeline = StableDiffusionInpaintPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| unet=accelerator.unwrap_model(unet, keep_fp32_wrapper=True).merge_and_unload(), | |
| text_encoder=accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True).merge_and_unload(), | |
| revision=args.revision, | |
| ) | |
| pipeline.save_pretrained(args.output_dir) | |
| # Final inference | |
| images = log_validation( | |
| text_encoder, | |
| tokenizer, | |
| unet, | |
| args, | |
| accelerator, | |
| weight_dtype, | |
| global_step, | |
| ) | |
| if args.push_to_hub: | |
| save_model_card( | |
| repo_id, | |
| images=images, | |
| base_model=args.pretrained_model_name_or_path, | |
| repo_folder=args.output_dir, | |
| ) | |
| upload_folder( | |
| repo_id=repo_id, | |
| folder_path=args.output_dir, | |
| commit_message="End of training", | |
| ignore_patterns=["step_*", "epoch_*"], | |
| ) | |
| accelerator.end_training() | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| main(args) | |