Spaces:
Runtime error
Runtime error
| import tempfile | |
| from io import BytesIO | |
| import requests | |
| import torch | |
| from huggingface_hub import hf_hub_download, snapshot_download | |
| from diffusers.loaders.single_file_utils import _extract_repo_id_and_weights_name | |
| from diffusers.models.attention_processor import AttnProcessor | |
| from diffusers.utils.testing_utils import ( | |
| numpy_cosine_similarity_distance, | |
| torch_device, | |
| ) | |
| def download_single_file_checkpoint(repo_id, filename, tmpdir): | |
| path = hf_hub_download(repo_id, filename=filename, local_dir=tmpdir) | |
| return path | |
| def download_original_config(config_url, tmpdir): | |
| original_config_file = BytesIO(requests.get(config_url).content) | |
| path = f"{tmpdir}/config.yaml" | |
| with open(path, "wb") as f: | |
| f.write(original_config_file.read()) | |
| return path | |
| def download_diffusers_config(repo_id, tmpdir): | |
| path = snapshot_download( | |
| repo_id, | |
| ignore_patterns=[ | |
| "**/*.ckpt", | |
| "*.ckpt", | |
| "**/*.bin", | |
| "*.bin", | |
| "**/*.pt", | |
| "*.pt", | |
| "**/*.safetensors", | |
| "*.safetensors", | |
| ], | |
| allow_patterns=["**/*.json", "*.json", "*.txt", "**/*.txt"], | |
| local_dir=tmpdir, | |
| ) | |
| return path | |
| class SDSingleFileTesterMixin: | |
| single_file_kwargs = {} | |
| def _compare_component_configs(self, pipe, single_file_pipe): | |
| for param_name, param_value in single_file_pipe.text_encoder.config.to_dict().items(): | |
| if param_name in ["torch_dtype", "architectures", "_name_or_path"]: | |
| continue | |
| assert pipe.text_encoder.config.to_dict()[param_name] == param_value | |
| PARAMS_TO_IGNORE = [ | |
| "torch_dtype", | |
| "_name_or_path", | |
| "architectures", | |
| "_use_default_values", | |
| "_diffusers_version", | |
| ] | |
| for component_name, component in single_file_pipe.components.items(): | |
| if component_name in single_file_pipe._optional_components: | |
| continue | |
| # skip testing transformer based components here | |
| # skip text encoders / safety checkers since they have already been tested | |
| if component_name in ["text_encoder", "tokenizer", "safety_checker", "feature_extractor"]: | |
| continue | |
| assert component_name in pipe.components, f"single file {component_name} not found in pretrained pipeline" | |
| assert isinstance(component, pipe.components[component_name].__class__), ( | |
| f"single file {component.__class__.__name__} and pretrained {pipe.components[component_name].__class__.__name__} are not the same" | |
| ) | |
| for param_name, param_value in component.config.items(): | |
| if param_name in PARAMS_TO_IGNORE: | |
| continue | |
| # Some pretrained configs will set upcast attention to None | |
| # In single file loading it defaults to the value in the class __init__ which is False | |
| if param_name == "upcast_attention" and pipe.components[component_name].config[param_name] is None: | |
| pipe.components[component_name].config[param_name] = param_value | |
| assert pipe.components[component_name].config[param_name] == param_value, ( | |
| f"single file {param_name}: {param_value} differs from pretrained {pipe.components[component_name].config[param_name]}" | |
| ) | |
| def test_single_file_components(self, pipe=None, single_file_pipe=None): | |
| single_file_pipe = single_file_pipe or self.pipeline_class.from_single_file( | |
| self.ckpt_path, safety_checker=None | |
| ) | |
| pipe = pipe or self.pipeline_class.from_pretrained(self.repo_id, safety_checker=None) | |
| self._compare_component_configs(pipe, single_file_pipe) | |
| def test_single_file_components_local_files_only(self, pipe=None, single_file_pipe=None): | |
| pipe = pipe or self.pipeline_class.from_pretrained(self.repo_id, safety_checker=None) | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| repo_id, weight_name = _extract_repo_id_and_weights_name(self.ckpt_path) | |
| local_ckpt_path = download_single_file_checkpoint(repo_id, weight_name, tmpdir) | |
| single_file_pipe = single_file_pipe or self.pipeline_class.from_single_file( | |
| local_ckpt_path, safety_checker=None, local_files_only=True | |
| ) | |
| self._compare_component_configs(pipe, single_file_pipe) | |
| def test_single_file_components_with_original_config( | |
| self, | |
| pipe=None, | |
| single_file_pipe=None, | |
| ): | |
| pipe = pipe or self.pipeline_class.from_pretrained(self.repo_id, safety_checker=None) | |
| # Not possible to infer this value when original config is provided | |
| # we just pass it in here otherwise this test will fail | |
| upcast_attention = pipe.unet.config.upcast_attention | |
| single_file_pipe = single_file_pipe or self.pipeline_class.from_single_file( | |
| self.ckpt_path, | |
| original_config=self.original_config, | |
| safety_checker=None, | |
| upcast_attention=upcast_attention, | |
| ) | |
| self._compare_component_configs(pipe, single_file_pipe) | |
| def test_single_file_components_with_original_config_local_files_only( | |
| self, | |
| pipe=None, | |
| single_file_pipe=None, | |
| ): | |
| pipe = pipe or self.pipeline_class.from_pretrained(self.repo_id, safety_checker=None) | |
| # Not possible to infer this value when original config is provided | |
| # we just pass it in here otherwise this test will fail | |
| upcast_attention = pipe.unet.config.upcast_attention | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| repo_id, weight_name = _extract_repo_id_and_weights_name(self.ckpt_path) | |
| local_ckpt_path = download_single_file_checkpoint(repo_id, weight_name, tmpdir) | |
| local_original_config = download_original_config(self.original_config, tmpdir) | |
| single_file_pipe = single_file_pipe or self.pipeline_class.from_single_file( | |
| local_ckpt_path, | |
| original_config=local_original_config, | |
| safety_checker=None, | |
| upcast_attention=upcast_attention, | |
| local_files_only=True, | |
| ) | |
| self._compare_component_configs(pipe, single_file_pipe) | |
| def test_single_file_format_inference_is_same_as_pretrained(self, expected_max_diff=1e-4): | |
| sf_pipe = self.pipeline_class.from_single_file(self.ckpt_path, safety_checker=None, **self.single_file_kwargs) | |
| sf_pipe.unet.set_attn_processor(AttnProcessor()) | |
| sf_pipe.enable_model_cpu_offload(device=torch_device) | |
| inputs = self.get_inputs(torch_device) | |
| image_single_file = sf_pipe(**inputs).images[0] | |
| pipe = self.pipeline_class.from_pretrained(self.repo_id, safety_checker=None) | |
| pipe.unet.set_attn_processor(AttnProcessor()) | |
| pipe.enable_model_cpu_offload(device=torch_device) | |
| inputs = self.get_inputs(torch_device) | |
| image = pipe(**inputs).images[0] | |
| max_diff = numpy_cosine_similarity_distance(image.flatten(), image_single_file.flatten()) | |
| assert max_diff < expected_max_diff, f"{image.flatten()} != {image_single_file.flatten()}" | |
| def test_single_file_components_with_diffusers_config( | |
| self, | |
| pipe=None, | |
| single_file_pipe=None, | |
| ): | |
| single_file_pipe = single_file_pipe or self.pipeline_class.from_single_file( | |
| self.ckpt_path, config=self.repo_id, safety_checker=None | |
| ) | |
| pipe = pipe or self.pipeline_class.from_pretrained(self.repo_id, safety_checker=None) | |
| self._compare_component_configs(pipe, single_file_pipe) | |
| def test_single_file_components_with_diffusers_config_local_files_only( | |
| self, | |
| pipe=None, | |
| single_file_pipe=None, | |
| ): | |
| pipe = pipe or self.pipeline_class.from_pretrained(self.repo_id, safety_checker=None) | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| repo_id, weight_name = _extract_repo_id_and_weights_name(self.ckpt_path) | |
| local_ckpt_path = download_single_file_checkpoint(repo_id, weight_name, tmpdir) | |
| local_diffusers_config = download_diffusers_config(self.repo_id, tmpdir) | |
| single_file_pipe = single_file_pipe or self.pipeline_class.from_single_file( | |
| local_ckpt_path, config=local_diffusers_config, safety_checker=None, local_files_only=True | |
| ) | |
| self._compare_component_configs(pipe, single_file_pipe) | |
| def test_single_file_setting_pipeline_dtype_to_fp16( | |
| self, | |
| single_file_pipe=None, | |
| ): | |
| single_file_pipe = single_file_pipe or self.pipeline_class.from_single_file( | |
| self.ckpt_path, torch_dtype=torch.float16 | |
| ) | |
| for component_name, component in single_file_pipe.components.items(): | |
| if not isinstance(component, torch.nn.Module): | |
| continue | |
| assert component.dtype == torch.float16 | |
| class SDXLSingleFileTesterMixin: | |
| def _compare_component_configs(self, pipe, single_file_pipe): | |
| # Skip testing the text_encoder for Refiner Pipelines | |
| if pipe.text_encoder: | |
| for param_name, param_value in single_file_pipe.text_encoder.config.to_dict().items(): | |
| if param_name in ["torch_dtype", "architectures", "_name_or_path"]: | |
| continue | |
| assert pipe.text_encoder.config.to_dict()[param_name] == param_value | |
| for param_name, param_value in single_file_pipe.text_encoder_2.config.to_dict().items(): | |
| if param_name in ["torch_dtype", "architectures", "_name_or_path"]: | |
| continue | |
| assert pipe.text_encoder_2.config.to_dict()[param_name] == param_value | |
| PARAMS_TO_IGNORE = [ | |
| "torch_dtype", | |
| "_name_or_path", | |
| "architectures", | |
| "_use_default_values", | |
| "_diffusers_version", | |
| ] | |
| for component_name, component in single_file_pipe.components.items(): | |
| if component_name in single_file_pipe._optional_components: | |
| continue | |
| # skip text encoders since they have already been tested | |
| if component_name in ["text_encoder", "text_encoder_2", "tokenizer", "tokenizer_2"]: | |
| continue | |
| # skip safety checker if it is not present in the pipeline | |
| if component_name in ["safety_checker", "feature_extractor"]: | |
| continue | |
| assert component_name in pipe.components, f"single file {component_name} not found in pretrained pipeline" | |
| assert isinstance(component, pipe.components[component_name].__class__), ( | |
| f"single file {component.__class__.__name__} and pretrained {pipe.components[component_name].__class__.__name__} are not the same" | |
| ) | |
| for param_name, param_value in component.config.items(): | |
| if param_name in PARAMS_TO_IGNORE: | |
| continue | |
| # Some pretrained configs will set upcast attention to None | |
| # In single file loading it defaults to the value in the class __init__ which is False | |
| if param_name == "upcast_attention" and pipe.components[component_name].config[param_name] is None: | |
| pipe.components[component_name].config[param_name] = param_value | |
| assert pipe.components[component_name].config[param_name] == param_value, ( | |
| f"single file {param_name}: {param_value} differs from pretrained {pipe.components[component_name].config[param_name]}" | |
| ) | |
| def test_single_file_components(self, pipe=None, single_file_pipe=None): | |
| single_file_pipe = single_file_pipe or self.pipeline_class.from_single_file( | |
| self.ckpt_path, safety_checker=None | |
| ) | |
| pipe = pipe or self.pipeline_class.from_pretrained(self.repo_id, safety_checker=None) | |
| self._compare_component_configs( | |
| pipe, | |
| single_file_pipe, | |
| ) | |
| def test_single_file_components_local_files_only( | |
| self, | |
| pipe=None, | |
| single_file_pipe=None, | |
| ): | |
| pipe = pipe or self.pipeline_class.from_pretrained(self.repo_id, safety_checker=None) | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| repo_id, weight_name = _extract_repo_id_and_weights_name(self.ckpt_path) | |
| local_ckpt_path = download_single_file_checkpoint(repo_id, weight_name, tmpdir) | |
| single_file_pipe = single_file_pipe or self.pipeline_class.from_single_file( | |
| local_ckpt_path, safety_checker=None, local_files_only=True | |
| ) | |
| self._compare_component_configs(pipe, single_file_pipe) | |
| def test_single_file_components_with_original_config( | |
| self, | |
| pipe=None, | |
| single_file_pipe=None, | |
| ): | |
| pipe = pipe or self.pipeline_class.from_pretrained(self.repo_id, safety_checker=None) | |
| # Not possible to infer this value when original config is provided | |
| # we just pass it in here otherwise this test will fail | |
| upcast_attention = pipe.unet.config.upcast_attention | |
| single_file_pipe = single_file_pipe or self.pipeline_class.from_single_file( | |
| self.ckpt_path, | |
| original_config=self.original_config, | |
| safety_checker=None, | |
| upcast_attention=upcast_attention, | |
| ) | |
| self._compare_component_configs( | |
| pipe, | |
| single_file_pipe, | |
| ) | |
| def test_single_file_components_with_original_config_local_files_only( | |
| self, | |
| pipe=None, | |
| single_file_pipe=None, | |
| ): | |
| pipe = pipe or self.pipeline_class.from_pretrained(self.repo_id, safety_checker=None) | |
| # Not possible to infer this value when original config is provided | |
| # we just pass it in here otherwise this test will fail | |
| upcast_attention = pipe.unet.config.upcast_attention | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| repo_id, weight_name = _extract_repo_id_and_weights_name(self.ckpt_path) | |
| local_ckpt_path = download_single_file_checkpoint(repo_id, weight_name, tmpdir) | |
| local_original_config = download_original_config(self.original_config, tmpdir) | |
| single_file_pipe = single_file_pipe or self.pipeline_class.from_single_file( | |
| local_ckpt_path, | |
| original_config=local_original_config, | |
| upcast_attention=upcast_attention, | |
| safety_checker=None, | |
| local_files_only=True, | |
| ) | |
| self._compare_component_configs( | |
| pipe, | |
| single_file_pipe, | |
| ) | |
| def test_single_file_components_with_diffusers_config( | |
| self, | |
| pipe=None, | |
| single_file_pipe=None, | |
| ): | |
| single_file_pipe = single_file_pipe or self.pipeline_class.from_single_file( | |
| self.ckpt_path, config=self.repo_id, safety_checker=None | |
| ) | |
| pipe = pipe or self.pipeline_class.from_pretrained(self.repo_id, safety_checker=None) | |
| self._compare_component_configs(pipe, single_file_pipe) | |
| def test_single_file_components_with_diffusers_config_local_files_only( | |
| self, | |
| pipe=None, | |
| single_file_pipe=None, | |
| ): | |
| pipe = pipe or self.pipeline_class.from_pretrained(self.repo_id, safety_checker=None) | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| repo_id, weight_name = _extract_repo_id_and_weights_name(self.ckpt_path) | |
| local_ckpt_path = download_single_file_checkpoint(repo_id, weight_name, tmpdir) | |
| local_diffusers_config = download_diffusers_config(self.repo_id, tmpdir) | |
| single_file_pipe = single_file_pipe or self.pipeline_class.from_single_file( | |
| local_ckpt_path, config=local_diffusers_config, safety_checker=None, local_files_only=True | |
| ) | |
| self._compare_component_configs(pipe, single_file_pipe) | |
| def test_single_file_format_inference_is_same_as_pretrained(self, expected_max_diff=1e-4): | |
| sf_pipe = self.pipeline_class.from_single_file(self.ckpt_path, torch_dtype=torch.float16, safety_checker=None) | |
| sf_pipe.unet.set_default_attn_processor() | |
| sf_pipe.enable_model_cpu_offload(device=torch_device) | |
| inputs = self.get_inputs(torch_device) | |
| image_single_file = sf_pipe(**inputs).images[0] | |
| pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.float16, safety_checker=None) | |
| pipe.unet.set_default_attn_processor() | |
| pipe.enable_model_cpu_offload(device=torch_device) | |
| inputs = self.get_inputs(torch_device) | |
| image = pipe(**inputs).images[0] | |
| max_diff = numpy_cosine_similarity_distance(image.flatten(), image_single_file.flatten()) | |
| assert max_diff < expected_max_diff | |
| def test_single_file_setting_pipeline_dtype_to_fp16( | |
| self, | |
| single_file_pipe=None, | |
| ): | |
| single_file_pipe = single_file_pipe or self.pipeline_class.from_single_file( | |
| self.ckpt_path, torch_dtype=torch.float16 | |
| ) | |
| for component_name, component in single_file_pipe.components.items(): | |
| if not isinstance(component, torch.nn.Module): | |
| continue | |
| assert component.dtype == torch.float16 | |