Spaces:
Runtime error
Runtime error
Cosmos-Predict2-2BASD
/
diffusers_repo
/examples
/research_projects
/anytext
/ocr_recog
/RecCTCHead.py
| from torch import nn | |
| class CTCHead(nn.Module): | |
| def __init__( | |
| self, in_channels, out_channels=6625, fc_decay=0.0004, mid_channels=None, return_feats=False, **kwargs | |
| ): | |
| super(CTCHead, self).__init__() | |
| if mid_channels is None: | |
| self.fc = nn.Linear( | |
| in_channels, | |
| out_channels, | |
| bias=True, | |
| ) | |
| else: | |
| self.fc1 = nn.Linear( | |
| in_channels, | |
| mid_channels, | |
| bias=True, | |
| ) | |
| self.fc2 = nn.Linear( | |
| mid_channels, | |
| out_channels, | |
| bias=True, | |
| ) | |
| self.out_channels = out_channels | |
| self.mid_channels = mid_channels | |
| self.return_feats = return_feats | |
| def forward(self, x, labels=None): | |
| if self.mid_channels is None: | |
| predicts = self.fc(x) | |
| else: | |
| x = self.fc1(x) | |
| predicts = self.fc2(x) | |
| if self.return_feats: | |
| result = {} | |
| result["ctc"] = predicts | |
| result["ctc_neck"] = x | |
| else: | |
| result = predicts | |
| return result | |