Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| import torch | |
| from diffusers import AutoencoderKLWan | |
| from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, torch_device | |
| from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin | |
| enable_full_determinism() | |
| class AutoencoderKLWanTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): | |
| model_class = AutoencoderKLWan | |
| main_input_name = "sample" | |
| base_precision = 1e-2 | |
| def get_autoencoder_kl_wan_config(self): | |
| return { | |
| "base_dim": 3, | |
| "z_dim": 16, | |
| "dim_mult": [1, 1, 1, 1], | |
| "num_res_blocks": 1, | |
| "temperal_downsample": [False, True, True], | |
| } | |
| def dummy_input(self): | |
| batch_size = 2 | |
| num_frames = 9 | |
| num_channels = 3 | |
| sizes = (16, 16) | |
| image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) | |
| return {"sample": image} | |
| def dummy_input_tiling(self): | |
| batch_size = 2 | |
| num_frames = 9 | |
| num_channels = 3 | |
| sizes = (128, 128) | |
| image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) | |
| return {"sample": image} | |
| def input_shape(self): | |
| return (3, 9, 16, 16) | |
| def output_shape(self): | |
| return (3, 9, 16, 16) | |
| def prepare_init_args_and_inputs_for_common(self): | |
| init_dict = self.get_autoencoder_kl_wan_config() | |
| inputs_dict = self.dummy_input | |
| return init_dict, inputs_dict | |
| def prepare_init_args_and_inputs_for_tiling(self): | |
| init_dict = self.get_autoencoder_kl_wan_config() | |
| inputs_dict = self.dummy_input_tiling | |
| return init_dict, inputs_dict | |
| def test_enable_disable_tiling(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_tiling() | |
| torch.manual_seed(0) | |
| model = self.model_class(**init_dict).to(torch_device) | |
| inputs_dict.update({"return_dict": False}) | |
| torch.manual_seed(0) | |
| output_without_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| torch.manual_seed(0) | |
| model.enable_tiling(96, 96, 64, 64) | |
| output_with_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| self.assertLess( | |
| (output_without_tiling.detach().cpu().numpy() - output_with_tiling.detach().cpu().numpy()).max(), | |
| 0.5, | |
| "VAE tiling should not affect the inference results", | |
| ) | |
| torch.manual_seed(0) | |
| model.disable_tiling() | |
| output_without_tiling_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| self.assertEqual( | |
| output_without_tiling.detach().cpu().numpy().all(), | |
| output_without_tiling_2.detach().cpu().numpy().all(), | |
| "Without tiling outputs should match with the outputs when tiling is manually disabled.", | |
| ) | |
| def test_enable_disable_slicing(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| torch.manual_seed(0) | |
| model = self.model_class(**init_dict).to(torch_device) | |
| inputs_dict.update({"return_dict": False}) | |
| torch.manual_seed(0) | |
| output_without_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| torch.manual_seed(0) | |
| model.enable_slicing() | |
| output_with_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| self.assertLess( | |
| (output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(), | |
| 0.05, | |
| "VAE slicing should not affect the inference results", | |
| ) | |
| torch.manual_seed(0) | |
| model.disable_slicing() | |
| output_without_slicing_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| self.assertEqual( | |
| output_without_slicing.detach().cpu().numpy().all(), | |
| output_without_slicing_2.detach().cpu().numpy().all(), | |
| "Without slicing outputs should match with the outputs when slicing is manually disabled.", | |
| ) | |
| def test_gradient_checkpointing_is_applied(self): | |
| pass | |
| def test_forward_with_norm_groups(self): | |
| pass | |
| def test_layerwise_casting_inference(self): | |
| pass | |
| def test_layerwise_casting_training(self): | |
| pass | |