Spaces:
Paused
Paused
| # api/seedvr_server.py | |
| import os | |
| import sys | |
| import time | |
| import subprocess | |
| import queue | |
| import multiprocessing as mp | |
| from pathlib import Path | |
| from typing import Optional, Callable | |
| from huggingface_hub import hf_hub_download | |
| # ------------------------------------------------------------- | |
| # 1. CONFIGURAÇÃO DE AMBIENTE E CUDA | |
| # ------------------------------------------------------------- | |
| # Garante o uso seguro de CUDA com multiprocessing para estabilidade. | |
| if mp.get_start_method(allow_none=True) != 'spawn': | |
| mp.set_start_method('spawn', force=True) | |
| # Configuração de alocação de memória da VRAM | |
| os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "backend:cudaMallocAsync") | |
| # Adiciona dinamicamente o caminho do repositório clonado ao sys.path. | |
| SEEDVR_REPO_PATH = Path(os.getenv("SEEDVR_ROOT", "/data/SeedVR")) | |
| if str(SEEDVR_REPO_PATH) not in sys.path: | |
| sys.path.insert(0, str(SEEDVR_REPO_PATH)) | |
| # Importações pesadas (torch, etc.) são feitas após a configuração do ambiente. | |
| import torch | |
| import cv2 | |
| import numpy as np | |
| from datetime import datetime | |
| # ------------------------------------------------------------- | |
| # 2. FUNÇÕES AUXILIARES DE PROCESSAMENTO (Workers e I/O) | |
| # ------------------------------------------------------------- | |
| def extract_frames_from_video(video_path, debug=False, skip_first_frames=0, load_cap=None): | |
| """Extrai quadros de um vídeo e os converte para o formato de tensor.""" | |
| if debug: print(f"🎬 Extraindo frames de: {video_path}") | |
| if not os.path.exists(video_path): raise FileNotFoundError(f"Arquivo de vídeo não encontrado: {video_path}") | |
| cap = cv2.VideoCapture(video_path) | |
| if not cap.isOpened(): raise ValueError(f"Não foi possível abrir o arquivo de vídeo: {video_path}") | |
| fps = cap.get(cv2.CAP_PROP_FPS) | |
| frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| if debug: print(f"📊 Info do vídeo: {frame_count} frames, {fps:.2f} FPS") | |
| frames = [] | |
| frames_loaded = 0 | |
| for i in range(frame_count): | |
| ret, frame = cap.read() | |
| if not ret: break | |
| if i < skip_first_frames: continue | |
| if load_cap and frames_loaded >= load_cap: break | |
| frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
| frames.append(frame.astype(np.float32) / 255.0) | |
| frames_loaded += 1 | |
| cap.release() | |
| if not frames: raise ValueError(f"Nenhum frame foi extraído do vídeo: {video_path}") | |
| if debug: print(f"✅ {len(frames)} frames extraídos com sucesso.") | |
| return torch.from_numpy(np.stack(frames)).to(torch.float16), fps | |
| def save_frames_to_video(frames_tensor, output_path, fps=30.0, debug=False): | |
| """Salva um tensor de quadros em um arquivo de vídeo.""" | |
| if debug: print(f"🎬 Salvando {frames_tensor.shape[0]} frames em: {output_path}") | |
| os.makedirs(os.path.dirname(output_path), exist_ok=True) | |
| frames_np = (frames_tensor.cpu().numpy() * 255.0).astype(np.uint8) | |
| T, H, W, _ = frames_np.shape | |
| fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
| out = cv2.VideoWriter(output_path, fourcc, fps, (W, H)) | |
| if not out.isOpened(): raise ValueError(f"Não foi possível criar o arquivo de vídeo: {output_path}") | |
| for frame in frames_np: | |
| out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)) | |
| out.release() | |
| if debug: print(f"✅ Vídeo salvo com sucesso: {output_path}") | |
| def _worker_process(proc_idx, device_id, frames_np, shared_args, return_queue, progress_queue=None): | |
| """Processo filho (worker) que executa o upscaling em uma GPU dedicada.""" | |
| os.environ["CUDA_VISIBLE_DEVICES"] = str(device_id) | |
| os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "backend:cudaMallocAsync") | |
| import torch | |
| from src.core.model_manager import configure_runner | |
| from src.core.generation import generation_loop | |
| try: | |
| frames_tensor = torch.from_numpy(frames_np).to(torch.float16) | |
| callback = (lambda b, t, _, m: progress_queue.put((proc_idx, b, t, m))) if progress_queue else None | |
| runner = configure_runner(shared_args["model"], shared_args["model_dir"], shared_args["preserve_vram"], shared_args["debug"]) | |
| result_tensor = generation_loop( | |
| runner=runner, images=frames_tensor, cfg_scale=1.0, seed=shared_args["seed"], | |
| res_w=shared_args["resolution"], batch_size=shared_args["batch_size"], | |
| preserve_vram=shared_args["preserve_vram"], temporal_overlap=0, | |
| debug=shared_args["debug"], progress_callback=callback | |
| ) | |
| return_queue.put((proc_idx, result_tensor.cpu().numpy())) | |
| except Exception as e: | |
| import traceback | |
| error_msg = f"ERRO no worker {proc_idx}: {e}\n{traceback.format_exc()}" | |
| print(error_msg) | |
| if progress_queue: progress_queue.put((proc_idx, -1, -1, error_msg)) | |
| return_queue.put((proc_idx, error_msg)) | |
| # ------------------------------------------------------------- | |
| # 3. CLASSE DO SERVIDOR PRINCIPAL | |
| # ------------------------------------------------------------- | |
| class SeedVRServer: | |
| def __init__(self, **kwargs): | |
| """Inicializa o servidor, define os caminhos e prepara o ambiente.""" | |
| print("⚙️ SeedVRServer inicializando...") | |
| self.SEEDVR_ROOT = SEEDVR_REPO_PATH | |
| self.CKPTS_ROOT = Path("/data/seedvr_models_fp16") | |
| self.OUTPUT_ROOT = Path(os.getenv("OUTPUT_ROOT", "/app/outputs")) | |
| self.INPUT_ROOT = Path(os.getenv("INPUT_ROOT", "/app/inputs")) | |
| self.HF_HOME_CACHE = Path(os.getenv("HF_HOME", "/data/.cache/huggingface")) | |
| self.REPO_URL = os.getenv("SEEDVR_GIT_URL", "https://github.com/numz/ComfyUI-SeedVR2_VideoUpscaler") | |
| self.NUM_GPUS_TOTAL = torch.cuda.device_count() | |
| for p in [self.CKPTS_ROOT, self.OUTPUT_ROOT, self.INPUT_ROOT, self.HF_HOME_CACHE]: | |
| p.mkdir(parents=True, exist_ok=True) | |
| self.setup_dependencies() | |
| print("📦 SeedVRServer pronto.") | |
| def setup_dependencies(self): | |
| """Garante que o repositório e os modelos estão presentes.""" | |
| # Clona o repositório do SeedVR se não existir | |
| if not (self.SEEDVR_ROOT / ".git").exists(): | |
| print(f"[SeedVRServer] Clonando repositório para {self.SEEDVR_ROOT}...") | |
| subprocess.run(["git", "clone", "--depth", "1", self.REPO_URL, str(self.SEEDVR_ROOT)], check=True) | |
| else: | |
| print("[SeedVRServer] Repositório SeedVR já existe.") | |
| # Baixa os checkpoints do Hugging Face se não existirem | |
| print(f"[SeedVRServer] Verificando checkpoints em {self.CKPTS_ROOT}...") | |
| model_files = { | |
| "seedvr2_ema_7b_sharp_fp16.safetensors": "MonsterMMORPG/SeedVR2_SECourses", | |
| "ema_vae_fp16.safetensors": "MonsterMMORPG/SeedVR2_SECourses" | |
| } | |
| for filename, repo_id in model_files.items(): | |
| if not (self.CKPTS_ROOT / filename).exists(): | |
| print(f"Baixando {filename}...") | |
| from huggingface_hub import hf_hub_download | |
| hf_hub_download( | |
| repo_id=repo_id, filename=filename, local_dir=str(self.CKPTS_ROOT), | |
| cache_dir=str(self.HF_HOME_CACHE), token=os.getenv("HF_TOKEN") | |
| ) | |
| print("[SeedVRServer] Checkpoints estão no local correto.") | |
| def run_inference( | |
| self, | |
| file_path: str, *, | |
| seed: int, | |
| resolution: int, | |
| batch_size: int, | |
| model: str = "seedvr2_ema_7b_sharp_fp16.safetensors", | |
| fps: Optional[float] = None, | |
| debug: bool = True, | |
| preserve_vram: bool = True, | |
| progress: Optional[Callable] = None | |
| ) -> str: | |
| """ | |
| Executa o pipeline completo de upscaling de vídeo e retorna o caminho do arquivo de saída. | |
| """ | |
| if progress: progress(0.01, "⌛ Inicializando...") | |
| # --- 1. Extração de Frames --- | |
| if progress: progress(0.05, "🎬 Extraindo frames do vídeo...") | |
| frames_tensor, original_fps = extract_frames_from_video(file_path, debug) | |
| # --- 2. Preparação do Processamento Multi-GPU --- | |
| device_list = list(range(self.NUM_GPUS_TOTAL)) | |
| num_devices = len(device_list) | |
| chunks = torch.chunk(frames_tensor, num_devices, dim=0) | |
| manager = mp.Manager() | |
| return_queue = manager.Queue() | |
| progress_queue = manager.Queue() if progress else None | |
| shared_args = { | |
| "model": model, "model_dir": str(self.CKPTS_ROOT), "preserve_vram": preserve_vram, | |
| "debug": debug, "seed": seed, "resolution": resolution, "batch_size": batch_size | |
| } | |
| # --- 3. Inicia os Workers --- | |
| if progress: progress(0.1, f"🚀 Iniciando geração em {num_devices} GPUs...") | |
| workers = [] | |
| for idx, device_id in enumerate(device_list): | |
| p = mp.Process(target=_worker_process, args=(idx, device_id, chunks[idx].cpu().numpy(), shared_args, return_queue, progress_queue)) | |
| p.start() | |
| workers.append(p) | |
| # --- 4. Coleta de Resultados e Monitoramento de Progresso --- | |
| results_np = [None] * num_devices | |
| finished_workers = 0 | |
| worker_progress = [0.0] * num_devices | |
| while finished_workers < num_devices: | |
| # Atualiza a barra de progresso com informações da fila | |
| if progress_queue: | |
| while not progress_queue.empty(): | |
| try: | |
| p_idx, b_idx, b_total, msg = progress_queue.get_nowait() | |
| if b_idx == -1: raise RuntimeError(f"Erro no Worker {p_idx}: {msg}") | |
| if b_total > 0: worker_progress[p_idx] = b_idx / b_total | |
| total_progress = sum(worker_progress) / num_devices | |
| progress(0.1 + total_progress * 0.85, desc=f"GPU {p_idx+1}/{num_devices}: {msg}") | |
| except queue.Empty: pass | |
| # Verifica se algum worker terminou | |
| try: | |
| proc_idx, result = return_queue.get(timeout=0.2) | |
| if isinstance(result, str): raise RuntimeError(f"Worker {proc_idx} falhou: {result}") | |
| results_np[proc_idx] = result | |
| worker_progress[proc_idx] = 1.0 | |
| finished_workers += 1 | |
| except queue.Empty: pass | |
| for p in workers: p.join() | |
| if any(r is None for r in results_np): | |
| raise RuntimeError("Um ou mais workers falharam ao retornar um resultado.") | |
| # --- 5. Combina os resultados e salva o vídeo final --- | |
| result_tensor = torch.from_numpy(np.concatenate(results_np, axis=0)).to(torch.float16) | |
| if progress: progress(0.95, "💾 Salvando o vídeo final...") | |
| out_dir = self.OUTPUT_ROOT / f"run_{int(time.time())}_{Path(file_path).stem}" | |
| out_dir.mkdir(parents=True, exist_ok=True) | |
| output_filepath = out_dir / f"result_{Path(file_path).stem}.mp4" | |
| final_fps = fps if fps and fps > 0 else original_fps | |
| save_frames_to_video(result_tensor, str(output_filepath), final_fps, debug) | |
| print(f"✅ Vídeo salvo com sucesso em: {output_filepath}") | |
| return str(output_filepath) | |
| # ------------------------------------------------------------- | |
| # 4. PONTO DE ENTRADA PARA EXECUÇÃO | |
| # ------------------------------------------------------------- | |
| if __name__ == "__main__": | |
| # Bloco para testes ou inicialização autônoma. | |
| print("🚀 Executando o servidor SeedVR em modo autônomo...") | |
| try: | |
| server = SeedVRServer() | |
| print("✅ Servidor inicializado com sucesso. Pronto para receber chamadas.") | |
| # Exemplo de como chamar a inferência (requer um arquivo de vídeo): | |
| # input_video = "caminho/para/seu/video.mp4" | |
| # if os.path.exists(input_video): | |
| # server.run_inference( | |
| # file_path=input_video, | |
| # seed=42, | |
| # resolution=1072, | |
| # batch_size=4, | |
| # progress=lambda p, desc: print(f"Progresso: {p*100:.1f}% - {desc}") | |
| # ) | |
| # else: | |
| # print(f"Vídeo de teste não encontrado em '{input_video}'. Pulei a execução da inferência.") | |
| except Exception as e: | |
| print(f"❌ Falha ao inicializar o servidor: {e}") | |
| import traceback | |
| traceback.print_exc() | |
| sys.exit(1) | |