Spaces:
Paused
Paused
| # ltx_server_refactored.py — VideoService (Modular Version with Simple Overlap Chunking) | |
| # --- 0. WARNINGS E AMBIENTE --- | |
| import warnings | |
| warnings.filterwarnings("ignore", category=UserWarning) | |
| warnings.filterwarnings("ignore", category=FutureWarning) | |
| warnings.filterwarnings("ignore", message=".*") | |
| from huggingface_hub import logging | |
| logging.set_verbosity_error() | |
| logging.set_verbosity_warning() | |
| logging.set_verbosity_info() | |
| logging.set_verbosity_debug() | |
| LTXV_DEBUG=1 | |
| LTXV_FRAME_LOG_EVERY=8 | |
| import os, subprocess, shlex, tempfile | |
| import torch | |
| import json | |
| import numpy as np | |
| import random | |
| import os | |
| import shlex | |
| import yaml | |
| from typing import List, Dict | |
| from pathlib import Path | |
| import imageio | |
| from PIL import Image | |
| import tempfile | |
| from huggingface_hub import hf_hub_download | |
| import sys | |
| import subprocess | |
| import gc | |
| import shutil | |
| import contextlib | |
| import time | |
| import traceback | |
| from einops import rearrange | |
| import torch.nn.functional as F | |
| from managers.vae_manager import vae_manager_singleton | |
| from tools.video_encode_tool import video_encode_tool_singleton | |
| DEPS_DIR = Path("/data") | |
| LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video" | |
| # (Todas as funções de setup, helpers e inicialização da classe permanecem inalteradas) | |
| # ... (run_setup, add_deps_to_path, _query_gpu_processes_via_nvml, etc.) | |
| def run_setup(): | |
| setup_script_path = "setup.py" | |
| if not os.path.exists(setup_script_path): | |
| print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.") | |
| return | |
| try: | |
| print("[DEBUG] Executando setup.py para dependências...") | |
| subprocess.run([sys.executable, setup_script_path], check=True) | |
| print("[DEBUG] Setup concluído com sucesso.") | |
| except subprocess.CalledProcessError as e: | |
| print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.") | |
| sys.exit(1) | |
| if not LTX_VIDEO_REPO_DIR.exists(): | |
| print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...") | |
| run_setup() | |
| def add_deps_to_path(): | |
| repo_path = str(LTX_VIDEO_REPO_DIR.resolve()) | |
| if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path: | |
| sys.path.insert(0, repo_path) | |
| print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}") | |
| def calculate_padding(orig_h, orig_w, target_h, target_w): | |
| pad_h = target_h - orig_h | |
| pad_w = target_w - orig_w | |
| pad_top = pad_h // 2 | |
| pad_bottom = pad_h - pad_top | |
| pad_left = pad_w // 2 | |
| pad_right = pad_w - pad_left | |
| return (pad_left, pad_right, pad_top, pad_bottom) | |
| def log_tensor_info(tensor, name="Tensor"): | |
| if not isinstance(tensor, torch.Tensor): | |
| print(f"\n[INFO] '{name}' não é tensor.") | |
| return | |
| print(f"\n--- Tensor: {name} ---") | |
| print(f" - Shape: {tuple(tensor.shape)}") | |
| print(f" - Dtype: {tensor.dtype}") | |
| print(f" - Device: {tensor.device}") | |
| if tensor.numel() > 0: | |
| try: | |
| print(f" - Min: {tensor.min().item():.4f} Max: {tensor.max().item():.4f} Mean: {tensor.mean().item():.4f}") | |
| except Exception: | |
| pass | |
| print("------------------------------------------\n") | |
| add_deps_to_path() | |
| from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline | |
| from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy | |
| from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents | |
| from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent | |
| from api.ltx.inference import ( | |
| create_ltx_video_pipeline, | |
| create_latent_upsampler, | |
| load_image_to_tensor_with_resize_and_crop, | |
| seed_everething, | |
| ) | |
| class VideoService: | |
| def __init__(self): | |
| t0 = time.perf_counter() | |
| print("[DEBUG] Inicializando VideoService...") | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| self.config = self._load_config() | |
| self.pipeline, self.latent_upsampler = self._load_models() | |
| self.pipeline.to(self.device) | |
| if self.latent_upsampler: | |
| self.latent_upsampler.to(self.device) | |
| self._apply_precision_policy() | |
| vae_manager_singleton.attach_pipeline( | |
| self.pipeline, | |
| device=self.device, | |
| autocast_dtype=self.runtime_autocast_dtype | |
| ) | |
| self._tmp_dirs = set() | |
| print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s") | |
| def _load_config(self): | |
| base = LTX_VIDEO_REPO_DIR / "configs" | |
| config_path = base / "ltxv-13b-0.9.8-distilled-fp8.yaml" | |
| with open(config_path, "r") as file: | |
| return yaml.safe_load(file) | |
| def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True): | |
| print("[DEBUG] Finalize: iniciando limpeza...") | |
| keep = set(keep_paths or []); extras = set(extra_paths or []) | |
| gc.collect() | |
| try: | |
| if clear_gpu and torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| try: | |
| torch.cuda.ipc_collect() | |
| except Exception: | |
| pass | |
| except Exception as e: | |
| print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}") | |
| try: | |
| self._log_gpu_memory("Após finalize") | |
| except Exception as e: | |
| print(f"[DEBUG] Log GPU pós-finalize falhou: {e}") | |
| def _load_models(self): | |
| t0 = time.perf_counter() | |
| LTX_REPO = "Lightricks/LTX-Video" | |
| print("[DEBUG] Baixando checkpoint principal...") | |
| distilled_model_path = hf_hub_download( | |
| repo_id=LTX_REPO, | |
| filename=self.config["checkpoint_path"], | |
| local_dir=os.getenv("HF_HOME"), | |
| cache_dir=os.getenv("HF_HOME_CACHE"), | |
| token=os.getenv("HF_TOKEN"), | |
| ) | |
| self.config["checkpoint_path"] = distilled_model_path | |
| print(f"[DEBUG] Checkpoint em: {distilled_model_path}") | |
| print("[DEBUG] Baixando upscaler espacial...") | |
| spatial_upscaler_path = hf_hub_download( | |
| repo_id=LTX_REPO, | |
| filename=self.config["spatial_upscaler_model_path"], | |
| local_dir=os.getenv("HF_HOME"), | |
| cache_dir=os.getenv("HF_HOME_CACHE"), | |
| token=os.getenv("HF_TOKEN") | |
| ) | |
| self.config["spatial_upscaler_model_path"] = spatial_upscaler_path | |
| print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}") | |
| print("[DEBUG] Construindo pipeline...") | |
| pipeline = create_ltx_video_pipeline( | |
| ckpt_path=self.config["checkpoint_path"], | |
| precision=self.config["precision"], | |
| text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"], | |
| sampler=self.config["sampler"], | |
| device="cpu", | |
| enhance_prompt=False, | |
| prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"], | |
| prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"], | |
| ) | |
| print("[DEBUG] Pipeline pronto.") | |
| latent_upsampler = None | |
| if self.config.get("spatial_upscaler_model_path"): | |
| print("[DEBUG] Construindo latent_upsampler...") | |
| latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu") | |
| print("[DEBUG] Upsampler pronto.") | |
| print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s") | |
| return pipeline, latent_upsampler | |
| def _apply_precision_policy(self): | |
| prec = str(self.config.get("precision", "")).lower() | |
| self.runtime_autocast_dtype = torch.float32 | |
| if prec in ["float8_e4m3fn", "bfloat16"]: | |
| self.runtime_autocast_dtype = torch.bfloat16 | |
| elif prec == "mixed_precision": | |
| self.runtime_autocast_dtype = torch.float16 | |
| def _register_tmp_dir(self, d: str): | |
| if d and os.path.isdir(d): | |
| self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}") | |
| def _upsample_latents_internal(self, latents: torch.Tensor) -> torch.Tensor: | |
| try: | |
| if not self.latent_upsampler: | |
| raise ValueError("Latent Upsampler não está carregado.") | |
| latents_unnormalized = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True) | |
| upsampled_latents = self.latent_upsampler(latents_unnormalized) | |
| return normalize_latents(upsampled_latents, self.pipeline.vae, vae_per_channel_normalize=True) | |
| except Exception as e: | |
| pass | |
| finally: | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| self.finalize(keep_paths=[]) | |
| def _prepare_conditioning_tensor(self, filepath, height, width, padding_values): | |
| tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width) | |
| tensor = torch.nn.functional.pad(tensor, padding_values) | |
| return tensor.to(self.device, dtype=self.runtime_autocast_dtype) | |
| def _save_and_log_video(self, pixel_tensor, base_filename, fps, temp_dir, results_dir, used_seed, progress_callback=None): | |
| output_path = os.path.join(temp_dir, f"{base_filename}_{used_seed}.mp4") | |
| video_encode_tool_singleton.save_video_from_tensor( | |
| pixel_tensor, output_path, fps=fps, progress_callback=progress_callback | |
| ) | |
| final_path = os.path.join(results_dir, f"{base_filename}_{used_seed}.mp4") | |
| shutil.move(output_path, final_path) | |
| print(f"[DEBUG] Vídeo salvo em: {final_path}") | |
| return final_path | |
| # ============================================================================== | |
| # --- FUNÇÕES MODULARES COM A LÓGICA DE CHUNKING SIMPLIFICADA --- | |
| # ============================================================================== | |
| def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int): | |
| if not items_list: return [] | |
| height_padded = ((height - 1) // 8 + 1) * 8 | |
| width_padded = ((width - 1) // 8 + 1) * 8 | |
| padding_values = calculate_padding(height, width, height_padded, width_padded) | |
| conditioning_items = [] | |
| for media, frame, weight in items_list: | |
| tensor = self._prepare_conditioning_tensor(media, height, width, padding_values) if isinstance(media, str) else media.to(self.device, dtype=self.runtime_autocast_dtype) | |
| safe_frame = max(0, min(int(frame), num_frames - 1)) | |
| conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight))) | |
| return conditioning_items | |
| def generate_low(self, prompt, negative_prompt, height, width, duration, guidance_scale, seed, conditioning_items=None): | |
| used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed) | |
| seed_everething(used_seed) | |
| FPS = 24.0 | |
| actual_num_frames = max(9, int(round((round(duration * FPS) - 1) / 8.0) * 8 + 1)) | |
| height_padded = ((height - 1) // 8 + 1) * 8 | |
| width_padded = ((width - 1) // 8 + 1) * 8 | |
| temp_dir = tempfile.mkdtemp(prefix="ltxv_low_"); self._register_tmp_dir(temp_dir) | |
| results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True) | |
| downscale_factor = self.config.get("downscale_factor", 0.6666666) | |
| vae_scale_factor = self.pipeline.vae_scale_factor | |
| x_width = int(width_padded * downscale_factor) | |
| downscaled_width = x_width - (x_width % vae_scale_factor) | |
| x_height = int(height_padded * downscale_factor) | |
| downscaled_height = x_height - (x_height % vae_scale_factor) | |
| first_pass_kwargs = { | |
| "prompt": prompt, "negative_prompt": negative_prompt, "height": downscaled_height, "width": downscaled_width, | |
| "num_frames": actual_num_frames, "frame_rate": int(FPS), "generator": torch.Generator(device=self.device).manual_seed(used_seed), | |
| "output_type": "latent", "conditioning_items": conditioning_items, "guidance_scale": float(guidance_scale), | |
| **(self.config.get("first_pass", {})) | |
| } | |
| try: | |
| with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'): | |
| latents = self.pipeline(**first_pass_kwargs).images | |
| pixel_tensor = vae_manager_singleton.decode(latents.clone(), decode_timestep=float(self.config.get("decode_timestep", 0.05))) | |
| video_path = self._save_and_log_video(pixel_tensor, "low_res_video", FPS, temp_dir, results_dir, used_seed) | |
| latents_cpu = latents.detach().to("cpu") | |
| tensor_path = os.path.join(results_dir, f"latents_low_res_{used_seed}.pt") | |
| torch.save(latents_cpu, tensor_path) | |
| return video_path, tensor_path, used_seed | |
| except Exception as e: | |
| pass | |
| finally: | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| self.finalize(keep_paths=[]) | |
| def generate_upscale_denoise(self, latents_path, prompt, negative_prompt, guidance_scale, seed): | |
| used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed) | |
| seed_everething(used_seed) | |
| temp_dir = tempfile.mkdtemp(prefix="ltxv_up_"); self._register_tmp_dir(temp_dir) | |
| results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True) | |
| latents_low = torch.load(latents_path).to(self.device) | |
| with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'): | |
| upsampled_latents = self._upsample_latents_internal(latents_low) | |
| upsampled_latents = adain_filter_latent(latents=upsampled_latents, reference_latents=latents_low) | |
| del latents_low; torch.cuda.empty_cache() | |
| # --- LÓGICA DE DIVISÃO SIMPLES COM OVERLAP --- | |
| total_frames = upsampled_latents.shape[2] | |
| # Garante que mid_point seja pelo menos 1 para evitar um segundo chunk vazio se houver poucos frames | |
| mid_point = max(1, total_frames // 2) | |
| chunk1 = upsampled_latents[:, :, :mid_point, :, :] | |
| # O segundo chunk começa um frame antes para criar o overlap | |
| chunk2 = upsampled_latents[:, :, mid_point - 1:, :, :] | |
| final_latents_list = [] | |
| for i, chunk in enumerate([chunk1, chunk2]): | |
| if chunk.shape[2] <= 1: continue # Pula chunks inválidos ou vazios | |
| second_pass_height = chunk.shape[3] * self.pipeline.vae_scale_factor | |
| second_pass_width = chunk.shape[4] * self.pipeline.vae_scale_factor | |
| second_pass_kwargs = { | |
| "prompt": prompt, "negative_prompt": negative_prompt, "height": second_pass_height, "width": second_pass_width, | |
| "num_frames": chunk.shape[2], "latents": chunk, "guidance_scale": float(guidance_scale), | |
| "output_type": "latent", "generator": torch.Generator(device=self.device).manual_seed(used_seed), | |
| **(self.config.get("second_pass", {})) | |
| } | |
| refined_chunk = self.pipeline(**second_pass_kwargs).images | |
| # Remove o overlap do primeiro chunk refinado antes de juntar | |
| if i == 0: | |
| final_latents_list.append(refined_chunk[:, :, :-1, :, :]) | |
| else: | |
| final_latents_list.append(refined_chunk) | |
| final_latents = torch.cat(final_latents_list, dim=2) | |
| log_tensor_info(final_latents, "Latentes Upscaled/Refinados Finais") | |
| latents_cpu = final_latents.detach().to("cpu") | |
| tensor_path = os.path.join(results_dir, f"latents_refined_{used_seed}.pt") | |
| torch.save(latents_cpu, tensor_path) | |
| pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05))) | |
| video_path = self._save_and_log_video(pixel_tensor, "refined_video", 24.0, temp_dir, results_dir, used_seed) | |
| return video_path, tensor_path | |
| def encode_mp4(self, latents_path: str, fps: int = 24): | |
| latents = torch.load(latents_path) | |
| seed = random.randint(0, 99999) | |
| temp_dir = tempfile.mkdtemp(prefix="ltxv_enc_"); self._register_tmp_dir(temp_dir) | |
| results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True) | |
| # --- LÓGICA DE DIVISÃO SIMPLES COM OVERLAP --- | |
| total_frames = latents.shape[2] | |
| mid_point = max(1, total_frames // 2) | |
| chunk1_latents = latents[:, :, :mid_point, :, :] | |
| chunk2_latents = latents[:, :, mid_point - 1:, :, :] | |
| video_parts = [] | |
| pixel_chunks_to_concat = [] | |
| with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'): | |
| for i, chunk in enumerate([chunk1_latents, chunk2_latents]): | |
| if chunk.shape[2] == 0: continue | |
| pixel_chunk = vae_manager_singleton.decode(chunk.to(self.device), decode_timestep=float(self.config.get("decode_timestep", 0.05))) | |
| # Remove o overlap do primeiro chunk de pixels | |
| if i == 0: | |
| pixel_chunks_to_concat.append(pixel_chunk[:, :, :-1, :, :]) | |
| else: | |
| pixel_chunks_to_concat.append(pixel_chunk) | |
| final_pixel_tensor = torch.cat(pixel_chunks_to_concat, dim=2) | |
| final_video_path = self._save_and_log_video(final_pixel_tensor, f"final_concatenated_{seed}", fps, temp_dir, results_dir, seed) | |
| return final_video_path | |
| # --- INSTANCIAÇÃO DO SERVIÇO --- | |
| print("Criando instância do VideoService. O carregamento do modelo começará agora...") | |
| video_generation_service = VideoService() | |
| print("Instância do VideoService pronta para uso.") |