Test / api /ltx_server.py
EuuIia's picture
Update api/ltx_server.py
63cc2df verified
raw
history blame
27.8 kB
# ltx_server.py — VideoService (beta 1.0)
# Sempre output_type="latent"; no final: VAE (bloco inteiro) → pixels → MP4.
# --- 1. IMPORTAÇÕES ---
import torch
import numpy as np
import random
import os
import shlex
import yaml
from typing import List, Dict
from pathlib import Path
import imageio
import tempfile
from huggingface_hub import hf_hub_download
import sys
import subprocess
import gc
import shutil
import contextlib
import time
import traceback
# Singletons do projeto para VAE e Encoder
from tools.video_encode_tool import video_encode_tool_singleton
from managers.vae_manager import vae_manager_singleton
# --- 2. GERENCIAMENTO DE DEPENDÊNCIAS E SETUP ---
def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]:
try:
import psutil
import pynvml as nvml
nvml.nvmlInit()
handle = nvml.nvmlDeviceGetHandleByIndex(device_index)
try:
procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle)
except Exception:
procs = nvml.nvmlDeviceGetComputeRunningProcesses(handle)
results = []
for p in procs:
pid = int(p.pid)
used_mb = None
try:
if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,):
used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024))
except Exception:
used_mb = None
name = "unknown"
user = "unknown"
try:
pr = psutil.Process(pid)
name = pr.name()
user = pr.username()
except Exception:
pass
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
nvml.nvmlShutdown()
return results
except Exception:
return []
def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]:
cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits"
try:
out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0)
except Exception:
return []
results = []
for line in out.strip().splitlines():
parts = [p.strip() for p in line.split(",")]
if len(parts) >= 3:
try:
pid = int(parts[0]); name = parts[1]; used_mb = int(parts[2])
user = "unknown"
try:
import psutil
pr = psutil.Process(pid)
user = pr.username()
except Exception:
pass
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
except Exception:
continue
return results
def _gpu_process_table(processes: List[Dict], current_pid: int) -> str:
if not processes:
return " - Processos ativos: (nenhum)\n"
processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True)
lines = [" - Processos ativos (PID | USER | NAME | VRAM MB):"]
for p in processes:
star = "*" if p["pid"] == current_pid else " "
used_str = str(p["used_mb"]) if p.get("used_mb") is not None else "N/A"
lines.append(f" {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}")
return "\n".join(lines) + "\n"
def run_setup():
setup_script_path = "setup.py"
if not os.path.exists(setup_script_path):
print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.")
return
try:
print("[DEBUG] Executando setup.py para dependências...")
subprocess.run([sys.executable, setup_script_path], check=True)
print("[DEBUG] Setup concluído com sucesso.")
except subprocess.CalledProcessError as e:
print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.")
sys.exit(1)
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
if not LTX_VIDEO_REPO_DIR.exists():
print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...")
run_setup()
def add_deps_to_path():
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
sys.path.insert(0, repo_path)
print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}")
add_deps_to_path()
# --- 3. IMPORTAÇÕES ESPECÍFICAS DO MODELO ---
from inference import (
create_ltx_video_pipeline,
create_latent_upsampler,
load_image_to_tensor_with_resize_and_crop,
seed_everething,
calculate_padding,
load_media_file,
)
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
# --- 4. FUNÇÕES HELPER DE LOG ---
def log_tensor_info(tensor, name="Tensor"):
if not isinstance(tensor, torch.Tensor):
print(f"\n[INFO] '{name}' não é tensor.")
return
print(f"\n--- Tensor: {name} ---")
print(f" - Shape: {tuple(tensor.shape)}")
print(f" - Dtype: {tensor.dtype}")
print(f" - Device: {tensor.device}")
if tensor.numel() > 0:
try:
print(f" - Min: {tensor.min().item():.4f} Max: {tensor.max().item():.4f} Mean: {tensor.mean().item():.4f}")
except Exception:
pass
print("------------------------------------------\n")
# --- 5. CLASSE PRINCIPAL DO SERVIÇO ---
class VideoService:
def __init__(self):
t0 = time.perf_counter()
print("[DEBUG] Inicializando VideoService...")
self.debug = os.getenv("LTXV_DEBUG", "1") == "1"
self.frame_log_every = int(os.getenv("LTXV_FRAME_LOG_EVERY", "8"))
self.config = self._load_config()
print(f"[DEBUG] Config carregada (precision={self.config.get('precision')}, sampler={self.config.get('sampler')})")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[DEBUG] Device selecionado: {self.device}")
self.last_memory_reserved_mb = 0.0
self._tmp_dirs = set(); self._tmp_files = set(); self._last_outputs = []
self.pipeline, self.latent_upsampler = self._load_models()
print(f"[DEBUG] Pipeline e Upsampler carregados. Upsampler ativo? {bool(self.latent_upsampler)}")
print(f"[DEBUG] Movendo modelos para {self.device}...")
self.pipeline.to(self.device)
if self.latent_upsampler:
self.latent_upsampler.to(self.device)
self._apply_precision_policy()
print(f"[DEBUG] runtime_autocast_dtype = {getattr(self, 'runtime_autocast_dtype', None)}")
if self.device == "cuda":
torch.cuda.empty_cache()
self._log_gpu_memory("Após carregar modelos")
print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s")
def _log_gpu_memory(self, stage_name: str):
if self.device != "cuda":
return
device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0
current_reserved_b = torch.cuda.memory_reserved(device_index)
current_reserved_mb = current_reserved_b / (1024 ** 2)
total_memory_b = torch.cuda.get_device_properties(device_index).total_memory
total_memory_mb = total_memory_b / (1024 ** 2)
peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2)
delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0)
processes = _query_gpu_processes_via_nvml(device_index) or _query_gpu_processes_via_nvidiasmi(device_index)
print(f"\n--- [LOG GPU] {stage_name} (cuda:{device_index}) ---")
print(f" - Reservado: {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB (Δ={delta_mb:+.2f} MB)")
if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0):
print(f" - Pico reservado (nesta fase): {peak_reserved_mb:.2f} MB")
print(_gpu_process_table(processes, os.getpid()), end="")
print("--------------------------------------------------\n")
self.last_memory_reserved_mb = current_reserved_mb
def _register_tmp_dir(self, d: str):
if d and os.path.isdir(d):
self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}")
def _register_tmp_file(self, f: str):
if f and os.path.exists(f):
self._tmp_files.add(f); print(f"[DEBUG] Registrado tmp file: {f}")
def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
print("[DEBUG] Finalize: iniciando limpeza...")
keep = set(keep_paths or []); extras = set(extra_paths or [])
removed_files = 0
for f in list(self._tmp_files | extras):
try:
if f not in keep and os.path.isfile(f):
os.remove(f); removed_files += 1; print(f"[DEBUG] Removido arquivo tmp: {f}")
except Exception as e:
print(f"[DEBUG] Falha removendo arquivo {f}: {e}")
finally:
self._tmp_files.discard(f)
removed_dirs = 0
for d in list(self._tmp_dirs):
try:
if d not in keep and os.path.isdir(d):
shutil.rmtree(d, ignore_errors=True); removed_dirs += 1; print(f"[DEBUG] Removido diretório tmp: {d}")
except Exception as e:
print(f"[DEBUG] Falha removendo diretório {d}: {e}")
finally:
self._tmp_dirs.discard(d)
print(f"[DEBUG] Finalize: arquivos removidos={removed_files}, dirs removidos={removed_dirs}")
gc.collect()
try:
if clear_gpu and torch.cuda.is_available():
torch.cuda.empty_cache()
try:
torch.cuda.ipc_collect()
except Exception:
pass
except Exception as e:
print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}")
try:
self._log_gpu_memory("Após finalize")
except Exception as e:
print(f"[DEBUG] Log GPU pós-finalize falhou: {e}")
def _load_config(self):
base = LTX_VIDEO_REPO_DIR / "configs"
candidates = [
base / "ltxv-13b-0.9.8-dev-fp8.yaml",
base / "ltxv-13b-0.9.8-distilled-fp8.yaml",
base / "ltxv-13b-0.9.8-dev-fp8.yaml.txt",
base / "ltxv-13b-0.9.8-distilled.yaml",
]
for cfg in candidates:
if cfg.exists():
print(f"[DEBUG] Config selecionada: {cfg}")
with open(cfg, "r") as file:
return yaml.safe_load(file)
cfg = base / "ltxv-13b-0.9.8-distilled.yaml"
print(f"[DEBUG] Config fallback: {cfg}")
with open(cfg, "r") as file:
return yaml.safe_load(file)
def _load_models(self):
t0 = time.perf_counter()
LTX_REPO = "Lightricks/LTX-Video"
print("[DEBUG] Baixando checkpoint principal...")
distilled_model_path = hf_hub_download(
repo_id=LTX_REPO,
filename=self.config["checkpoint_path"],
local_dir=os.getenv("HF_HOME"),
cache_dir=os.getenv("HF_HOME_CACHE"),
token=os.getenv("HF_TOKEN"),
)
self.config["checkpoint_path"] = distilled_model_path
print(f"[DEBUG] Checkpoint em: {distilled_model_path}")
print("[DEBUG] Baixando upscaler espacial...")
spatial_upscaler_path = hf_hub_download(
repo_id=LTX_REPO,
filename=self.config["spatial_upscaler_model_path"],
local_dir=os.getenv("HF_HOME"),
cache_dir=os.getenv("HF_HOME_CACHE"),
token=os.getenv("HF_TOKEN"),
)
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}")
print("[DEBUG] Construindo pipeline...")
pipeline = create_ltx_video_pipeline(
ckpt_path=self.config["checkpoint_path"],
precision=self.config["precision"],
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
sampler=self.config["sampler"],
device="cpu",
enhance_prompt=False,
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
)
print("[DEBUG] Pipeline pronto.")
latent_upsampler = None
if self.config.get("spatial_upscaler_model_path"):
print("[DEBUG] Construindo latent_upsampler...")
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
print("[DEBUG] Upsampler pronto.")
print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s")
return pipeline, latent_upsampler
def _promote_fp8_weights_to_bf16(self, module):
if not isinstance(module, torch.nn.Module):
print("[DEBUG] Promoção FP8→BF16 ignorada: alvo não é nn.Module.")
return
f8 = getattr(torch, "float8_e4m3fn", None)
if f8 is None:
print("[DEBUG] torch.float8_e4m3fn indisponível.")
return
p_cnt = b_cnt = 0
for _, p in module.named_parameters(recurse=True):
try:
if p.dtype == f8:
with torch.no_grad():
p.data = p.data.to(torch.bfloat16); p_cnt += 1
except Exception:
pass
for _, b in module.named_buffers(recurse=True):
try:
if hasattr(b, "dtype") and b.dtype == f8:
b.data = b.data.to(torch.bfloat16); b_cnt += 1
except Exception:
pass
print(f"[DEBUG] FP8→BF16: params_promoted={p_cnt}, buffers_promoted={b_cnt}")
def _apply_precision_policy(self):
prec = str(self.config.get("precision", "")).lower()
self.runtime_autocast_dtype = torch.float32
print(f"[DEBUG] Aplicando política de precisão: {prec}")
if prec == "float8_e4m3fn":
self.runtime_autocast_dtype = torch.bfloat16
force_promote = os.getenv("LTXV_FORCE_BF16_ON_FP8", "0") == "1"
print(f"[DEBUG] FP8 detectado. force_promote={force_promote}")
if force_promote and hasattr(torch, "float8_e4m3fn"):
try:
self._promote_fp8_weights_to_bf16(self.pipeline)
except Exception as e:
print(f"[DEBUG] Promoção FP8→BF16 na pipeline falhou: {e}")
try:
if self.latent_upsampler:
self._promote_fp8_weights_to_bf16(self.latent_upsampler)
except Exception as e:
print(f"[DEBUG] Promoção FP8→BF16 no upsampler falhou: {e}")
elif prec == "bfloat16":
self.runtime_autocast_dtype = torch.bfloat16
elif prec == "mixed_precision":
self.runtime_autocast_dtype = torch.float16
else:
self.runtime_autocast_dtype = torch.float32
def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
print(f"[DEBUG] Carregando condicionamento: {filepath}")
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
tensor = torch.nn.functional.pad(tensor, padding_values)
out = tensor.to(self.device, dtype=self.runtime_autocast_dtype) if self.device == "cuda" else tensor.to(self.device)
print(f"[DEBUG] Cond shape={tuple(out.shape)} dtype={out.dtype} device={out.device}")
return out
# --- 6. GERAÇÃO ---
def generate(
self,
prompt,
negative_prompt,
mode="text-to-video",
start_image_filepath=None,
middle_image_filepath=None,
middle_frame_number=None,
middle_image_weight=1.0,
end_image_filepath=None,
end_image_weight=1.0,
input_video_filepath=None,
height=512,
width=704,
duration=2.0,
frames_to_use=9,
seed=42,
randomize_seed=True,
guidance_scale=3.0,
improve_texture=True,
progress_callback=None,
# Sempre latent → VAE → MP4 (simples)
external_decode=True,
):
t_all = time.perf_counter()
print(f"[DEBUG] generate() begin mode={mode} external_decode={external_decode} improve_texture={improve_texture}")
if self.device == "cuda":
torch.cuda.empty_cache(); torch.cuda.reset_peak_memory_stats()
self._log_gpu_memory("Início da Geração")
if mode == "image-to-video" and not start_image_filepath:
raise ValueError("A imagem de início é obrigatória para o modo image-to-video")
if mode == "video-to-video" and not input_video_filepath:
raise ValueError("O vídeo de entrada é obrigatório para o modo video-to-video")
used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed)
seed_everething(used_seed); print(f"[DEBUG] Seed usado: {used_seed}")
FPS = 24.0; MAX_NUM_FRAMES = 257
target_frames_rounded = round(duration * FPS)
n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))
print(f"[DEBUG] Frames alvo: {actual_num_frames} (dur={duration}s @ {FPS}fps)")
height_padded = ((height - 1) // 32 + 1) * 32
width_padded = ((width - 1) // 32 + 1) * 32
padding_values = calculate_padding(height, width, height_padded, width_padded)
print(f"[DEBUG] Dimensões: ({height},{width}) -> pad ({height_padded},{width_padded}); padding={padding_values}")
generator = torch.Generator(device=self.device).manual_seed(used_seed)
conditioning_items = []
if mode == "image-to-video":
start_tensor = self._prepare_conditioning_tensor(start_image_filepath, height, width, padding_values)
conditioning_items.append(ConditioningItem(start_tensor, 0, 1.0))
if middle_image_filepath and middle_frame_number is not None:
middle_tensor = self._prepare_conditioning_tensor(middle_image_filepath, height, width, padding_values)
safe_middle_frame = max(0, min(int(middle_frame_number), actual_num_frames - 1))
conditioning_items.append(ConditioningItem(middle_tensor, safe_middle_frame, float(middle_image_weight)))
if end_image_filepath:
end_tensor = self._prepare_conditioning_tensor(end_image_filepath, height, width, padding_values)
last_frame_index = actual_num_frames - 1
conditioning_items.append(ConditioningItem(end_tensor, last_frame_index, float(end_image_weight)))
print(f"[DEBUG] Conditioning items: {len(conditioning_items)}")
# Sempre pedimos latentes (simples)
call_kwargs = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"height": height_padded,
"width": width_padded,
"num_frames": actual_num_frames,
"frame_rate": int(FPS),
"generator": generator,
"output_type": "latent",
"conditioning_items": conditioning_items if conditioning_items else None,
"media_items": None,
"decode_timestep": self.config["decode_timestep"],
"decode_noise_scale": self.config["decode_noise_scale"],
"stochastic_sampling": self.config["stochastic_sampling"],
"image_cond_noise_scale": 0.15,
"is_video": True,
"vae_per_channel_normalize": True,
"mixed_precision": (self.config["precision"] == "mixed_precision"),
"offload_to_cpu": False,
"enhance_prompt": False,
"skip_layer_strategy": SkipLayerStrategy.AttentionValues,
}
print(f"[DEBUG] output_type={call_kwargs['output_type']} skip_layer_strategy={call_kwargs['skip_layer_strategy']}")
if mode == "video-to-video":
media = load_media_file(
media_path=input_video_filepath,
height=height,
width=width,
max_frames=int(frames_to_use),
padding=padding_values,
).to(self.device)
call_kwargs["media_items"] = media
print(f"[DEBUG] media_items shape={tuple(media.shape)}")
latents = None
multi_scale_pipeline = None
try:
if improve_texture:
if not self.latent_upsampler:
raise ValueError("Upscaler espacial não carregado.")
print("[DEBUG] Multi-escala: construindo pipeline...")
multi_scale_pipeline = LTXMultiScalePipeline(self.pipeline, self.latent_upsampler)
first_pass_args = self.config.get("first_pass", {}).copy()
first_pass_args["guidance_scale"] = float(guidance_scale)
second_pass_args = self.config.get("second_pass", {}).copy()
second_pass_args["guidance_scale"] = float(guidance_scale)
multi_scale_call_kwargs = call_kwargs.copy()
multi_scale_call_kwargs.update(
{
"downscale_factor": self.config["downscale_factor"],
"first_pass": first_pass_args,
"second_pass": second_pass_args,
}
)
print("[DEBUG] Chamando multi_scale_pipeline...")
t_ms = time.perf_counter()
ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
with ctx:
result = multi_scale_pipeline(**multi_scale_call_kwargs)
print(f"[DEBUG] multi_scale_pipeline tempo={time.perf_counter()-t_ms:.3f}s")
# Captura latentes
if hasattr(result, "latents"):
latents = result.latents
elif hasattr(result, "images") and isinstance(result.images, torch.Tensor):
latents = result.images
else:
latents = result
print(f"[DEBUG] Latentes (multi-escala): shape={tuple(latents.shape)}")
else:
single_pass_kwargs = call_kwargs.copy()
first_pass_config = self.config.get("first_pass", {})
single_pass_kwargs.update(
{
"guidance_scale": float(guidance_scale),
"stg_scale": first_pass_config.get("stg_scale"),
"rescaling_scale": first_pass_config.get("rescaling_scale"),
"skip_block_list": first_pass_config.get("skip_block_list"),
}
)
schedule = first_pass_config.get("timesteps") or first_pass_config.get("guidance_timesteps")
if mode == "video-to-video":
schedule = [0.7]; print("[INFO] Modo video-to-video (etapa única): timesteps=[0.7]")
if isinstance(schedule, (list, tuple)) and len(schedule) > 0:
single_pass_kwargs["timesteps"] = schedule
single_pass_kwargs["guidance_timesteps"] = schedule
print(f"[DEBUG] Single-pass: timesteps_len={len(schedule) if schedule else 0}")
print("\n[INFO] Executando pipeline de etapa única...")
t_sp = time.perf_counter()
ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
with ctx:
result = self.pipeline(**single_pass_kwargs)
print(f"[DEBUG] single-pass tempo={time.perf_counter()-t_sp:.3f}s")
if hasattr(result, "latents"):
latents = result.latents
elif hasattr(result, "images") and isinstance(result.images, torch.Tensor):
latents = result.images
else:
latents = result
print(f"[DEBUG] Latentes (single-pass): shape={tuple(latents.shape)}")
# Staging e escrita MP4 (simples: VAE → pixels → MP4)
temp_dir = tempfile.mkdtemp(prefix="ltxv_"); self._register_tmp_dir(temp_dir)
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
output_video_path = os.path.join(temp_dir, f"output_{used_seed}.mp4")
final_output_path = None
pixel_tensor = vae_manager_singleton.decode(
latents.to(self.device, non_blocking=True),
decode_timestep=float(self.config.get("decode_timestep", 0.05))
)
print("[DEBUG] Decodificando bloco de latentes com VAE → tensor de pixels...")
# Se desejar “desocupar” a GPU antes do decode, pode-se mover p/ CPU e limpar:
# latents_cpu = latents.detach().to("cpu", non_blocking=True); torch.cuda.empty_cache(); torch.cuda.ipc_collect(); latents = latents_cpu.to(self.device)
pixel_tensor = vae_manager_singleton.decode(latents.to(self.device, non_blocking=True))
log_tensor_info(pixel_tensor, "Pixel tensor (VAE saída)")
print("[DEBUG] Codificando MP4 a partir do tensor de pixels (bloco inteiro)...")
video_encode_tool_singleton.save_video_from_tensor(
pixel_tensor,
output_video_path,
fps=call_kwargs["frame_rate"]
)
candidate_final = os.path.join(results_dir, f"output_{used_seed}.mp4")
try:
shutil.move(output_video_path, candidate_final)
final_output_path = candidate_final
print(f"[DEBUG] MP4 movido para {final_output_path}")
except Exception as e:
final_output_path = output_video_path
print(f"[DEBUG] Falha no move; usando tmp como final: {e}")
self._register_tmp_file(output_video_path)
self._log_gpu_memory("Fim da Geração")
print(f"[DEBUG] generate() fim ok. total_time={time.perf_counter()-t_all:.3f}s")
return final_output_path, used_seed
except Exception as e:
print("[DEBUG] EXCEÇÃO NA GERAÇÃO:")
print("".join(traceback.format_exception(type(e), e, e.__traceback__)))
raise
finally:
try:
del latents
except Exception:
pass
try:
del multi_scale_pipeline
except Exception:
pass
gc.collect()
try:
if self.device == "cuda":
torch.cuda.empty_cache()
try:
torch.cuda.ipc_collect()
except Exception:
pass
except Exception as e:
print(f"[DEBUG] Limpeza GPU no finally falhou: {e}")
try:
self.finalize(keep_paths=[])
except Exception as e:
print(f"[DEBUG] finalize() no finally falhou: {e}")
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
video_generation_service = VideoService()