Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
b2fe6a1
1
Parent(s):
c2f342d
Fix update collections and dummy references
Browse files- app.py +4 -4
- external_models_results.json +2 -2
- src/display/utils.py +5 -3
- src/leaderboard/filter_models.py +2 -2
- src/leaderboard/read_evals.py +2 -1
- src/scripts/update_all_request_files.py +1 -0
- src/tools/collections.py +38 -23
app.py
CHANGED
|
@@ -106,7 +106,7 @@ def init_space(full_init: bool = True):
|
|
| 106 |
benchmark_cols=BENCHMARK_COLS,
|
| 107 |
show_incomplete=SHOW_INCOMPLETE_EVALS
|
| 108 |
)
|
| 109 |
-
|
| 110 |
leaderboard_df = original_df.copy()
|
| 111 |
|
| 112 |
plot_df = create_plot_df(create_scores_df(raw_data))
|
|
@@ -553,10 +553,10 @@ def update_dynamic_files_wrapper():
|
|
| 553 |
except Exception as e:
|
| 554 |
print(f"Error updating dynamic files: {e}")
|
| 555 |
|
| 556 |
-
scheduler = BackgroundScheduler()
|
| 557 |
scheduler.add_job(restart_space, "interval", seconds=10800, next_run_time=datetime.now() + timedelta(hours=3)) # restarted every 3h
|
| 558 |
-
scheduler.add_job(update_dynamic_files_wrapper, "
|
| 559 |
-
scheduler.add_job(update_collections, "
|
| 560 |
scheduler.start()
|
| 561 |
|
| 562 |
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
| 106 |
benchmark_cols=BENCHMARK_COLS,
|
| 107 |
show_incomplete=SHOW_INCOMPLETE_EVALS
|
| 108 |
)
|
| 109 |
+
update_collections(original_df.copy())
|
| 110 |
leaderboard_df = original_df.copy()
|
| 111 |
|
| 112 |
plot_df = create_plot_df(create_scores_df(raw_data))
|
|
|
|
| 553 |
except Exception as e:
|
| 554 |
print(f"Error updating dynamic files: {e}")
|
| 555 |
|
| 556 |
+
scheduler = BackgroundScheduler(daemon=True)
|
| 557 |
scheduler.add_job(restart_space, "interval", seconds=10800, next_run_time=datetime.now() + timedelta(hours=3)) # restarted every 3h
|
| 558 |
+
scheduler.add_job(update_dynamic_files_wrapper, "interval", seconds=1800, next_run_time=datetime.now() + timedelta(minutes=5)) # launched every 30 minutes
|
| 559 |
+
#scheduler.add_job(update_collections, "interval", args=(original_df.copy(),), seconds=3600, next_run_time=datetime.now() + timedelta(minutes=1))
|
| 560 |
scheduler.start()
|
| 561 |
|
| 562 |
demo.queue(default_concurrency_limit=40).launch()
|
external_models_results.json
CHANGED
|
@@ -244,8 +244,8 @@
|
|
| 244 |
},
|
| 245 |
{
|
| 246 |
"model": "llama_405b_instruct",
|
| 247 |
-
"name": "meta-llama/
|
| 248 |
-
"link": "https://huggingface.co/meta-llama/
|
| 249 |
"date": "2024-08-20",
|
| 250 |
"status": "full",
|
| 251 |
"main_language": "English",
|
|
|
|
| 244 |
},
|
| 245 |
{
|
| 246 |
"model": "llama_405b_instruct",
|
| 247 |
+
"name": "meta-llama/Llama-3.1-405B-Instruct (Vertex AI)",
|
| 248 |
+
"link": "https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct",
|
| 249 |
"date": "2024-08-20",
|
| 250 |
"status": "full",
|
| 251 |
"main_language": "English",
|
src/display/utils.py
CHANGED
|
@@ -111,7 +111,8 @@ baseline_row = {
|
|
| 111 |
AutoEvalColumn.still_on_hub.name: False,
|
| 112 |
AutoEvalColumn.moe.name: False,
|
| 113 |
AutoEvalColumn.eval_time.name: 0.0,
|
| 114 |
-
AutoEvalColumn.main_language.name: "?"
|
|
|
|
| 115 |
}
|
| 116 |
|
| 117 |
baseline_list = []
|
|
@@ -156,6 +157,7 @@ human_baseline_row = {
|
|
| 156 |
AutoEvalColumn.moe.name: False,
|
| 157 |
AutoEvalColumn.eval_time.name: 0.0,
|
| 158 |
AutoEvalColumn.main_language.name: "?",
|
|
|
|
| 159 |
}
|
| 160 |
|
| 161 |
baseline_list = []
|
|
@@ -279,7 +281,7 @@ if os.path.exists('external_models_results.json'):
|
|
| 279 |
model_row[AutoEvalColumn.params.name] = model_data['params']
|
| 280 |
|
| 281 |
model_row[AutoEvalColumn.main_language.name] = model_data['main_language']
|
| 282 |
-
|
| 283 |
external_rows.append(model_row)
|
| 284 |
|
| 285 |
#Create external_eval_results
|
|
@@ -356,7 +358,7 @@ if os.path.exists('external_models_results.json'):
|
|
| 356 |
|
| 357 |
|
| 358 |
# Column selection
|
| 359 |
-
COLS = [c.name for c in fields(AutoEvalColumn)]
|
| 360 |
TYPES = [c.type for c in fields(AutoEvalColumn)]
|
| 361 |
|
| 362 |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
|
|
|
| 111 |
AutoEvalColumn.still_on_hub.name: False,
|
| 112 |
AutoEvalColumn.moe.name: False,
|
| 113 |
AutoEvalColumn.eval_time.name: 0.0,
|
| 114 |
+
AutoEvalColumn.main_language.name: "?",
|
| 115 |
+
'hf_path': None,
|
| 116 |
}
|
| 117 |
|
| 118 |
baseline_list = []
|
|
|
|
| 157 |
AutoEvalColumn.moe.name: False,
|
| 158 |
AutoEvalColumn.eval_time.name: 0.0,
|
| 159 |
AutoEvalColumn.main_language.name: "?",
|
| 160 |
+
'hf_path': None,
|
| 161 |
}
|
| 162 |
|
| 163 |
baseline_list = []
|
|
|
|
| 281 |
model_row[AutoEvalColumn.params.name] = model_data['params']
|
| 282 |
|
| 283 |
model_row[AutoEvalColumn.main_language.name] = model_data['main_language']
|
| 284 |
+
model_row['hf_path'] = None if 'huggingface.co' not in model_data['link'] else model_data['link'].split('huggingface.co/')[1]
|
| 285 |
external_rows.append(model_row)
|
| 286 |
|
| 287 |
#Create external_eval_results
|
|
|
|
| 358 |
|
| 359 |
|
| 360 |
# Column selection
|
| 361 |
+
COLS = [c.name for c in fields(AutoEvalColumn)] + ['hf_path']
|
| 362 |
TYPES = [c.type for c in fields(AutoEvalColumn)]
|
| 363 |
|
| 364 |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
src/leaderboard/filter_models.py
CHANGED
|
@@ -134,7 +134,7 @@ def flag_models(leaderboard_data: list[dict]):
|
|
| 134 |
if model_data[AutoEvalColumn.flagged.name] == True:
|
| 135 |
flag_key = "merged"
|
| 136 |
else:
|
| 137 |
-
flag_key = model_data[
|
| 138 |
|
| 139 |
if flag_key in FLAGGED_MODELS:
|
| 140 |
issue_num = FLAGGED_MODELS[flag_key].split("/")[-1]
|
|
@@ -153,7 +153,7 @@ def flag_models(leaderboard_data: list[dict]):
|
|
| 153 |
def remove_forbidden_models(leaderboard_data: list[dict]):
|
| 154 |
indices_to_remove = []
|
| 155 |
for ix, model in enumerate(leaderboard_data):
|
| 156 |
-
if model[
|
| 157 |
indices_to_remove.append(ix)
|
| 158 |
|
| 159 |
for ix in reversed(indices_to_remove):
|
|
|
|
| 134 |
if model_data[AutoEvalColumn.flagged.name] == True:
|
| 135 |
flag_key = "merged"
|
| 136 |
else:
|
| 137 |
+
flag_key = model_data['hf_path']
|
| 138 |
|
| 139 |
if flag_key in FLAGGED_MODELS:
|
| 140 |
issue_num = FLAGGED_MODELS[flag_key].split("/")[-1]
|
|
|
|
| 153 |
def remove_forbidden_models(leaderboard_data: list[dict]):
|
| 154 |
indices_to_remove = []
|
| 155 |
for ix, model in enumerate(leaderboard_data):
|
| 156 |
+
if model['hf_path'] in DO_NOT_SUBMIT_MODELS:
|
| 157 |
indices_to_remove.append(ix)
|
| 158 |
|
| 159 |
for ix in reversed(indices_to_remove):
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -182,9 +182,10 @@ class EvalResult:
|
|
| 182 |
npm.append((res-task.value.baseline)*100.0 / (100.0-task.value.baseline))
|
| 183 |
average = round(sum(average)/len(average), 2)
|
| 184 |
npm = round(sum(npm)/len(npm), 2)
|
| 185 |
-
|
| 186 |
data_dict = {
|
| 187 |
"eval_name": self.eval_name, # not a column, just a save name,
|
|
|
|
| 188 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
| 189 |
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
| 190 |
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
|
|
|
| 182 |
npm.append((res-task.value.baseline)*100.0 / (100.0-task.value.baseline))
|
| 183 |
average = round(sum(average)/len(average), 2)
|
| 184 |
npm = round(sum(npm)/len(npm), 2)
|
| 185 |
+
|
| 186 |
data_dict = {
|
| 187 |
"eval_name": self.eval_name, # not a column, just a save name,
|
| 188 |
+
"hf_path": self.full_model,
|
| 189 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
| 190 |
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
| 191 |
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
src/scripts/update_all_request_files.py
CHANGED
|
@@ -84,6 +84,7 @@ def update_models(file_path, models, original_leaderboard_files=None):
|
|
| 84 |
def update_dynamic_files():
|
| 85 |
""" This will only update metadata for models already linked in the repo, not add missing ones.
|
| 86 |
"""
|
|
|
|
| 87 |
snapshot_download(
|
| 88 |
repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
|
| 89 |
)
|
|
|
|
| 84 |
def update_dynamic_files():
|
| 85 |
""" This will only update metadata for models already linked in the repo, not add missing ones.
|
| 86 |
"""
|
| 87 |
+
print("update_dynamic_files running...")
|
| 88 |
snapshot_download(
|
| 89 |
repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
|
| 90 |
)
|
src/tools/collections.py
CHANGED
|
@@ -5,6 +5,7 @@ from huggingface_hub import add_collection_item, delete_collection_item, get_col
|
|
| 5 |
from huggingface_hub.utils import HfHubHTTPError
|
| 6 |
from pandas import DataFrame
|
| 7 |
import numpy as np
|
|
|
|
| 8 |
|
| 9 |
from src.display.utils import AutoEvalColumn, ModelType, NUMERIC_INTERVALS
|
| 10 |
from src.envs import H4_TOKEN, PATH_TO_COLLECTION
|
|
@@ -26,6 +27,7 @@ def update_collections(df: DataFrame):
|
|
| 26 |
"""This function updates the Open LLM Leaderboard model collection with the latest best models for
|
| 27 |
each size category and type.
|
| 28 |
"""
|
|
|
|
| 29 |
collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=H4_TOKEN)
|
| 30 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 31 |
|
|
@@ -41,17 +43,17 @@ def update_collections(df: DataFrame):
|
|
| 41 |
collection_slug=PATH_TO_COLLECTION, item_object_id=item.item_object_id, token=H4_TOKEN
|
| 42 |
)
|
| 43 |
except HfHubHTTPError:
|
|
|
|
| 44 |
continue
|
| 45 |
|
| 46 |
#filter quantized models
|
| 47 |
-
df = df[df[AutoEvalColumn.precision.name].isin(['bfloat16', 'float16'])]
|
| 48 |
|
| 49 |
ix = 0
|
|
|
|
|
|
|
|
|
|
| 50 |
for size in intervals:
|
| 51 |
-
interval_scores = []
|
| 52 |
-
interval_itens_languages = []
|
| 53 |
-
interval_itens = []
|
| 54 |
-
|
| 55 |
numeric_interval = pd.IntervalIndex([intervals[size]])
|
| 56 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 57 |
size_df = df.loc[mask]
|
|
@@ -71,6 +73,10 @@ def update_collections(df: DataFrame):
|
|
| 71 |
# We add them one by one to the leaderboard
|
| 72 |
for i, row in best_models.iterrows():
|
| 73 |
model = row[AutoEvalColumn.dummy.name]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
score = row[AutoEvalColumn.average.name]
|
| 75 |
language = row[AutoEvalColumn.main_language.name]
|
| 76 |
if language == 'Portuguese':
|
|
@@ -80,7 +86,7 @@ def update_collections(df: DataFrame):
|
|
| 80 |
try:
|
| 81 |
collection = add_collection_item(
|
| 82 |
PATH_TO_COLLECTION,
|
| 83 |
-
item_id=
|
| 84 |
item_type="model",
|
| 85 |
exists_ok=True,
|
| 86 |
note=note,
|
|
@@ -88,13 +94,14 @@ def update_collections(df: DataFrame):
|
|
| 88 |
)
|
| 89 |
ix += 1
|
| 90 |
item_object_id = collection.items[-1].item_object_id
|
| 91 |
-
cur_best_models.append(
|
| 92 |
interval_scores.append(float(score))
|
| 93 |
interval_itens_languages.append(language)
|
| 94 |
interval_itens.append(item_object_id)
|
| 95 |
scores_per_type[model_type] = float(score)
|
| 96 |
break
|
| 97 |
except HfHubHTTPError:
|
|
|
|
| 98 |
continue
|
| 99 |
if 'Portuguese' not in interval_itens_languages:
|
| 100 |
language = ['Portuguese']
|
|
@@ -107,6 +114,10 @@ def update_collections(df: DataFrame):
|
|
| 107 |
# We add them one by one to the leaderboard
|
| 108 |
for i, row in best_models.iterrows():
|
| 109 |
model = row[AutoEvalColumn.dummy.name]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
score = row[AutoEvalColumn.average.name]
|
| 111 |
language = row[AutoEvalColumn.main_language.name]
|
| 112 |
|
|
@@ -117,7 +128,7 @@ def update_collections(df: DataFrame):
|
|
| 117 |
try:
|
| 118 |
collection = add_collection_item(
|
| 119 |
PATH_TO_COLLECTION,
|
| 120 |
-
item_id=
|
| 121 |
item_type="model",
|
| 122 |
exists_ok=True,
|
| 123 |
note=note,
|
|
@@ -125,28 +136,31 @@ def update_collections(df: DataFrame):
|
|
| 125 |
)
|
| 126 |
ix += 1
|
| 127 |
item_object_id = collection.items[-1].item_object_id
|
| 128 |
-
cur_best_models.append(
|
| 129 |
interval_scores.append(float(score))
|
| 130 |
interval_itens_languages.append(language)
|
| 131 |
interval_itens.append(item_object_id)
|
| 132 |
scores_per_type[model_type] = float(score)
|
| 133 |
break
|
| 134 |
except HfHubHTTPError:
|
|
|
|
| 135 |
continue
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
|
|
|
|
|
|
| 150 |
|
| 151 |
collection = get_collection(PATH_TO_COLLECTION, token=H4_TOKEN)
|
| 152 |
for item in collection.items:
|
|
@@ -156,4 +170,5 @@ def update_collections(df: DataFrame):
|
|
| 156 |
collection_slug=PATH_TO_COLLECTION, item_object_id=item.item_object_id, token=H4_TOKEN
|
| 157 |
)
|
| 158 |
except HfHubHTTPError:
|
|
|
|
| 159 |
continue
|
|
|
|
| 5 |
from huggingface_hub.utils import HfHubHTTPError
|
| 6 |
from pandas import DataFrame
|
| 7 |
import numpy as np
|
| 8 |
+
import traceback
|
| 9 |
|
| 10 |
from src.display.utils import AutoEvalColumn, ModelType, NUMERIC_INTERVALS
|
| 11 |
from src.envs import H4_TOKEN, PATH_TO_COLLECTION
|
|
|
|
| 27 |
"""This function updates the Open LLM Leaderboard model collection with the latest best models for
|
| 28 |
each size category and type.
|
| 29 |
"""
|
| 30 |
+
print("Updating collections...")
|
| 31 |
collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=H4_TOKEN)
|
| 32 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 33 |
|
|
|
|
| 43 |
collection_slug=PATH_TO_COLLECTION, item_object_id=item.item_object_id, token=H4_TOKEN
|
| 44 |
)
|
| 45 |
except HfHubHTTPError:
|
| 46 |
+
traceback.print_exc()
|
| 47 |
continue
|
| 48 |
|
| 49 |
#filter quantized models
|
| 50 |
+
#df = df[df[AutoEvalColumn.precision.name].isin(['bfloat16', 'float16', "?"])]
|
| 51 |
|
| 52 |
ix = 0
|
| 53 |
+
interval_scores = []
|
| 54 |
+
interval_itens_languages = []
|
| 55 |
+
interval_itens = []
|
| 56 |
for size in intervals:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
numeric_interval = pd.IntervalIndex([intervals[size]])
|
| 58 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 59 |
size_df = df.loc[mask]
|
|
|
|
| 73 |
# We add them one by one to the leaderboard
|
| 74 |
for i, row in best_models.iterrows():
|
| 75 |
model = row[AutoEvalColumn.dummy.name]
|
| 76 |
+
hf_path = row['hf_path']
|
| 77 |
+
hf_path = hf_path if 'meta-llama/Meta-' not in hf_path else hf_path.replace("meta-llama/Meta-", "meta-llama/")
|
| 78 |
+
if hf_path in cur_best_models:
|
| 79 |
+
continue
|
| 80 |
score = row[AutoEvalColumn.average.name]
|
| 81 |
language = row[AutoEvalColumn.main_language.name]
|
| 82 |
if language == 'Portuguese':
|
|
|
|
| 86 |
try:
|
| 87 |
collection = add_collection_item(
|
| 88 |
PATH_TO_COLLECTION,
|
| 89 |
+
item_id=hf_path,
|
| 90 |
item_type="model",
|
| 91 |
exists_ok=True,
|
| 92 |
note=note,
|
|
|
|
| 94 |
)
|
| 95 |
ix += 1
|
| 96 |
item_object_id = collection.items[-1].item_object_id
|
| 97 |
+
cur_best_models.append(hf_path)
|
| 98 |
interval_scores.append(float(score))
|
| 99 |
interval_itens_languages.append(language)
|
| 100 |
interval_itens.append(item_object_id)
|
| 101 |
scores_per_type[model_type] = float(score)
|
| 102 |
break
|
| 103 |
except HfHubHTTPError:
|
| 104 |
+
traceback.print_exc()
|
| 105 |
continue
|
| 106 |
if 'Portuguese' not in interval_itens_languages:
|
| 107 |
language = ['Portuguese']
|
|
|
|
| 114 |
# We add them one by one to the leaderboard
|
| 115 |
for i, row in best_models.iterrows():
|
| 116 |
model = row[AutoEvalColumn.dummy.name]
|
| 117 |
+
hf_path = row['hf_path']
|
| 118 |
+
hf_path = hf_path if 'meta-llama/Meta-' not in hf_path else hf_path.replace("meta-llama/Meta-", "meta-llama/")
|
| 119 |
+
if hf_path in cur_best_models:
|
| 120 |
+
continue
|
| 121 |
score = row[AutoEvalColumn.average.name]
|
| 122 |
language = row[AutoEvalColumn.main_language.name]
|
| 123 |
|
|
|
|
| 128 |
try:
|
| 129 |
collection = add_collection_item(
|
| 130 |
PATH_TO_COLLECTION,
|
| 131 |
+
item_id=hf_path,
|
| 132 |
item_type="model",
|
| 133 |
exists_ok=True,
|
| 134 |
note=note,
|
|
|
|
| 136 |
)
|
| 137 |
ix += 1
|
| 138 |
item_object_id = collection.items[-1].item_object_id
|
| 139 |
+
cur_best_models.append(hf_path)
|
| 140 |
interval_scores.append(float(score))
|
| 141 |
interval_itens_languages.append(language)
|
| 142 |
interval_itens.append(item_object_id)
|
| 143 |
scores_per_type[model_type] = float(score)
|
| 144 |
break
|
| 145 |
except HfHubHTTPError:
|
| 146 |
+
traceback.print_exc()
|
| 147 |
continue
|
| 148 |
+
# fix order:
|
| 149 |
+
starting_idx = len(cur_best_models)
|
| 150 |
+
k = 0
|
| 151 |
+
for i in np.argsort(interval_scores):
|
| 152 |
+
if i == k:
|
| 153 |
+
continue
|
| 154 |
+
else:
|
| 155 |
+
try:
|
| 156 |
+
#print(cur_best_models[i], interval_itens[i], starting_idx+k, interval_scores[i])
|
| 157 |
+
update_collection_item(
|
| 158 |
+
collection_slug=PATH_TO_COLLECTION, item_object_id=interval_itens[i], position=starting_idx+k
|
| 159 |
+
)
|
| 160 |
+
except:
|
| 161 |
+
traceback.print_exc()
|
| 162 |
+
pass
|
| 163 |
+
k += 1
|
| 164 |
|
| 165 |
collection = get_collection(PATH_TO_COLLECTION, token=H4_TOKEN)
|
| 166 |
for item in collection.items:
|
|
|
|
| 170 |
collection_slug=PATH_TO_COLLECTION, item_object_id=item.item_object_id, token=H4_TOKEN
|
| 171 |
)
|
| 172 |
except HfHubHTTPError:
|
| 173 |
+
traceback.print_exc()
|
| 174 |
continue
|