Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
6da7311
1
Parent(s):
fbd2a73
Add new column: Main Language
Browse files- .gitignore +1 -0
- app.py +26 -5
- initial_queue.jsonl +196 -196
- src/display/utils.py +24 -1
- src/leaderboard/read_evals.py +6 -2
- src/submission/submit.py +3 -1
.gitignore
CHANGED
|
@@ -17,3 +17,4 @@ downloads/
|
|
| 17 |
tasks_config/legal_config.yaml
|
| 18 |
|
| 19 |
src/assets/model_counts.html
|
|
|
|
|
|
| 17 |
tasks_config/legal_config.yaml
|
| 18 |
|
| 19 |
src/assets/model_counts.html
|
| 20 |
+
languages.jsonl
|
app.py
CHANGED
|
@@ -29,7 +29,8 @@ from src.display.utils import (
|
|
| 29 |
fields,
|
| 30 |
WeightType,
|
| 31 |
Precision,
|
| 32 |
-
Tasks
|
|
|
|
| 33 |
)
|
| 34 |
from src.envs import (
|
| 35 |
API,
|
|
@@ -125,10 +126,11 @@ def update_table(
|
|
| 125 |
type_query: list,
|
| 126 |
precision_query: str,
|
| 127 |
size_query: list,
|
|
|
|
| 128 |
hide_models: list,
|
| 129 |
query: str,
|
| 130 |
):
|
| 131 |
-
filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, precision_query=precision_query, hide_models=hide_models)
|
| 132 |
filtered_df = filter_queries(query, filtered_df)
|
| 133 |
filtered_df = update_leaderboard_avg_scores(filtered_df, columns)
|
| 134 |
df = select_columns(filtered_df, columns)
|
|
@@ -177,7 +179,7 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
| 177 |
|
| 178 |
|
| 179 |
def filter_models(
|
| 180 |
-
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, hide_models: list
|
| 181 |
) -> pd.DataFrame:
|
| 182 |
# Show all models
|
| 183 |
if "Private or deleted" in hide_models:
|
|
@@ -197,6 +199,7 @@ def filter_models(
|
|
| 197 |
type_emoji = [t[0] for t in type_query]
|
| 198 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 199 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
|
|
|
| 200 |
|
| 201 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 202 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
|
@@ -225,6 +228,7 @@ leaderboard_df = filter_models(
|
|
| 225 |
type_query=[t.to_str(" : ") for t in ModelType],
|
| 226 |
size_query=list(NUMERIC_INTERVALS.keys()),
|
| 227 |
precision_query=[i.value.name for i in Precision],
|
|
|
|
| 228 |
hide_models=["Contains a merge/moerge", "Flagged"], # "Private or deleted", "Contains a merge/moerge", "Flagged"
|
| 229 |
)
|
| 230 |
|
|
@@ -289,6 +293,13 @@ with demo:
|
|
| 289 |
interactive=True,
|
| 290 |
elem_id="filter-columns-size",
|
| 291 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
|
| 293 |
leaderboard_table = gr.components.Dataframe(
|
| 294 |
value=leaderboard_df[
|
|
@@ -319,6 +330,7 @@ with demo:
|
|
| 319 |
filter_columns_type,
|
| 320 |
filter_columns_precision,
|
| 321 |
filter_columns_size,
|
|
|
|
| 322 |
hide_models,
|
| 323 |
search_bar,
|
| 324 |
],
|
|
@@ -335,6 +347,7 @@ with demo:
|
|
| 335 |
filter_columns_type,
|
| 336 |
filter_columns_precision,
|
| 337 |
filter_columns_size,
|
|
|
|
| 338 |
hide_models,
|
| 339 |
search_bar,
|
| 340 |
],
|
|
@@ -343,7 +356,7 @@ with demo:
|
|
| 343 |
# Check query parameter once at startup and update search bar + hidden component
|
| 344 |
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
|
| 345 |
|
| 346 |
-
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, hide_models]:
|
| 347 |
selector.change(
|
| 348 |
update_table,
|
| 349 |
[
|
|
@@ -352,6 +365,7 @@ with demo:
|
|
| 352 |
filter_columns_type,
|
| 353 |
filter_columns_precision,
|
| 354 |
filter_columns_size,
|
|
|
|
| 355 |
hide_models,
|
| 356 |
search_bar,
|
| 357 |
],
|
|
@@ -455,6 +469,13 @@ with demo:
|
|
| 455 |
value=ModelType.FT.to_str(" : "),
|
| 456 |
interactive=True,
|
| 457 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 458 |
|
| 459 |
with gr.Column():
|
| 460 |
precision = gr.Dropdown(
|
|
@@ -472,7 +493,6 @@ with demo:
|
|
| 472 |
interactive=True,
|
| 473 |
)
|
| 474 |
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
| 475 |
-
|
| 476 |
submit_button = gr.Button("Submit Eval")
|
| 477 |
submission_result = gr.Markdown()
|
| 478 |
submit_button.click(
|
|
@@ -485,6 +505,7 @@ with demo:
|
|
| 485 |
private,
|
| 486 |
weight_type,
|
| 487 |
model_type,
|
|
|
|
| 488 |
],
|
| 489 |
submission_result,
|
| 490 |
)
|
|
|
|
| 29 |
fields,
|
| 30 |
WeightType,
|
| 31 |
Precision,
|
| 32 |
+
Tasks,
|
| 33 |
+
Language
|
| 34 |
)
|
| 35 |
from src.envs import (
|
| 36 |
API,
|
|
|
|
| 126 |
type_query: list,
|
| 127 |
precision_query: str,
|
| 128 |
size_query: list,
|
| 129 |
+
language_query: list,
|
| 130 |
hide_models: list,
|
| 131 |
query: str,
|
| 132 |
):
|
| 133 |
+
filtered_df = filter_models(df=hidden_df, type_query=type_query, size_query=size_query, language_query=language_query, precision_query=precision_query, hide_models=hide_models)
|
| 134 |
filtered_df = filter_queries(query, filtered_df)
|
| 135 |
filtered_df = update_leaderboard_avg_scores(filtered_df, columns)
|
| 136 |
df = select_columns(filtered_df, columns)
|
|
|
|
| 179 |
|
| 180 |
|
| 181 |
def filter_models(
|
| 182 |
+
df: pd.DataFrame, type_query: list, size_query: list, language_query: list, precision_query: list, hide_models: list
|
| 183 |
) -> pd.DataFrame:
|
| 184 |
# Show all models
|
| 185 |
if "Private or deleted" in hide_models:
|
|
|
|
| 199 |
type_emoji = [t[0] for t in type_query]
|
| 200 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 201 |
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
| 202 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.main_language.name].isin(language_query + ["None"])]
|
| 203 |
|
| 204 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 205 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
|
|
|
| 228 |
type_query=[t.to_str(" : ") for t in ModelType],
|
| 229 |
size_query=list(NUMERIC_INTERVALS.keys()),
|
| 230 |
precision_query=[i.value.name for i in Precision],
|
| 231 |
+
language_query=[i.value.name for i in Language],
|
| 232 |
hide_models=["Contains a merge/moerge", "Flagged"], # "Private or deleted", "Contains a merge/moerge", "Flagged"
|
| 233 |
)
|
| 234 |
|
|
|
|
| 293 |
interactive=True,
|
| 294 |
elem_id="filter-columns-size",
|
| 295 |
)
|
| 296 |
+
filter_columns_language = gr.CheckboxGroup(
|
| 297 |
+
label="Model Main Language",
|
| 298 |
+
choices=[i.value.name for i in Language],
|
| 299 |
+
value=[i.value.name for i in Language],
|
| 300 |
+
interactive=True,
|
| 301 |
+
elem_id="filter-columns-language",
|
| 302 |
+
)
|
| 303 |
|
| 304 |
leaderboard_table = gr.components.Dataframe(
|
| 305 |
value=leaderboard_df[
|
|
|
|
| 330 |
filter_columns_type,
|
| 331 |
filter_columns_precision,
|
| 332 |
filter_columns_size,
|
| 333 |
+
filter_columns_language,
|
| 334 |
hide_models,
|
| 335 |
search_bar,
|
| 336 |
],
|
|
|
|
| 347 |
filter_columns_type,
|
| 348 |
filter_columns_precision,
|
| 349 |
filter_columns_size,
|
| 350 |
+
filter_columns_language,
|
| 351 |
hide_models,
|
| 352 |
search_bar,
|
| 353 |
],
|
|
|
|
| 356 |
# Check query parameter once at startup and update search bar + hidden component
|
| 357 |
demo.load(load_query, inputs=[], outputs=[search_bar, hidden_search_bar])
|
| 358 |
|
| 359 |
+
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, filter_columns_language, hide_models]:
|
| 360 |
selector.change(
|
| 361 |
update_table,
|
| 362 |
[
|
|
|
|
| 365 |
filter_columns_type,
|
| 366 |
filter_columns_precision,
|
| 367 |
filter_columns_size,
|
| 368 |
+
filter_columns_language,
|
| 369 |
hide_models,
|
| 370 |
search_bar,
|
| 371 |
],
|
|
|
|
| 469 |
value=ModelType.FT.to_str(" : "),
|
| 470 |
interactive=True,
|
| 471 |
)
|
| 472 |
+
main_language = gr.Dropdown(
|
| 473 |
+
choices=[i.value.name for i in Language if i != Language.Unknown],
|
| 474 |
+
label="Main Language",
|
| 475 |
+
multiselect=False,
|
| 476 |
+
value="English",
|
| 477 |
+
interactive=True,
|
| 478 |
+
)
|
| 479 |
|
| 480 |
with gr.Column():
|
| 481 |
precision = gr.Dropdown(
|
|
|
|
| 493 |
interactive=True,
|
| 494 |
)
|
| 495 |
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
|
|
|
| 496 |
submit_button = gr.Button("Submit Eval")
|
| 497 |
submission_result = gr.Markdown()
|
| 498 |
submit_button.click(
|
|
|
|
| 505 |
private,
|
| 506 |
weight_type,
|
| 507 |
model_type,
|
| 508 |
+
main_language
|
| 509 |
],
|
| 510 |
submission_result,
|
| 511 |
)
|
initial_queue.jsonl
CHANGED
|
@@ -1,215 +1,215 @@
|
|
| 1 |
// 1- base models <=7B
|
| 2 |
-
{"model": "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 3 |
-
{"model": "meta-llama/Llama-2-7b-hf", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 4 |
-
{"model": "mistralai/Mistral-7B-v0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 5 |
-
{"model": "huggyllama/llama-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 6 |
-
{"model": "openlm-research/open_llama_3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 7 |
-
{"model": "openlm-research/open_llama_3b_v2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 8 |
-
{"model": "openlm-research/open_llama_7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 9 |
-
{"model": "openlm-research/open_llama_7b_v2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 10 |
// 2 - Larger base models <= 13B
|
| 11 |
-
{"model": "meta-llama/Llama-2-13b-hf", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 12 |
-
{"model": "huggyllama/llama-13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 13 |
-
{"model": "openlm-research/open_llama_13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 14 |
-
{"model": "upstage/SOLAR-10.7B-v1.0", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 15 |
// 3 - portuguese models
|
| 16 |
-
{"model": "maritaca-ai/sabia-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 17 |
-
{"model": "dominguesm/canarim-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 18 |
-
{"model": "22h/open-cabrita3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 19 |
-
{"model": "recogna-nlp/bode-7b-alpaca-pt-br", "base_model": "meta-llama/Llama-2-7b-chat-hf", "revision": "main", "precision": "float16", "weight_type": "Adapter", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)"}
|
| 20 |
-
{"model": "recogna-nlp/bode-13b-alpaca-pt-br", "base_model": "meta-llama/Llama-2-13b-chat-hf", "revision": "main", "precision": "float16", "weight_type": "Adapter", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)"}
|
| 21 |
-
{"model": "22h/cabrita_7b_pt_850000", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 22 |
-
{"model": "22h/cabrita-lora-v0-1", "base_model": "huggyllama/llama-7b", "revision": "main", "precision": "float16", "weight_type": "Adapter", "model_type": "🔶 : fine-tuned"}
|
| 23 |
-
{"model": "wandgibaut/periquito-3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 24 |
-
{"model": "nicolasdec/Cabra", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)"}
|
| 25 |
-
{"model": "nicolasdec/cabra13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)"}
|
| 26 |
-
{"model": "lrds-code/samba-1.1B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)"}
|
| 27 |
-
{"model": "lrds-code/boana-7b-instruct", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)"}
|
| 28 |
-
{"model": "nicholasKluge/Aira-2-portuguese-124M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)"}
|
| 29 |
-
{"model": "nicholasKluge/Aira-2-portuguese-560M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)"}
|
| 30 |
-
{"model": "nicholasKluge/Aira-2-portuguese-1B7", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)"}
|
| 31 |
// other must-have <=7B
|
| 32 |
-
{"model": "dynamofl/dynamo-8B-v0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 33 |
-
{"model": "01-ai/Yi-6B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 34 |
-
{"model": "Unbabel/TowerBase-7B-v0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 35 |
-
{"model": "tiiuae/falcon-7b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 36 |
-
{"model": "bigscience/bloom-560m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 37 |
-
{"model": "bigscience/bloom-1b7", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 38 |
-
{"model": "bigscience/bloom-3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 39 |
-
{"model": "bigscience/bloom-7b1", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 40 |
-
{"model": "stabilityai/stablelm-2-1_6b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 41 |
-
{"model": "stabilityai/stablelm-3b-4e1t", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 42 |
// Larger base models >13B
|
| 43 |
-
{"model": "mistralai/Mixtral-8x7B-v0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 44 |
-
{"model": "huggyllama/llama-30b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 45 |
-
{"model": "01-ai/Yi-34B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 46 |
-
{"model": "meta-llama/Llama-2-70b-hf", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 47 |
-
{"model": "huggyllama/llama-65b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 48 |
// minors must
|
| 49 |
-
{"model": "togethercomputer/RedPajama-INCITE-Base-3B-v1", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 50 |
-
{"model": "togethercomputer/RedPajama-INCITE-7B-Base", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 51 |
-
{"model": "DAMO-NLP-MT/polylm-1.7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 52 |
-
{"model": "DAMO-NLP-MT/polylm-13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 53 |
-
{"model": "Deci/DeciLM-6b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🔶 : fine-tuned"}
|
| 54 |
-
{"model": "Deci/DeciLM-7B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🔶 : fine-tuned"}
|
| 55 |
// multiple (ch-jp)/en bi/multi lingual models
|
| 56 |
-
{"model": "internlm/internlm2-7b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🔶 : fine-tuned"}
|
| 57 |
-
{"model": "internlm/internlm2-base-7b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 58 |
-
{"model": "internlm/internlm-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 59 |
-
{"model": "internlm/internlm2-20b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🔶 : fine-tuned"}
|
| 60 |
-
{"model": "internlm/internlm2-base-20b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 61 |
-
{"model": "internlm/internlm-20b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 62 |
-
{"model": "Qwen/Qwen-1_8B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 63 |
-
{"model": "Qwen/Qwen-7B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 64 |
-
{"model": "Qwen/Qwen-14B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 65 |
-
{"model": "xverse/XVERSE-7B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 66 |
-
{"model": "xverse/XVERSE-13B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 67 |
-
{"model": "xverse/XVERSE-13B-256K", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 68 |
-
{"model": "Skywork/Skywork-13B-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 69 |
-
{"model": "baichuan-inc/Baichuan-7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 70 |
-
{"model": "baichuan-inc/Baichuan-13B-Base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 71 |
-
{"model": "baichuan-inc/Baichuan2-7B-Base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 72 |
-
{"model": "baichuan-inc/Baichuan2-13B-Base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 73 |
-
{"model": "OrionStarAI/Orion-14B-Base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 74 |
-
{"model": "deepseek-ai/deepseek-llm-7b-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 75 |
-
{"model": "deepseek-ai/deepseek-moe-16b-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 76 |
-
{"model": "BAAI/Aquila-7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 77 |
-
{"model": "BAAI/Aquila2-7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 78 |
-
{"model": "THUDM/chatglm3-6b-base", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 79 |
-
{"model": "THUDM/glm-2b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 80 |
-
{"model": "THUDM/glm-10b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 81 |
-
{"model": "fnlp/moss-moon-003-base", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 82 |
-
{"model": "fnlp/moss-base-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 83 |
// multiple chinese/jp large
|
| 84 |
-
{"model": "Qwen/Qwen-72B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 85 |
-
{"model": "xverse/XVERSE-65B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 86 |
-
{"model": "xverse/XVERSE-65B-2", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 87 |
-
{"model": "deepseek-ai/deepseek-llm-67b-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 88 |
-
{"model": "BAAI/Aquila2-34B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 89 |
-
{"model": "BAAI/Aquila2-70B-Expr", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 90 |
// minors must 2
|
| 91 |
-
{"model": "gpt2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 92 |
-
{"model": "t5-small", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 93 |
-
{"model": "t5-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 94 |
-
{"model": "t5-large", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 95 |
-
{"model": "google/mt5-small", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 96 |
-
{"model": "google/mt5-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 97 |
-
{"model": "google/mt5-large", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 98 |
//others
|
| 99 |
-
{"model": "NucleusAI/nucleus-22B-token-500B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 100 |
-
{"model": "EleutherAI/pythia-14m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 101 |
-
{"model": "EleutherAI/pythia-70m-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 102 |
-
{"model": "EleutherAI/pythia-160m-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 103 |
-
{"model": "EleutherAI/pythia-410m-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 104 |
-
{"model": "EleutherAI/pythia-1b-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 105 |
-
{"model": "EleutherAI/pythia-2.8b-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 106 |
-
{"model": "EleutherAI/pythia-6.9b-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 107 |
-
{"model": "EleutherAI/pythia-12b-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 108 |
-
{"model": "EleutherAI/gpt-neo-125m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 109 |
-
{"model": "EleutherAI/gpt-neo-1.3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 110 |
-
{"model": "EleutherAI/gpt-neo-2.7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 111 |
-
{"model": "EleutherAI/gpt-j-6b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 112 |
-
{"model": "EleutherAI/gpt-neox-20b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 113 |
-
{"model": "facebook/opt-125m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 114 |
-
{"model": "facebook/opt-350m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 115 |
-
{"model": "facebook/opt-1.3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 116 |
-
{"model": "facebook/opt-2.7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 117 |
-
{"model": "facebook/opt-6.7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 118 |
-
{"model": "facebook/opt-13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 119 |
-
{"model": "facebook/opt-30b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 120 |
//other large
|
| 121 |
-
{"model": "facebook/opt-66b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 122 |
-
{"model": "tiiuae/falcon-40b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 123 |
// minors portuguese
|
| 124 |
-
{"model": "pierreguillou/gpt2-small-portuguese", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 125 |
-
{"model": "pucpr/gpt2-bio-pt", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 126 |
-
{"model": "unicamp-dl/ptt5-small-portuguese-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 127 |
-
{"model": "unicamp-dl/ptt5-base-portuguese-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 128 |
-
{"model": "unicamp-dl/ptt5-large-portuguese-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 129 |
-
{"model": "unicamp-dl/ptt5-small-t5-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 130 |
-
{"model": "unicamp-dl/ptt5-base-t5-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 131 |
-
{"model": "unicamp-dl/ptt5-large-t5-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 132 |
-
{"model": "josu/gpt-neo-pt-br", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 133 |
-
{"model": "josu/gpt-neo-pt-1.3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 134 |
-
{"model": "monilouise/opt125M_portuguese", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 135 |
-
{"model": "HeyLucasLeao/gpt-neo-small-portuguese", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 136 |
// other langs (es/Ko/Jp/nordic)
|
| 137 |
-
{"model": "projecte-aina/FLOR-760M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 138 |
-
{"model": "projecte-aina/FLOR-1.3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 139 |
-
{"model": "projecte-aina/FLOR-6.3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 140 |
-
{"model": "projecte-aina/aguila-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 141 |
-
{"model": "EleutherAI/polyglot-ko-12.8b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 142 |
-
{"model": "matsuo-lab/weblab-10b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 143 |
-
{"model": "pfnet/plamo-13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 144 |
-
{"model": "AI-Sweden-Models/gpt-sw3-6.7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 145 |
-
{"model": "AI-Sweden-Models/gpt-sw3-6.7b-v2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 146 |
-
{"model": "AI-Sweden-Models/gpt-sw3-20b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 147 |
-
{"model": "AI-Sweden-Models/gpt-sw3-40b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 148 |
-
{"model": "OpenLLM-France/Claire-Mistral-7B-0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 149 |
-
{"model": "OpenLLM-France/Claire-7B-0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)"}
|
| 150 |
// huge models:
|
| 151 |
//{"model": "bigscience/bloom", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 152 |
//{"model": "tiiuae/falcon-180B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 153 |
//{"model": "facebook/galactica-120b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 154 |
//random chat models
|
| 155 |
-
{"model": "openchat/openchat-3.5-0106", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)"}
|
| 156 |
//other 2
|
| 157 |
-
{"model": "stabilityai/stablelm-base-alpha-3b-v2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 158 |
-
{"model": "stabilityai/stablelm-base-alpha-7b-v2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 159 |
-
{"model": "stabilityai/stablelm-base-alpha-3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 160 |
-
{"model": "stabilityai/stablelm-base-alpha-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 161 |
-
{"model": "openai-community/openai-gpt", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 162 |
-
{"model": "openai-community/gpt2-medium", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 163 |
-
{"model": "openai-community/gpt2-large", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 164 |
-
{"model": "openai-community/gpt2-xl", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 165 |
-
{"model": "microsoft/phi-1", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 166 |
-
{"model": "microsoft/phi-1_5", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 167 |
-
{"model": "microsoft/phi-2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 168 |
-
{"model": "mosaicml/mpt-7b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 169 |
-
{"model": "mosaicml/mpt-30b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 170 |
-
{"model": "mosaicml/mpt-7b-8k", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 171 |
-
{"model": "01-ai/Yi-6B-200K", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 172 |
-
{"model": "01-ai/Yi-34B-200K", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 173 |
-
{"model": "google/t5-v1_1-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 174 |
-
{"model": "google/t5-v1_1-small", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 175 |
-
{"model": "google/t5-v1_1-large", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 176 |
-
{"model": "google/t5-v1_1-xl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 177 |
-
{"model": "google/t5-v1_1-xxl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 178 |
-
{"model": "google/mt5-xl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 179 |
-
{"model": "google/mt5-xxl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 180 |
-
{"model": "google/umt5-small", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 181 |
-
{"model": "google/umt5-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 182 |
-
{"model": "google/umt5-xl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 183 |
-
{"model": "google/umt5-xxl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 184 |
-
{"model": "AdaptLLM/law-LLM", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned"}
|
| 185 |
-
{"model": "AdaptLLM/medicine-LLM", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned"}
|
| 186 |
-
{"model": "AdaptLLM/finance-LLM", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned"}
|
| 187 |
-
{"model": "AdaptLLM/law-LLM-13B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned"}
|
| 188 |
-
{"model": "AdaptLLM/medicine-LLM-13B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned"}
|
| 189 |
-
{"model": "AdaptLLM/finance-LLM-13B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned"}
|
| 190 |
-
{"model": "cerebras/Cerebras-GPT-111M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 191 |
-
{"model": "cerebras/Cerebras-GPT-256M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 192 |
-
{"model": "cerebras/Cerebras-GPT-590M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 193 |
-
{"model": "cerebras/Cerebras-GPT-1.3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 194 |
-
{"model": "cerebras/Cerebras-GPT-2.7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 195 |
-
{"model": "cerebras/Cerebras-GPT-6.7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 196 |
-
{"model": "cerebras/Cerebras-GPT-13B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 197 |
-
{"model": "cerebras/btlm-3b-8k-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 198 |
-
{"model": "ai-forever/mGPT-13B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 199 |
-
{"model": "ai-forever/mGPT", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 200 |
-
{"model": "EleutherAI/pythia-70m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 201 |
-
{"model": "EleutherAI/pythia-160m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 202 |
-
{"model": "EleutherAI/pythia-410m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 203 |
-
{"model": "EleutherAI/pythia-1b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 204 |
-
{"model": "EleutherAI/pythia-2.8b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 205 |
-
{"model": "EleutherAI/pythia-6.9b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 206 |
-
{"model": "EleutherAI/pythia-12b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 207 |
-
{"model": "facebook/galactica-125m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 208 |
-
{"model": "facebook/galactica-1.3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 209 |
-
{"model": "facebook/galactica-6.7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 210 |
-
{"model": "facebook/galactica-30b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 211 |
-
{"model": "facebook/xglm-564M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 212 |
-
{"model": "facebook/xglm-1.7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 213 |
-
{"model": "facebook/xglm-2.9B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 214 |
-
{"model": "facebook/xglm-4.5B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 215 |
-
{"model": "facebook/xglm-7.5B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
|
|
|
| 1 |
// 1- base models <=7B
|
| 2 |
+
{"model": "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 3 |
+
{"model": "meta-llama/Llama-2-7b-hf", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 4 |
+
{"model": "mistralai/Mistral-7B-v0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 5 |
+
{"model": "huggyllama/llama-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 6 |
+
{"model": "openlm-research/open_llama_3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 7 |
+
{"model": "openlm-research/open_llama_3b_v2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 8 |
+
{"model": "openlm-research/open_llama_7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 9 |
+
{"model": "openlm-research/open_llama_7b_v2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 10 |
// 2 - Larger base models <= 13B
|
| 11 |
+
{"model": "meta-llama/Llama-2-13b-hf", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 12 |
+
{"model": "huggyllama/llama-13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 13 |
+
{"model": "openlm-research/open_llama_13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 14 |
+
{"model": "upstage/SOLAR-10.7B-v1.0", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 15 |
// 3 - portuguese models
|
| 16 |
+
{"model": "maritaca-ai/sabia-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
|
| 17 |
+
{"model": "dominguesm/canarim-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
|
| 18 |
+
{"model": "22h/open-cabrita3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
|
| 19 |
+
{"model": "recogna-nlp/bode-7b-alpaca-pt-br", "base_model": "meta-llama/Llama-2-7b-chat-hf", "revision": "main", "precision": "float16", "weight_type": "Adapter", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)", "main_language": "Portuguese"}
|
| 20 |
+
{"model": "recogna-nlp/bode-13b-alpaca-pt-br", "base_model": "meta-llama/Llama-2-13b-chat-hf", "revision": "main", "precision": "float16", "weight_type": "Adapter", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)", "main_language": "Portuguese"}
|
| 21 |
+
{"model": "22h/cabrita_7b_pt_850000", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
|
| 22 |
+
{"model": "22h/cabrita-lora-v0-1", "base_model": "huggyllama/llama-7b", "revision": "main", "precision": "float16", "weight_type": "Adapter", "model_type": "🔶 : fine-tuned", "main_language": "Portuguese"}
|
| 23 |
+
{"model": "wandgibaut/periquito-3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
|
| 24 |
+
{"model": "nicolasdec/Cabra", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)", "main_language": "Portuguese"}
|
| 25 |
+
{"model": "nicolasdec/cabra13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)", "main_language": "Portuguese"}
|
| 26 |
+
{"model": "lrds-code/samba-1.1B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)", "main_language": "Portuguese"}
|
| 27 |
+
{"model": "lrds-code/boana-7b-instruct", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)", "main_language": "Portuguese"}
|
| 28 |
+
{"model": "nicholasKluge/Aira-2-portuguese-124M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)", "main_language": "Portuguese"}
|
| 29 |
+
{"model": "nicholasKluge/Aira-2-portuguese-560M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)", "main_language": "Portuguese"}
|
| 30 |
+
{"model": "nicholasKluge/Aira-2-portuguese-1B7", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)", "main_language": "Portuguese"}
|
| 31 |
// other must-have <=7B
|
| 32 |
+
{"model": "dynamofl/dynamo-8B-v0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "English"}
|
| 33 |
+
{"model": "01-ai/Yi-6B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 34 |
+
{"model": "Unbabel/TowerBase-7B-v0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "English"}
|
| 35 |
+
{"model": "tiiuae/falcon-7b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 36 |
+
{"model": "bigscience/bloom-560m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 37 |
+
{"model": "bigscience/bloom-1b7", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 38 |
+
{"model": "bigscience/bloom-3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 39 |
+
{"model": "bigscience/bloom-7b1", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 40 |
+
{"model": "stabilityai/stablelm-2-1_6b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 41 |
+
{"model": "stabilityai/stablelm-3b-4e1t", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 42 |
// Larger base models >13B
|
| 43 |
+
{"model": "mistralai/Mixtral-8x7B-v0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 44 |
+
{"model": "huggyllama/llama-30b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 45 |
+
{"model": "01-ai/Yi-34B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 46 |
+
{"model": "meta-llama/Llama-2-70b-hf", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 47 |
+
{"model": "huggyllama/llama-65b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 48 |
// minors must
|
| 49 |
+
{"model": "togethercomputer/RedPajama-INCITE-Base-3B-v1", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 50 |
+
{"model": "togethercomputer/RedPajama-INCITE-7B-Base", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 51 |
+
{"model": "DAMO-NLP-MT/polylm-1.7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 52 |
+
{"model": "DAMO-NLP-MT/polylm-13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 53 |
+
{"model": "Deci/DeciLM-6b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🔶 : fine-tuned", "main_language": "English"}
|
| 54 |
+
{"model": "Deci/DeciLM-7B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🔶 : fine-tuned", "main_language": "English"}
|
| 55 |
// multiple (ch-jp)/en bi/multi lingual models
|
| 56 |
+
{"model": "internlm/internlm2-7b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🔶 : fine-tuned", "main_language": "?"}
|
| 57 |
+
{"model": "internlm/internlm2-base-7b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
|
| 58 |
+
{"model": "internlm/internlm-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
|
| 59 |
+
{"model": "internlm/internlm2-20b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🔶 : fine-tuned", "main_language": "?"}
|
| 60 |
+
{"model": "internlm/internlm2-base-20b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
|
| 61 |
+
{"model": "internlm/internlm-20b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
|
| 62 |
+
{"model": "Qwen/Qwen-1_8B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Chinese"}
|
| 63 |
+
{"model": "Qwen/Qwen-7B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Chinese"}
|
| 64 |
+
{"model": "Qwen/Qwen-14B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Chinese"}
|
| 65 |
+
{"model": "xverse/XVERSE-7B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
|
| 66 |
+
{"model": "xverse/XVERSE-13B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
|
| 67 |
+
{"model": "xverse/XVERSE-13B-256K", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
|
| 68 |
+
{"model": "Skywork/Skywork-13B-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
|
| 69 |
+
{"model": "baichuan-inc/Baichuan-7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Chinese"}
|
| 70 |
+
{"model": "baichuan-inc/Baichuan-13B-Base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
|
| 71 |
+
{"model": "baichuan-inc/Baichuan2-7B-Base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Chinese"}
|
| 72 |
+
{"model": "baichuan-inc/Baichuan2-13B-Base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Chinese"}
|
| 73 |
+
{"model": "OrionStarAI/Orion-14B-Base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Chinese"}
|
| 74 |
+
{"model": "deepseek-ai/deepseek-llm-7b-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
|
| 75 |
+
{"model": "deepseek-ai/deepseek-moe-16b-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
|
| 76 |
+
{"model": "BAAI/Aquila-7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
|
| 77 |
+
{"model": "BAAI/Aquila2-7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
|
| 78 |
+
{"model": "THUDM/chatglm3-6b-base", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Chinese"}
|
| 79 |
+
{"model": "THUDM/glm-2b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 80 |
+
{"model": "THUDM/glm-10b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 81 |
+
{"model": "fnlp/moss-moon-003-base", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
|
| 82 |
+
{"model": "fnlp/moss-base-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
|
| 83 |
// multiple chinese/jp large
|
| 84 |
+
{"model": "Qwen/Qwen-72B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Chinese"}
|
| 85 |
+
{"model": "xverse/XVERSE-65B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
|
| 86 |
+
{"model": "xverse/XVERSE-65B-2", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
|
| 87 |
+
{"model": "deepseek-ai/deepseek-llm-67b-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
|
| 88 |
+
{"model": "BAAI/Aquila2-34B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
|
| 89 |
+
{"model": "BAAI/Aquila2-70B-Expr", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "?"}
|
| 90 |
// minors must 2
|
| 91 |
+
{"model": "gpt2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 92 |
+
{"model": "t5-small", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 93 |
+
{"model": "t5-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 94 |
+
{"model": "t5-large", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 95 |
+
{"model": "google/mt5-small", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 96 |
+
{"model": "google/mt5-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 97 |
+
{"model": "google/mt5-large", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 98 |
//others
|
| 99 |
+
{"model": "NucleusAI/nucleus-22B-token-500B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 100 |
+
{"model": "EleutherAI/pythia-14m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 101 |
+
{"model": "EleutherAI/pythia-70m-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 102 |
+
{"model": "EleutherAI/pythia-160m-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 103 |
+
{"model": "EleutherAI/pythia-410m-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 104 |
+
{"model": "EleutherAI/pythia-1b-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 105 |
+
{"model": "EleutherAI/pythia-2.8b-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 106 |
+
{"model": "EleutherAI/pythia-6.9b-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 107 |
+
{"model": "EleutherAI/pythia-12b-deduped", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 108 |
+
{"model": "EleutherAI/gpt-neo-125m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 109 |
+
{"model": "EleutherAI/gpt-neo-1.3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 110 |
+
{"model": "EleutherAI/gpt-neo-2.7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 111 |
+
{"model": "EleutherAI/gpt-j-6b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 112 |
+
{"model": "EleutherAI/gpt-neox-20b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 113 |
+
{"model": "facebook/opt-125m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 114 |
+
{"model": "facebook/opt-350m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 115 |
+
{"model": "facebook/opt-1.3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 116 |
+
{"model": "facebook/opt-2.7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 117 |
+
{"model": "facebook/opt-6.7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 118 |
+
{"model": "facebook/opt-13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 119 |
+
{"model": "facebook/opt-30b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 120 |
//other large
|
| 121 |
+
{"model": "facebook/opt-66b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 122 |
+
{"model": "tiiuae/falcon-40b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 123 |
// minors portuguese
|
| 124 |
+
{"model": "pierreguillou/gpt2-small-portuguese", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
|
| 125 |
+
{"model": "pucpr/gpt2-bio-pt", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
|
| 126 |
+
{"model": "unicamp-dl/ptt5-small-portuguese-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
|
| 127 |
+
{"model": "unicamp-dl/ptt5-base-portuguese-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
|
| 128 |
+
{"model": "unicamp-dl/ptt5-large-portuguese-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
|
| 129 |
+
{"model": "unicamp-dl/ptt5-small-t5-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
|
| 130 |
+
{"model": "unicamp-dl/ptt5-base-t5-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
|
| 131 |
+
{"model": "unicamp-dl/ptt5-large-t5-vocab", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
|
| 132 |
+
{"model": "josu/gpt-neo-pt-br", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
|
| 133 |
+
{"model": "josu/gpt-neo-pt-1.3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
|
| 134 |
+
{"model": "monilouise/opt125M_portuguese", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
|
| 135 |
+
{"model": "HeyLucasLeao/gpt-neo-small-portuguese", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Portuguese"}
|
| 136 |
// other langs (es/Ko/Jp/nordic)
|
| 137 |
+
{"model": "projecte-aina/FLOR-760M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Spanish"}
|
| 138 |
+
{"model": "projecte-aina/FLOR-1.3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Spanish"}
|
| 139 |
+
{"model": "projecte-aina/FLOR-6.3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Spanish"}
|
| 140 |
+
{"model": "projecte-aina/aguila-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Spanish"}
|
| 141 |
+
{"model": "EleutherAI/polyglot-ko-12.8b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Other"}
|
| 142 |
+
{"model": "matsuo-lab/weblab-10b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "Other"}
|
| 143 |
+
{"model": "pfnet/plamo-13b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 144 |
+
{"model": "AI-Sweden-Models/gpt-sw3-6.7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 145 |
+
{"model": "AI-Sweden-Models/gpt-sw3-6.7b-v2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 146 |
+
{"model": "AI-Sweden-Models/gpt-sw3-20b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 147 |
+
{"model": "AI-Sweden-Models/gpt-sw3-40b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 148 |
+
{"model": "OpenLLM-France/Claire-Mistral-7B-0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Other"}
|
| 149 |
+
{"model": "OpenLLM-France/Claire-7B-0.1", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🆎 : language adapted models (FP, FT, ...)", "main_language": "Other"}
|
| 150 |
// huge models:
|
| 151 |
//{"model": "bigscience/bloom", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 152 |
//{"model": "tiiuae/falcon-180B", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 153 |
//{"model": "facebook/galactica-120b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained"}
|
| 154 |
//random chat models
|
| 155 |
+
{"model": "openchat/openchat-3.5-0106", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "💬 : chat models (RLHF, DPO, IFT, ...)", "main_language": "English"}
|
| 156 |
//other 2
|
| 157 |
+
{"model": "stabilityai/stablelm-base-alpha-3b-v2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 158 |
+
{"model": "stabilityai/stablelm-base-alpha-7b-v2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 159 |
+
{"model": "stabilityai/stablelm-base-alpha-3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 160 |
+
{"model": "stabilityai/stablelm-base-alpha-7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 161 |
+
{"model": "openai-community/openai-gpt", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 162 |
+
{"model": "openai-community/gpt2-medium", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 163 |
+
{"model": "openai-community/gpt2-large", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 164 |
+
{"model": "openai-community/gpt2-xl", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 165 |
+
{"model": "microsoft/phi-1", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 166 |
+
{"model": "microsoft/phi-1_5", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 167 |
+
{"model": "microsoft/phi-2", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 168 |
+
{"model": "mosaicml/mpt-7b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 169 |
+
{"model": "mosaicml/mpt-30b", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 170 |
+
{"model": "mosaicml/mpt-7b-8k", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 171 |
+
{"model": "01-ai/Yi-6B-200K", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 172 |
+
{"model": "01-ai/Yi-34B-200K", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 173 |
+
{"model": "google/t5-v1_1-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 174 |
+
{"model": "google/t5-v1_1-small", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 175 |
+
{"model": "google/t5-v1_1-large", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 176 |
+
{"model": "google/t5-v1_1-xl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 177 |
+
{"model": "google/t5-v1_1-xxl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 178 |
+
{"model": "google/mt5-xl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 179 |
+
{"model": "google/mt5-xxl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 180 |
+
{"model": "google/umt5-small", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 181 |
+
{"model": "google/umt5-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 182 |
+
{"model": "google/umt5-xl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 183 |
+
{"model": "google/umt5-xxl", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 184 |
+
{"model": "AdaptLLM/law-LLM", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned", "main_language": "English"}
|
| 185 |
+
{"model": "AdaptLLM/medicine-LLM", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned", "main_language": "English"}
|
| 186 |
+
{"model": "AdaptLLM/finance-LLM", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned", "main_language": "English"}
|
| 187 |
+
{"model": "AdaptLLM/law-LLM-13B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned", "main_language": "English"}
|
| 188 |
+
{"model": "AdaptLLM/medicine-LLM-13B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned", "main_language": "English"}
|
| 189 |
+
{"model": "AdaptLLM/finance-LLM-13B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🔶 : fine-tuned", "main_language": "English"}
|
| 190 |
+
{"model": "cerebras/Cerebras-GPT-111M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 191 |
+
{"model": "cerebras/Cerebras-GPT-256M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 192 |
+
{"model": "cerebras/Cerebras-GPT-590M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 193 |
+
{"model": "cerebras/Cerebras-GPT-1.3B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 194 |
+
{"model": "cerebras/Cerebras-GPT-2.7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 195 |
+
{"model": "cerebras/Cerebras-GPT-6.7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 196 |
+
{"model": "cerebras/Cerebras-GPT-13B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 197 |
+
{"model": "cerebras/btlm-3b-8k-base", "base_model": "", "revision": "main", "precision": "bfloat16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 198 |
+
{"model": "ai-forever/mGPT-13B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 199 |
+
{"model": "ai-forever/mGPT", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 200 |
+
{"model": "EleutherAI/pythia-70m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 201 |
+
{"model": "EleutherAI/pythia-160m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 202 |
+
{"model": "EleutherAI/pythia-410m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 203 |
+
{"model": "EleutherAI/pythia-1b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 204 |
+
{"model": "EleutherAI/pythia-2.8b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 205 |
+
{"model": "EleutherAI/pythia-6.9b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 206 |
+
{"model": "EleutherAI/pythia-12b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 207 |
+
{"model": "facebook/galactica-125m", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 208 |
+
{"model": "facebook/galactica-1.3b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 209 |
+
{"model": "facebook/galactica-6.7b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 210 |
+
{"model": "facebook/galactica-30b", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 211 |
+
{"model": "facebook/xglm-564M", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 212 |
+
{"model": "facebook/xglm-1.7B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 213 |
+
{"model": "facebook/xglm-2.9B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 214 |
+
{"model": "facebook/xglm-4.5B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
| 215 |
+
{"model": "facebook/xglm-7.5B", "base_model": "", "revision": "main", "precision": "float16", "weight_type": "Original", "model_type": "🟢 : pretrained", "main_language": "English"}
|
src/display/utils.py
CHANGED
|
@@ -66,6 +66,7 @@ auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("Model Name"
|
|
| 66 |
if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS:
|
| 67 |
auto_eval_column_dict.append(["original_benchmark_average", ColumnContent, ColumnContent("🤗 Leaderboard Average", "number", False)])
|
| 68 |
auto_eval_column_dict.append(["npm", ColumnContent, ColumnContent("NPM (Average) ⬆️", "number", False)])
|
|
|
|
| 69 |
|
| 70 |
# We use make dataclass to dynamically fill the scores from Tasks
|
| 71 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
@@ -103,7 +104,8 @@ baseline_row = {
|
|
| 103 |
AutoEvalColumn.license.name: "",
|
| 104 |
AutoEvalColumn.still_on_hub.name: False,
|
| 105 |
AutoEvalColumn.moe.name: False,
|
| 106 |
-
AutoEvalColumn.eval_time.name: 0.0
|
|
|
|
| 107 |
}
|
| 108 |
|
| 109 |
baseline_list = []
|
|
@@ -152,6 +154,7 @@ human_baseline_row = {
|
|
| 152 |
AutoEvalColumn.still_on_hub.name: False,
|
| 153 |
AutoEvalColumn.moe.name: False,
|
| 154 |
AutoEvalColumn.eval_time.name: 0.0,
|
|
|
|
| 155 |
}
|
| 156 |
|
| 157 |
baseline_list = []
|
|
@@ -225,7 +228,27 @@ class Precision(Enum):
|
|
| 225 |
return Precision.qt_GPTQ
|
| 226 |
return Precision.Unknown
|
| 227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
|
| 231 |
# Column selection
|
|
|
|
| 66 |
if GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS:
|
| 67 |
auto_eval_column_dict.append(["original_benchmark_average", ColumnContent, ColumnContent("🤗 Leaderboard Average", "number", False)])
|
| 68 |
auto_eval_column_dict.append(["npm", ColumnContent, ColumnContent("NPM (Average) ⬆️", "number", False)])
|
| 69 |
+
auto_eval_column_dict.append(["main_language", ColumnContent, ColumnContent("Main Language", "str", False)])
|
| 70 |
|
| 71 |
# We use make dataclass to dynamically fill the scores from Tasks
|
| 72 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
|
| 104 |
AutoEvalColumn.license.name: "",
|
| 105 |
AutoEvalColumn.still_on_hub.name: False,
|
| 106 |
AutoEvalColumn.moe.name: False,
|
| 107 |
+
AutoEvalColumn.eval_time.name: 0.0,
|
| 108 |
+
AutoEvalColumn.main_language.name: "?"
|
| 109 |
}
|
| 110 |
|
| 111 |
baseline_list = []
|
|
|
|
| 154 |
AutoEvalColumn.still_on_hub.name: False,
|
| 155 |
AutoEvalColumn.moe.name: False,
|
| 156 |
AutoEvalColumn.eval_time.name: 0.0,
|
| 157 |
+
AutoEvalColumn.main_language.name: "?",
|
| 158 |
}
|
| 159 |
|
| 160 |
baseline_list = []
|
|
|
|
| 228 |
return Precision.qt_GPTQ
|
| 229 |
return Precision.Unknown
|
| 230 |
|
| 231 |
+
class Language(Enum):
|
| 232 |
+
English = ModelDetails("English")
|
| 233 |
+
Portuguese = ModelDetails("Portuguese")
|
| 234 |
+
Spanish = ModelDetails("Spanish")
|
| 235 |
+
Chinese = ModelDetails("Chinese")
|
| 236 |
+
Other = ModelDetails("Other")
|
| 237 |
+
Unknown = ModelDetails("?")
|
| 238 |
|
| 239 |
+
def from_str(language):
|
| 240 |
+
language = language.lower().replace('-', '').replace('_', '')
|
| 241 |
+
if language in ["pt", "ptpt", "ptbr", "portuguese"]:
|
| 242 |
+
return Language.Portuguese
|
| 243 |
+
if language in ["en", "enus", "engb", "english", ]:
|
| 244 |
+
return Language.English
|
| 245 |
+
if language in ["es", "spanish"]:
|
| 246 |
+
return Language.Spanish
|
| 247 |
+
if language in ["zh", "chinese"]:
|
| 248 |
+
return Language.Chinese
|
| 249 |
+
if language in ["other", "multi", "multilingual"]:
|
| 250 |
+
return Language.Other
|
| 251 |
+
return Language.Unknown
|
| 252 |
|
| 253 |
|
| 254 |
# Column selection
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -4,6 +4,7 @@ import math
|
|
| 4 |
import os
|
| 5 |
from dataclasses import dataclass
|
| 6 |
from typing import List
|
|
|
|
| 7 |
|
| 8 |
import dateutil
|
| 9 |
import numpy as np
|
|
@@ -11,7 +12,7 @@ import numpy as np
|
|
| 11 |
from huggingface_hub import ModelCard
|
| 12 |
|
| 13 |
from src.display.formatting import make_clickable_model
|
| 14 |
-
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, ORIGINAL_TASKS
|
| 15 |
from src.envs import GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS, SHOW_INCOMPLETE_EVALS
|
| 16 |
|
| 17 |
@dataclass
|
|
@@ -26,6 +27,7 @@ class EvalResult:
|
|
| 26 |
precision: Precision = Precision.Unknown
|
| 27 |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
| 28 |
weight_type: WeightType = WeightType.Original # Original or Adapter
|
|
|
|
| 29 |
architecture: str = "Unknown" # From config file
|
| 30 |
license: str = "?"
|
| 31 |
likes: int = 0
|
|
@@ -137,6 +139,7 @@ class EvalResult:
|
|
| 137 |
self.architecture = request.get("architectures", "Unknown")
|
| 138 |
self.status = request.get("status", "FAILED")
|
| 139 |
self.hidden = request.get("hidden", False)
|
|
|
|
| 140 |
except Exception as e:
|
| 141 |
self.status = "FAILED"
|
| 142 |
print(f"Could not find request file for {self.org}/{self.model}")
|
|
@@ -188,7 +191,8 @@ class EvalResult:
|
|
| 188 |
AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
|
| 189 |
AutoEvalColumn.flagged.name: self.flagged,
|
| 190 |
AutoEvalColumn.eval_time.name: self.eval_time,
|
| 191 |
-
AutoEvalColumn.npm.name: npm
|
|
|
|
| 192 |
}
|
| 193 |
|
| 194 |
for task in Tasks:
|
|
|
|
| 4 |
import os
|
| 5 |
from dataclasses import dataclass
|
| 6 |
from typing import List
|
| 7 |
+
import traceback
|
| 8 |
|
| 9 |
import dateutil
|
| 10 |
import numpy as np
|
|
|
|
| 12 |
from huggingface_hub import ModelCard
|
| 13 |
|
| 14 |
from src.display.formatting import make_clickable_model
|
| 15 |
+
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, Language, WeightType, ORIGINAL_TASKS
|
| 16 |
from src.envs import GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS, SHOW_INCOMPLETE_EVALS
|
| 17 |
|
| 18 |
@dataclass
|
|
|
|
| 27 |
precision: Precision = Precision.Unknown
|
| 28 |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
| 29 |
weight_type: WeightType = WeightType.Original # Original or Adapter
|
| 30 |
+
main_language: Language = Language.Unknown
|
| 31 |
architecture: str = "Unknown" # From config file
|
| 32 |
license: str = "?"
|
| 33 |
likes: int = 0
|
|
|
|
| 139 |
self.architecture = request.get("architectures", "Unknown")
|
| 140 |
self.status = request.get("status", "FAILED")
|
| 141 |
self.hidden = request.get("hidden", False)
|
| 142 |
+
self.main_language = request.get("main_language", "?")
|
| 143 |
except Exception as e:
|
| 144 |
self.status = "FAILED"
|
| 145 |
print(f"Could not find request file for {self.org}/{self.model}")
|
|
|
|
| 191 |
AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
|
| 192 |
AutoEvalColumn.flagged.name: self.flagged,
|
| 193 |
AutoEvalColumn.eval_time.name: self.eval_time,
|
| 194 |
+
AutoEvalColumn.npm.name: npm,
|
| 195 |
+
AutoEvalColumn.main_language.name: self.main_language
|
| 196 |
}
|
| 197 |
|
| 198 |
for task in Tasks:
|
src/submission/submit.py
CHANGED
|
@@ -27,7 +27,8 @@ def add_new_eval(
|
|
| 27 |
private: bool,
|
| 28 |
weight_type: str,
|
| 29 |
model_type: str,
|
| 30 |
-
|
|
|
|
| 31 |
):
|
| 32 |
global REQUESTED_MODELS
|
| 33 |
global USERS_TO_SUBMISSION_DATES
|
|
@@ -119,6 +120,7 @@ def add_new_eval(
|
|
| 119 |
"params": model_size,
|
| 120 |
"architectures": architecture,
|
| 121 |
"weight_type": weight_type,
|
|
|
|
| 122 |
"status": "PENDING",
|
| 123 |
"submitted_time": current_time,
|
| 124 |
"model_type": model_type,
|
|
|
|
| 27 |
private: bool,
|
| 28 |
weight_type: str,
|
| 29 |
model_type: str,
|
| 30 |
+
main_language: str,
|
| 31 |
+
source="leaderboard",
|
| 32 |
):
|
| 33 |
global REQUESTED_MODELS
|
| 34 |
global USERS_TO_SUBMISSION_DATES
|
|
|
|
| 120 |
"params": model_size,
|
| 121 |
"architectures": architecture,
|
| 122 |
"weight_type": weight_type,
|
| 123 |
+
"main_language": main_language,
|
| 124 |
"status": "PENDING",
|
| 125 |
"submitted_time": current_time,
|
| 126 |
"model_type": model_type,
|