edgellm / backend /api /routes.py
wu981526092's picture
add
f479a01
raw
history blame
9.29 kB
"""
API routes for Edge LLM
"""
from fastapi import APIRouter, HTTPException, Request, UploadFile, File
from fastapi.responses import FileResponse
from typing import List
from ..models import (
PromptRequest, PromptResponse, ModelInfo, ModelsResponse,
ModelLoadRequest, ModelUnloadRequest
)
from ..services.model_service import model_service
from ..services.chat_service import chat_service
from ..config import AVAILABLE_MODELS
# Import RAG system
try:
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from rag_system import get_rag_system
RAG_AVAILABLE = True
except ImportError as e:
print(f"RAG system not available: {e}")
RAG_AVAILABLE = False
# Create API router
router = APIRouter()
@router.get("/")
async def read_index():
"""Serve the React app"""
from ..config import FRONTEND_DIST_DIR
return FileResponse(f'{FRONTEND_DIST_DIR}/index.html')
@router.get("/health")
async def health_check():
"""Health check endpoint"""
return {"status": "healthy", "message": "Edge LLM API is running"}
@router.get("/models", response_model=ModelsResponse)
async def get_models():
"""Get available models and their status"""
models = []
for model_name, info in AVAILABLE_MODELS.items():
models.append(ModelInfo(
model_name=model_name,
name=info["name"],
supports_thinking=info["supports_thinking"],
description=info["description"],
size_gb=info["size_gb"],
is_loaded=model_service.is_model_loaded(model_name),
type=info["type"]
))
return ModelsResponse(
models=models,
current_model=model_service.get_current_model() or ""
)
@router.post("/load-model")
async def load_model(request: ModelLoadRequest):
"""Load a specific model"""
if request.model_name not in AVAILABLE_MODELS:
raise HTTPException(
status_code=400,
detail=f"Model {request.model_name} not available"
)
success = model_service.load_model(request.model_name)
if success:
model_service.set_current_model(request.model_name)
return {
"message": f"Model {request.model_name} loaded successfully",
"current_model": model_service.get_current_model()
}
else:
raise HTTPException(
status_code=500,
detail=f"Failed to load model {request.model_name}"
)
@router.post("/unload-model")
async def unload_model(request: ModelUnloadRequest):
"""Unload a specific model"""
success = model_service.unload_model(request.model_name)
if success:
return {
"message": f"Model {request.model_name} unloaded successfully",
"current_model": model_service.get_current_model() or ""
}
else:
raise HTTPException(
status_code=404,
detail=f"Model {request.model_name} not found in cache"
)
@router.post("/set-current-model")
async def set_current_model(request: ModelLoadRequest):
"""Set the current active model"""
if not model_service.is_model_loaded(request.model_name):
raise HTTPException(
status_code=400,
detail=f"Model {request.model_name} is not loaded. Please load it first."
)
model_service.set_current_model(request.model_name)
return {
"message": f"Current model set to {request.model_name}",
"current_model": model_service.get_current_model()
}
# RAG System Endpoints
@router.post("/rag/upload")
async def upload_document(files: List[UploadFile] = File(...)):
"""Upload documents for RAG system"""
if not RAG_AVAILABLE:
raise HTTPException(status_code=503, detail="RAG system not available")
rag_system = get_rag_system()
results = []
for file in files:
try:
# Read file content
content = await file.read()
# Process document
result = rag_system.add_document(
file_content=content,
filename=file.filename,
file_type=file.content_type
)
results.append({
"filename": file.filename,
"success": result["success"],
"doc_id": result.get("doc_id"),
"chunks": result.get("chunks"),
"message": result.get("message"),
"error": result.get("error")
})
except Exception as e:
results.append({
"filename": file.filename,
"success": False,
"error": str(e)
})
return {"results": results}
@router.delete("/rag/documents/{doc_id}")
async def delete_document(doc_id: str):
"""Delete a document from RAG system"""
if not RAG_AVAILABLE:
raise HTTPException(status_code=503, detail="RAG system not available")
rag_system = get_rag_system()
result = rag_system.remove_document(doc_id)
if result["success"]:
return result
else:
raise HTTPException(status_code=404, detail=result["error"])
@router.get("/rag/documents")
async def get_documents():
"""Get information about uploaded documents"""
if not RAG_AVAILABLE:
raise HTTPException(status_code=503, detail="RAG system not available")
rag_system = get_rag_system()
return rag_system.get_documents_info()
@router.post("/rag/search")
async def search_documents(query: str, max_results: int = 3):
"""Search through uploaded documents"""
if not RAG_AVAILABLE:
raise HTTPException(status_code=503, detail="RAG system not available")
rag_system = get_rag_system()
results = rag_system.search_similar(query, k=max_results)
return {"query": query, "results": results}
@router.post("/generate", response_model=PromptResponse)
async def generate_text(request: PromptRequest):
"""Generate text using the loaded model with optional RAG enhancement"""
# Use the model specified in request, or fall back to current model
model_to_use = request.model_name if request.model_name else model_service.get_current_model()
if not model_to_use:
raise HTTPException(
status_code=400,
detail="No model specified. Please load a model first."
)
if not model_service.is_model_loaded(model_to_use):
raise HTTPException(
status_code=400,
detail=f"Model {model_to_use} is not loaded. Please load it first."
)
try:
# Enhanced system prompt with RAG context if available
enhanced_system_prompt = request.system_prompt
# Check if RAG is available and should be used
use_rag = request.use_rag or False
retrieval_count = request.retrieval_count or 3
if RAG_AVAILABLE and use_rag:
rag_system = get_rag_system()
# Get relevant context for the current prompt
context = rag_system.get_context_for_query(request.prompt, max_chunks=retrieval_count)
if context:
# Enhance the system prompt with retrieved context
context_instruction = (
"\n\nAdditional Context from Documents:\n"
"Use the following information to help answer the user's question. "
"If the context is relevant, incorporate it into your response. "
"If the context is not relevant, you can ignore it.\n\n"
f"{context}\n"
"---\n"
)
enhanced_system_prompt = (request.system_prompt or "") + context_instruction
thinking_content, final_content, model_used, supports_thinking = chat_service.generate_response(
prompt=request.prompt,
model_name=model_to_use,
messages=[msg.dict() for msg in request.messages] if request.messages else [],
system_prompt=enhanced_system_prompt,
temperature=request.temperature,
max_new_tokens=request.max_new_tokens
)
return PromptResponse(
thinking_content=thinking_content,
content=final_content,
model_used=model_used,
supports_thinking=supports_thinking
)
except Exception as e:
print(f"Generation error: {e}")
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")
# Catch-all route for SPA - must be last
@router.get("/{full_path:path}")
async def catch_all(request: Request, full_path: str):
"""
Catch-all route to serve index.html for any unmatched paths.
This enables client-side routing for the React SPA.
Skip static file paths.
"""
# Skip static file paths
if full_path.startswith(('assets/', 'images/', 'static/')):
from fastapi import HTTPException
raise HTTPException(status_code=404, detail="File not found")
from ..config import FRONTEND_DIST_DIR
return FileResponse(f'{FRONTEND_DIST_DIR}/index.html')