Spaces:
Running
Running
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import torch | |
| import gradio as gr | |
| tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B") | |
| model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B") | |
| def text_generation(input_text, seed): | |
| input_ids = tokenizer(input_text, return_tensors="pt").input_ids | |
| torch.manual_seed(seed) # Max value: 18446744073709551615 | |
| outputs = model.generate(input_ids, do_sample=True, min_length=50, max_length=200) | |
| generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
| return generated_text | |
| title = "Text Generator Demo GPT-Neo" | |
| description = "Text Generator Application by ecarbo" | |
| gr.Interface( | |
| text_generation, | |
| [gr.inputs.Textbox(lines=2, label="Enter input text"), gr.inputs.Number(default=10, label="Enter seed number")], | |
| [gr.outputs.Textbox(type="auto", label="Text Generated")], | |
| title=title, | |
| description=description, | |
| theme="huggingface" | |
| ).launch() |