Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	| import whisper | |
| import gradio as gr | |
| import datetime | |
| import subprocess | |
| import torch | |
| import pyannote.audio | |
| from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding | |
| from pyannote.audio import Audio | |
| from pyannote.core import Segment | |
| import wave | |
| import contextlib | |
| from sklearn.cluster import AgglomerativeClustering | |
| import numpy as np | |
| model = whisper.load_model("large-v2") | |
| embedding_model = PretrainedSpeakerEmbedding( | |
| "speechbrain/spkrec-ecapa-voxceleb", | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| ) | |
| def transcribe(audio, num_speakers): | |
| path, error = convert_to_wav(audio) | |
| if error is not None: | |
| return error | |
| duration = get_duration(path) | |
| if duration > 4 * 60 * 60: | |
| return "Audio duration too long" | |
| result = model.transcribe(path) | |
| segments = result["segments"] | |
| num_speakers = min(max(round(num_speakers), 1), len(segments)) | |
| if len(segments) == 1: | |
| segments[0]['speaker'] = 'SPEAKER 1' | |
| else: | |
| embeddings = make_embeddings(path, segments, duration) | |
| add_speaker_labels(segments, embeddings, num_speakers) | |
| output = get_output(segments) | |
| return output | |
| def convert_to_wav(path): | |
| if path[-3:] != 'wav': | |
| new_path = '.'.join(path.split('.')[:-1]) + '.wav' | |
| try: | |
| subprocess.call(['ffmpeg', '-i', path, new_path, '-y']) | |
| except: | |
| return path, 'Error: Could not convert file to .wav' | |
| path = new_path | |
| return path, None | |
| def get_duration(path): | |
| with contextlib.closing(wave.open(path,'r')) as f: | |
| frames = f.getnframes() | |
| rate = f.getframerate() | |
| return frames / float(rate) | |
| def make_embeddings(path, segments, duration): | |
| embeddings = np.zeros(shape=(len(segments), 192)) | |
| for i, segment in enumerate(segments): | |
| embeddings[i] = segment_embedding(path, segment, duration) | |
| return np.nan_to_num(embeddings) | |
| audio = Audio() | |
| def segment_embedding(path, segment, duration): | |
| start = segment["start"] | |
| # Whisper overshoots the end timestamp in the last segment | |
| end = min(duration, segment["end"]) | |
| clip = Segment(start, end) | |
| waveform, sample_rate = audio.crop(path, clip) | |
| return embedding_model(waveform[None]) | |
| def add_speaker_labels(segments, embeddings, num_speakers): | |
| clustering = AgglomerativeClustering(num_speakers).fit(embeddings) | |
| labels = clustering.labels_ | |
| for i in range(len(segments)): | |
| segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1) | |
| def time(secs): | |
| return datetime.timedelta(seconds=round(secs)) | |
| def get_output(segments): | |
| output = '' | |
| for (i, segment) in enumerate(segments): | |
| if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]: | |
| if i != 0: | |
| output += '\n\n' | |
| output += segment["speaker"] + ' ' + str(time(segment["start"])) + '\n\n' | |
| output += segment["text"][1:] + ' ' | |
| return output | |
| gr.Interface( | |
| title = 'Whisper with Speaker Recognition', | |
| fn=transcribe, | |
| inputs=[ | |
| gr.inputs.Audio(source="upload", type="filepath"), | |
| gr.inputs.Number(default=2, label="Number of Speakers") | |
| ], | |
| outputs=[ | |
| gr.outputs.Textbox(label='Transcript') | |
| ] | |
| ).launch() |