Update app.py
Browse files
app.py
CHANGED
|
@@ -13,15 +13,12 @@ from huggingface_hub import HfApi, hf_hub_download, snapshot_download
|
|
| 13 |
from TTS.tts.configs.xtts_config import XttsConfig
|
| 14 |
from TTS.tts.models.xtts import Xtts
|
| 15 |
from vinorm import TTSnorm
|
| 16 |
-
from
|
|
|
|
| 17 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
| 18 |
-
from
|
| 19 |
-
import cv2
|
| 20 |
-
from moviepy.editor import AudioFileClip, ImageSequenceClip
|
| 21 |
-
import gc
|
| 22 |
-
from content_generation import create_content # Nhập hàm create_content từ file content_generation.py
|
| 23 |
|
| 24 |
-
#
|
| 25 |
os.system("python -m unidic download")
|
| 26 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 27 |
api = HfApi(token=HF_TOKEN)
|
|
@@ -58,19 +55,29 @@ supported_languages = config.languages
|
|
| 58 |
if not "vi" in supported_languages:
|
| 59 |
supported_languages.append("vi")
|
| 60 |
|
| 61 |
-
# Load LangChain components
|
| 62 |
model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-xl")
|
| 63 |
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xl")
|
| 64 |
pipe = pipeline(
|
| 65 |
'text2text-generation',
|
| 66 |
model=model,
|
| 67 |
tokenizer=tokenizer,
|
| 68 |
-
max_length=1024 #
|
| 69 |
)
|
| 70 |
local_llm = HuggingFacePipeline(pipeline=pipe)
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
def normalize_vietnamese_text(text):
|
| 76 |
text = (
|
|
@@ -100,81 +107,23 @@ def calculate_keep_len(text, lang):
|
|
| 100 |
return 13000 * word_count + 2000 * num_punct
|
| 101 |
return -1
|
| 102 |
|
| 103 |
-
def create_video_from_audio_and_images(audio_path, images, output_path):
|
| 104 |
-
audio_clip = AudioFileClip(audio_path)
|
| 105 |
-
duration = audio_clip.duration
|
| 106 |
-
|
| 107 |
-
# Calculate frame rate based on number of images and audio duration
|
| 108 |
-
frame_rate = len(images) / duration
|
| 109 |
-
|
| 110 |
-
# Create video clip from images
|
| 111 |
-
video_clip = ImageSequenceClip(images, fps=frame_rate)
|
| 112 |
-
|
| 113 |
-
# Set audio for video clip
|
| 114 |
-
final_clip = video_clip.set_audio(audio_clip)
|
| 115 |
-
|
| 116 |
-
# Write result to file
|
| 117 |
-
final_clip.write_videofile(output_path, codec='libx264', audio_codec='aac')
|
| 118 |
-
audio_clip.close()
|
| 119 |
-
video_clip.close()
|
| 120 |
-
final_clip.close()
|
| 121 |
-
|
| 122 |
-
def truncate_prompt(prompt, tokenizer, max_length=512):
|
| 123 |
-
"""Truncate prompt to fit within the maximum token length."""
|
| 124 |
-
tokens = tokenizer.tokenize(prompt)
|
| 125 |
-
if len(tokens) > max_length:
|
| 126 |
-
tokens = tokens[:max_length]
|
| 127 |
-
prompt = tokenizer.convert_tokens_to_string(tokens)
|
| 128 |
-
return prompt
|
| 129 |
-
|
| 130 |
-
def generate_images_from_sentences(sentences):
|
| 131 |
-
try:
|
| 132 |
-
client = Client("ByteDance/Hyper-FLUX-8Steps-LoRA")
|
| 133 |
-
for i, sentence in enumerate(sentences):
|
| 134 |
-
print(f"Generating image for sentence {i + 1}: {sentence}")
|
| 135 |
-
result = client.predict(
|
| 136 |
-
height=1024,
|
| 137 |
-
width=1024,
|
| 138 |
-
steps=8,
|
| 139 |
-
scales=3.5,
|
| 140 |
-
prompt=sentence,
|
| 141 |
-
seed=3413,
|
| 142 |
-
api_name="/process_image"
|
| 143 |
-
)
|
| 144 |
-
image_path = os.path.join(folder_path, f"image_{i + 1}.png")
|
| 145 |
-
result.save(image_path)
|
| 146 |
-
print(f"Saved image at {image_path}")
|
| 147 |
-
except Exception as e:
|
| 148 |
-
print("Error! Failed generating images")
|
| 149 |
-
print(e)
|
| 150 |
-
return []
|
| 151 |
-
|
| 152 |
@spaces.GPU
|
| 153 |
def predict(
|
| 154 |
prompt,
|
| 155 |
language,
|
| 156 |
audio_file_pth,
|
| 157 |
normalize_text=True,
|
| 158 |
-
use_llm=False, # Thêm tùy chọn sử dụng LLM
|
| 159 |
-
content_type="Theo yêu cầu", # Loại nội dung (ví dụ: "triết lý sống" hoặc "Theo yêu cầu")
|
| 160 |
):
|
| 161 |
-
if use_llm:
|
| 162 |
-
# Nếu sử dụng LLM, tạo nội dung văn bản từ đầu vào
|
| 163 |
-
print("I: Generating text with LLM...")
|
| 164 |
-
generated_text = create_content(prompt, content_type, language)
|
| 165 |
-
print(f"Generated text: {generated_text}")
|
| 166 |
-
prompt = generated_text # Gán văn bản được tạo bởi LLM vào biến prompt
|
| 167 |
-
|
| 168 |
if language not in supported_languages:
|
| 169 |
metrics_text = gr.Warning(
|
| 170 |
f"Language you put {language} in is not in our Supported Languages, please choose from dropdown"
|
| 171 |
)
|
| 172 |
-
return (None,
|
| 173 |
|
| 174 |
speaker_wav = audio_file_pth
|
| 175 |
if len(prompt) < 2:
|
| 176 |
metrics_text = gr.Warning("Please give a longer prompt text")
|
| 177 |
-
return (None,
|
| 178 |
|
| 179 |
try:
|
| 180 |
metrics_text = ""
|
|
@@ -194,15 +143,12 @@ def predict(
|
|
| 194 |
metrics_text = gr.Warning(
|
| 195 |
"It appears something wrong with reference, did you unmute your microphone?"
|
| 196 |
)
|
| 197 |
-
return (None,
|
| 198 |
|
| 199 |
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
|
| 200 |
if normalize_text and language == "vi":
|
| 201 |
prompt = normalize_vietnamese_text(prompt)
|
| 202 |
-
|
| 203 |
-
# Truncate prompt to fit within the maximum token length
|
| 204 |
-
prompt = truncate_prompt(prompt, tokenizer, max_length=512)
|
| 205 |
-
|
| 206 |
print("I: Generating new audio...")
|
| 207 |
t0 = time.time()
|
| 208 |
out = MODEL.inference(
|
|
@@ -227,38 +173,15 @@ def predict(
|
|
| 227 |
keep_len = calculate_keep_len(prompt, language)
|
| 228 |
out["wav"] = out["wav"][:keep_len]
|
| 229 |
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
| 230 |
-
|
| 231 |
-
# Tạo video từ file audio và các cảnh
|
| 232 |
-
print("I: Generating images from sentences...")
|
| 233 |
-
# Sử dụng UUID để tạo tên thư mục ngắn gọn
|
| 234 |
-
folder_name = f"video_{uuid.uuid4().hex}"
|
| 235 |
-
os.makedirs(folder_name, exist_ok=True)
|
| 236 |
-
folder_path = os.path.join(folder_name, "images")
|
| 237 |
-
os.makedirs(folder_path, exist_ok=True)
|
| 238 |
-
|
| 239 |
-
# Tách các câu từ văn bản
|
| 240 |
-
sentences = [x.strip() for x in re.split(r'[.!?]', prompt) if len(x.strip()) > 6]
|
| 241 |
-
|
| 242 |
-
# Tạo ảnh minh họa cho từng câu
|
| 243 |
-
images = generate_images_from_sentences(sentences)
|
| 244 |
-
|
| 245 |
-
# Tạo video từ file audio và các ảnh
|
| 246 |
-
video_path = os.path.join(folder_name, "Final_Ad_Video.mp4")
|
| 247 |
-
create_video_from_audio_and_images("output.wav", images, video_path)
|
| 248 |
-
|
| 249 |
-
print(f"I: Video generated at {video_path}")
|
| 250 |
-
metrics_text += f"Video generated at {video_path}\n"
|
| 251 |
-
|
| 252 |
-
return ("output.wav", video_path, metrics_text)
|
| 253 |
except RuntimeError as e:
|
| 254 |
if "device-side assert" in str(e):
|
| 255 |
-
#
|
| 256 |
print(
|
| 257 |
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
|
| 258 |
flush=True,
|
| 259 |
)
|
| 260 |
gr.Warning("Unhandled Exception encounter, please retry in a minute")
|
| 261 |
-
print("
|
| 262 |
error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
|
| 263 |
error_data = [
|
| 264 |
error_time,
|
|
@@ -273,7 +196,7 @@ def predict(
|
|
| 273 |
csv.writer(write_io).writerows([error_data])
|
| 274 |
csv_upload = write_io.getvalue().encode()
|
| 275 |
filename = error_time + "_" + str(uuid.uuid4()) + ".csv"
|
| 276 |
-
print("Writing error
|
| 277 |
error_api = HfApi()
|
| 278 |
error_api.upload_file(
|
| 279 |
path_or_fileobj=csv_upload,
|
|
@@ -281,7 +204,7 @@ def predict(
|
|
| 281 |
repo_id="coqui/xtts-flagged-dataset",
|
| 282 |
repo_type="dataset",
|
| 283 |
)
|
| 284 |
-
#
|
| 285 |
print("Writing error reference audio")
|
| 286 |
speaker_filename = error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
|
| 287 |
error_api = HfApi()
|
|
@@ -308,16 +231,9 @@ def predict(
|
|
| 308 |
metrics_text = gr.Warning(
|
| 309 |
"Something unexpected happened please retry again."
|
| 310 |
)
|
| 311 |
-
return (None,
|
| 312 |
-
|
| 313 |
-
print("Unexpected error:", str(e))
|
| 314 |
-
metrics_text = gr.Warning(
|
| 315 |
-
"An unexpected error occurred. Please try again later."
|
| 316 |
-
)
|
| 317 |
-
return (None, None, metrics_text)
|
| 318 |
-
return ("output.wav", None, metrics_text)
|
| 319 |
|
| 320 |
-
# Cập nhật giao diện Gradio
|
| 321 |
with gr.Blocks(analytics_enabled=False) as demo:
|
| 322 |
with gr.Row():
|
| 323 |
with gr.Column():
|
|
@@ -327,7 +243,7 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
| 327 |
"""
|
| 328 |
)
|
| 329 |
with gr.Column():
|
| 330 |
-
#
|
| 331 |
pass
|
| 332 |
|
| 333 |
with gr.Row():
|
|
@@ -367,16 +283,6 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
| 367 |
info="Normalize Vietnamese text",
|
| 368 |
value=True,
|
| 369 |
)
|
| 370 |
-
use_llm_checkbox = gr.Checkbox(
|
| 371 |
-
label="Sử dụng LLM để tạo nội dung",
|
| 372 |
-
info="Use LLM to generate content",
|
| 373 |
-
value=False,
|
| 374 |
-
)
|
| 375 |
-
content_type_dropdown = gr.Dropdown(
|
| 376 |
-
label="Loại nội dung",
|
| 377 |
-
choices=["triết lý sống", "Theo y��u cầu"],
|
| 378 |
-
value="Theo yêu cầu",
|
| 379 |
-
)
|
| 380 |
ref_gr = gr.Audio(
|
| 381 |
label="Reference Audio (Giọng mẫu)",
|
| 382 |
type="filepath",
|
|
@@ -391,7 +297,6 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
| 391 |
|
| 392 |
with gr.Column():
|
| 393 |
audio_gr = gr.Audio(label="Synthesised Audio", autoplay=True)
|
| 394 |
-
video_gr = gr.Video(label="Generated Video")
|
| 395 |
out_text_gr = gr.Text(label="Metrics")
|
| 396 |
|
| 397 |
tts_button.click(
|
|
@@ -401,10 +306,8 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
| 401 |
language_gr,
|
| 402 |
ref_gr,
|
| 403 |
normalize_text,
|
| 404 |
-
use_llm_checkbox, # Thêm checkbox để bật/tắt LLM
|
| 405 |
-
content_type_dropdown, # Thêm dropdown để chọn loại nội dung
|
| 406 |
],
|
| 407 |
-
outputs=[audio_gr,
|
| 408 |
api_name="predict",
|
| 409 |
)
|
| 410 |
|
|
|
|
| 13 |
from TTS.tts.configs.xtts_config import XttsConfig
|
| 14 |
from TTS.tts.models.xtts import Xtts
|
| 15 |
from vinorm import TTSnorm
|
| 16 |
+
from langchain.prompts import PromptTemplate
|
| 17 |
+
from langchain.chains import LLMChain
|
| 18 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
| 19 |
+
from langchain_community.llms import HuggingFacePipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
# Download for mecab
|
| 22 |
os.system("python -m unidic download")
|
| 23 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 24 |
api = HfApi(token=HF_TOKEN)
|
|
|
|
| 55 |
if not "vi" in supported_languages:
|
| 56 |
supported_languages.append("vi")
|
| 57 |
|
| 58 |
+
# Load LangChain components with the new model
|
| 59 |
model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-xl")
|
| 60 |
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xl")
|
| 61 |
pipe = pipeline(
|
| 62 |
'text2text-generation',
|
| 63 |
model=model,
|
| 64 |
tokenizer=tokenizer,
|
| 65 |
+
max_length=1024 # Update max_length
|
| 66 |
)
|
| 67 |
local_llm = HuggingFacePipeline(pipeline=pipe)
|
| 68 |
+
|
| 69 |
+
# Define the caption_chain function
|
| 70 |
+
def caption_chain(llm):
|
| 71 |
+
sum_template = """What is the most significant action, place, or thing? Say it in at most 5 words:
|
| 72 |
+
|
| 73 |
+
{sentence}
|
| 74 |
+
"""
|
| 75 |
+
sum_prompt = PromptTemplate(template=sum_template, input_variables=["sentence"])
|
| 76 |
+
sum_llm_chain = LLMChain(prompt=sum_prompt, llm=llm)
|
| 77 |
+
return sum_llm_chain
|
| 78 |
+
|
| 79 |
+
# Initialize the caption_chain and tag_chain
|
| 80 |
+
llm_chain = caption_chain(llm=local_llm)
|
| 81 |
|
| 82 |
def normalize_vietnamese_text(text):
|
| 83 |
text = (
|
|
|
|
| 107 |
return 13000 * word_count + 2000 * num_punct
|
| 108 |
return -1
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
@spaces.GPU
|
| 111 |
def predict(
|
| 112 |
prompt,
|
| 113 |
language,
|
| 114 |
audio_file_pth,
|
| 115 |
normalize_text=True,
|
|
|
|
|
|
|
| 116 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
if language not in supported_languages:
|
| 118 |
metrics_text = gr.Warning(
|
| 119 |
f"Language you put {language} in is not in our Supported Languages, please choose from dropdown"
|
| 120 |
)
|
| 121 |
+
return (None, metrics_text)
|
| 122 |
|
| 123 |
speaker_wav = audio_file_pth
|
| 124 |
if len(prompt) < 2:
|
| 125 |
metrics_text = gr.Warning("Please give a longer prompt text")
|
| 126 |
+
return (None, metrics_text)
|
| 127 |
|
| 128 |
try:
|
| 129 |
metrics_text = ""
|
|
|
|
| 143 |
metrics_text = gr.Warning(
|
| 144 |
"It appears something wrong with reference, did you unmute your microphone?"
|
| 145 |
)
|
| 146 |
+
return (None, metrics_text)
|
| 147 |
|
| 148 |
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
|
| 149 |
if normalize_text and language == "vi":
|
| 150 |
prompt = normalize_vietnamese_text(prompt)
|
| 151 |
+
|
|
|
|
|
|
|
|
|
|
| 152 |
print("I: Generating new audio...")
|
| 153 |
t0 = time.time()
|
| 154 |
out = MODEL.inference(
|
|
|
|
| 173 |
keep_len = calculate_keep_len(prompt, language)
|
| 174 |
out["wav"] = out["wav"][:keep_len]
|
| 175 |
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
except RuntimeError as e:
|
| 177 |
if "device-side assert" in str(e):
|
| 178 |
+
# Cannot do anything on CUDA device side error, need to restart
|
| 179 |
print(
|
| 180 |
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
|
| 181 |
flush=True,
|
| 182 |
)
|
| 183 |
gr.Warning("Unhandled Exception encounter, please retry in a minute")
|
| 184 |
+
print("CUDA device-assert Runtime encountered need restart")
|
| 185 |
error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
|
| 186 |
error_data = [
|
| 187 |
error_time,
|
|
|
|
| 196 |
csv.writer(write_io).writerows([error_data])
|
| 197 |
csv_upload = write_io.getvalue().encode()
|
| 198 |
filename = error_time + "_" + str(uuid.uuid4()) + ".csv"
|
| 199 |
+
print("Writing error CSV")
|
| 200 |
error_api = HfApi()
|
| 201 |
error_api.upload_file(
|
| 202 |
path_or_fileobj=csv_upload,
|
|
|
|
| 204 |
repo_id="coqui/xtts-flagged-dataset",
|
| 205 |
repo_type="dataset",
|
| 206 |
)
|
| 207 |
+
# Speaker WAV
|
| 208 |
print("Writing error reference audio")
|
| 209 |
speaker_filename = error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
|
| 210 |
error_api = HfApi()
|
|
|
|
| 231 |
metrics_text = gr.Warning(
|
| 232 |
"Something unexpected happened please retry again."
|
| 233 |
)
|
| 234 |
+
return (None, metrics_text)
|
| 235 |
+
return ("output.wav", metrics_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
|
|
|
| 237 |
with gr.Blocks(analytics_enabled=False) as demo:
|
| 238 |
with gr.Row():
|
| 239 |
with gr.Column():
|
|
|
|
| 243 |
"""
|
| 244 |
)
|
| 245 |
with gr.Column():
|
| 246 |
+
# Placeholder to align the image
|
| 247 |
pass
|
| 248 |
|
| 249 |
with gr.Row():
|
|
|
|
| 283 |
info="Normalize Vietnamese text",
|
| 284 |
value=True,
|
| 285 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
ref_gr = gr.Audio(
|
| 287 |
label="Reference Audio (Giọng mẫu)",
|
| 288 |
type="filepath",
|
|
|
|
| 297 |
|
| 298 |
with gr.Column():
|
| 299 |
audio_gr = gr.Audio(label="Synthesised Audio", autoplay=True)
|
|
|
|
| 300 |
out_text_gr = gr.Text(label="Metrics")
|
| 301 |
|
| 302 |
tts_button.click(
|
|
|
|
| 306 |
language_gr,
|
| 307 |
ref_gr,
|
| 308 |
normalize_text,
|
|
|
|
|
|
|
| 309 |
],
|
| 310 |
+
outputs=[audio_gr, out_text_gr],
|
| 311 |
api_name="predict",
|
| 312 |
)
|
| 313 |
|