chores: clean up unncessary stuffs
Browse files
app.py
CHANGED
|
@@ -8,8 +8,6 @@ import torchaudio
|
|
| 8 |
# download for mecab
|
| 9 |
os.system("python -m unidic download")
|
| 10 |
|
| 11 |
-
# By using XTTS you agree to CPML license https://coqui.ai/cpml
|
| 12 |
-
os.environ["COQUI_TOS_AGREED"] = "1"
|
| 13 |
|
| 14 |
import csv
|
| 15 |
import datetime
|
|
@@ -35,7 +33,6 @@ from huggingface_hub import HfApi
|
|
| 35 |
|
| 36 |
# will use api to restart space on a unrecoverable error
|
| 37 |
api = HfApi(token=HF_TOKEN)
|
| 38 |
-
repo_id = "coqui/xtts"
|
| 39 |
|
| 40 |
# This will trigger downloading model
|
| 41 |
print("Downloading if not downloaded Coqui XTTS V2")
|
|
@@ -78,301 +75,158 @@ def predict(
|
|
| 78 |
prompt,
|
| 79 |
language,
|
| 80 |
audio_file_pth,
|
| 81 |
-
mic_file_path,
|
| 82 |
-
use_mic,
|
| 83 |
voice_cleanup,
|
| 84 |
-
no_lang_auto_detect,
|
| 85 |
-
agree,
|
| 86 |
):
|
| 87 |
-
if
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
)
|
| 92 |
-
|
| 93 |
-
return (
|
| 94 |
-
None,
|
| 95 |
-
None,
|
| 96 |
-
None,
|
| 97 |
-
None,
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
language_predicted = langid.classify(prompt)[
|
| 101 |
-
0
|
| 102 |
-
].strip() # strip need as there is space at end!
|
| 103 |
-
|
| 104 |
-
# tts expects chinese as zh-cn
|
| 105 |
-
if language_predicted == "zh":
|
| 106 |
-
# we use zh-cn
|
| 107 |
-
language_predicted = "zh-cn"
|
| 108 |
-
|
| 109 |
-
print(f"Detected language:{language_predicted}, Chosen language:{language}")
|
| 110 |
-
|
| 111 |
-
# After text character length 15 trigger language detection
|
| 112 |
-
if len(prompt) > 15:
|
| 113 |
-
# allow any language for short text as some may be common
|
| 114 |
-
# If user unchecks language autodetection it will not trigger
|
| 115 |
-
# You may remove this completely for own use
|
| 116 |
-
if language_predicted != language and not no_lang_auto_detect:
|
| 117 |
-
# Please duplicate and remove this check if you really want this
|
| 118 |
-
# Or auto-detector fails to identify language (which it can on pretty short text or mixed text)
|
| 119 |
-
gr.Warning(
|
| 120 |
-
f"It looks like your text isn’t the language you chose , if you’re sure the text is the same language you chose, please check disable language auto-detection checkbox"
|
| 121 |
-
)
|
| 122 |
-
|
| 123 |
-
return (
|
| 124 |
-
None,
|
| 125 |
-
None,
|
| 126 |
-
None,
|
| 127 |
-
None,
|
| 128 |
-
)
|
| 129 |
-
|
| 130 |
-
if use_mic == True:
|
| 131 |
-
if mic_file_path is not None:
|
| 132 |
-
speaker_wav = mic_file_path
|
| 133 |
-
else:
|
| 134 |
-
gr.Warning(
|
| 135 |
-
"Please record your voice with Microphone, or uncheck Use Microphone to use reference audios"
|
| 136 |
-
)
|
| 137 |
-
return (
|
| 138 |
-
None,
|
| 139 |
-
None,
|
| 140 |
-
None,
|
| 141 |
-
None,
|
| 142 |
-
)
|
| 143 |
-
|
| 144 |
-
else:
|
| 145 |
-
speaker_wav = audio_file_pth
|
| 146 |
-
|
| 147 |
-
# Filtering for microphone input, as it has BG noise, maybe silence in beginning and end
|
| 148 |
-
# This is fast filtering not perfect
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
-
|
| 154 |
-
lowpass_highpass = "lowpass=8000,highpass=75,"
|
| 155 |
-
else:
|
| 156 |
-
lowpass_highpass = ""
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
else:
|
| 162 |
-
trim_silence = ""
|
| 163 |
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
None,
|
| 170 |
-
None,
|
| 171 |
-
None,
|
| 172 |
-
None,
|
| 173 |
-
)
|
| 174 |
-
if len(prompt) > 200:
|
| 175 |
-
gr.Warning(
|
| 176 |
-
"Text length limited to 200 characters for this demo, please try shorter text. You can clone this space and edit code for your own usage"
|
| 177 |
-
)
|
| 178 |
-
return (
|
| 179 |
-
None,
|
| 180 |
-
None,
|
| 181 |
-
None,
|
| 182 |
-
None,
|
| 183 |
-
)
|
| 184 |
|
| 185 |
try:
|
| 186 |
-
|
| 187 |
-
t_latent = time.time()
|
| 188 |
-
|
| 189 |
-
# note diffusion_conditioning not used on hifigan (default mode), it will be empty but need to pass it to model.inference
|
| 190 |
-
try:
|
| 191 |
-
(
|
| 192 |
-
gpt_cond_latent,
|
| 193 |
-
speaker_embedding,
|
| 194 |
-
) = MODEL.get_conditioning_latents(
|
| 195 |
-
audio_path=speaker_wav,
|
| 196 |
-
gpt_cond_len=30,
|
| 197 |
-
gpt_cond_chunk_len=4,
|
| 198 |
-
max_ref_length=60,
|
| 199 |
-
)
|
| 200 |
-
except Exception as e:
|
| 201 |
-
print("Speaker encoding error", str(e))
|
| 202 |
-
gr.Warning(
|
| 203 |
-
"It appears something wrong with reference, did you unmute your microphone?"
|
| 204 |
-
)
|
| 205 |
-
return (
|
| 206 |
-
None,
|
| 207 |
-
None,
|
| 208 |
-
None,
|
| 209 |
-
None,
|
| 210 |
-
)
|
| 211 |
-
|
| 212 |
-
latent_calculation_time = time.time() - t_latent
|
| 213 |
-
# metrics_text=f"Embedding calculation time: {latent_calculation_time:.2f} seconds\n"
|
| 214 |
-
|
| 215 |
-
# temporary comma fix
|
| 216 |
-
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
|
| 217 |
-
|
| 218 |
-
wav_chunks = []
|
| 219 |
-
## Direct mode
|
| 220 |
-
|
| 221 |
-
print("I: Generating new audio...")
|
| 222 |
-
t0 = time.time()
|
| 223 |
-
out = MODEL.inference(
|
| 224 |
-
prompt,
|
| 225 |
-
language,
|
| 226 |
gpt_cond_latent,
|
| 227 |
speaker_embedding,
|
| 228 |
-
|
| 229 |
-
|
|
|
|
|
|
|
|
|
|
| 230 |
)
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
|
|
|
|
|
|
| 234 |
)
|
| 235 |
-
|
| 236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
)
|
| 238 |
-
|
| 239 |
-
print(
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
| 247 |
prompt,
|
| 248 |
language,
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
)
|
| 254 |
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
print(
|
| 265 |
-
f"I: Time to generate audio: {round(inference_time*1000)} milliseconds"
|
| 266 |
)
|
| 267 |
-
#metrics_text += (
|
| 268 |
-
# f"Time to generate audio: {round(inference_time*1000)} milliseconds\n"
|
| 269 |
-
#)
|
| 270 |
-
|
| 271 |
-
wav = torch.cat(wav_chunks, dim=0)
|
| 272 |
-
print(wav.shape)
|
| 273 |
-
real_time_factor = (time.time() - t0) / wav.shape[0] * 24000
|
| 274 |
-
print(f"Real-time factor (RTF): {real_time_factor}")
|
| 275 |
-
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
| 276 |
-
|
| 277 |
-
torchaudio.save("output.wav", wav.squeeze().unsqueeze(0).cpu(), 24000)
|
| 278 |
-
"""
|
| 279 |
-
|
| 280 |
-
except RuntimeError as e:
|
| 281 |
-
if "device-side assert" in str(e):
|
| 282 |
-
# cannot do anything on cuda device side error, need tor estart
|
| 283 |
-
print(
|
| 284 |
-
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
|
| 285 |
-
flush=True,
|
| 286 |
-
)
|
| 287 |
-
gr.Warning("Unhandled Exception encounter, please retry in a minute")
|
| 288 |
-
print("Cuda device-assert Runtime encountered need restart")
|
| 289 |
-
if not DEVICE_ASSERT_DETECTED:
|
| 290 |
-
DEVICE_ASSERT_DETECTED = 1
|
| 291 |
-
DEVICE_ASSERT_PROMPT = prompt
|
| 292 |
-
DEVICE_ASSERT_LANG = language
|
| 293 |
-
|
| 294 |
-
# just before restarting save what caused the issue so we can handle it in future
|
| 295 |
-
# Uploading Error data only happens for unrecovarable error
|
| 296 |
-
error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
|
| 297 |
-
error_data = [
|
| 298 |
-
error_time,
|
| 299 |
-
prompt,
|
| 300 |
-
language,
|
| 301 |
-
audio_file_pth,
|
| 302 |
-
mic_file_path,
|
| 303 |
-
use_mic,
|
| 304 |
-
voice_cleanup,
|
| 305 |
-
no_lang_auto_detect,
|
| 306 |
-
agree,
|
| 307 |
-
]
|
| 308 |
-
error_data = [str(e) if type(e) != str else e for e in error_data]
|
| 309 |
-
print(error_data)
|
| 310 |
-
print(speaker_wav)
|
| 311 |
-
write_io = StringIO()
|
| 312 |
-
csv.writer(write_io).writerows([error_data])
|
| 313 |
-
csv_upload = write_io.getvalue().encode()
|
| 314 |
-
|
| 315 |
-
filename = error_time + "_" + str(uuid.uuid4()) + ".csv"
|
| 316 |
-
print("Writing error csv")
|
| 317 |
-
error_api = HfApi()
|
| 318 |
-
error_api.upload_file(
|
| 319 |
-
path_or_fileobj=csv_upload,
|
| 320 |
-
path_in_repo=filename,
|
| 321 |
-
repo_id="coqui/xtts-flagged-dataset",
|
| 322 |
-
repo_type="dataset",
|
| 323 |
-
)
|
| 324 |
-
|
| 325 |
-
# speaker_wav
|
| 326 |
-
print("Writing error reference audio")
|
| 327 |
-
speaker_filename = (
|
| 328 |
-
error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
|
| 329 |
-
)
|
| 330 |
-
error_api = HfApi()
|
| 331 |
-
error_api.upload_file(
|
| 332 |
-
path_or_fileobj=speaker_wav,
|
| 333 |
-
path_in_repo=speaker_filename,
|
| 334 |
-
repo_id="coqui/xtts-flagged-dataset",
|
| 335 |
-
repo_type="dataset",
|
| 336 |
-
)
|
| 337 |
-
|
| 338 |
-
# HF Space specific.. This error is unrecoverable need to restart space
|
| 339 |
-
space = api.get_space_runtime(repo_id=repo_id)
|
| 340 |
-
if space.stage != "BUILDING":
|
| 341 |
-
api.restart_space(repo_id=repo_id)
|
| 342 |
-
else:
|
| 343 |
-
print("TRIED TO RESTART but space is building")
|
| 344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
else:
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
gr.Warning("Something unexpected happened please retry again.")
|
| 354 |
-
return (
|
| 355 |
-
None,
|
| 356 |
-
None,
|
| 357 |
-
None,
|
| 358 |
-
None,
|
| 359 |
)
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
|
|
|
| 376 |
|
| 377 |
|
| 378 |
title = "viXTTS Demo"
|
|
@@ -456,27 +310,6 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
| 456 |
info="Use your microphone to record audio",
|
| 457 |
label="Use Microphone for Reference",
|
| 458 |
)
|
| 459 |
-
use_mic_gr = gr.Checkbox(
|
| 460 |
-
label="Use Microphone",
|
| 461 |
-
value=False,
|
| 462 |
-
info="Notice: Microphone input may not work properly under traffic",
|
| 463 |
-
)
|
| 464 |
-
clean_ref_gr = gr.Checkbox(
|
| 465 |
-
label="Cleanup Reference Voice",
|
| 466 |
-
value=False,
|
| 467 |
-
info="This check can improve output if your microphone or reference voice is noisy",
|
| 468 |
-
)
|
| 469 |
-
auto_det_lang_gr = gr.Checkbox(
|
| 470 |
-
label="Do not use language auto-detect",
|
| 471 |
-
value=False,
|
| 472 |
-
info="Check to disable language auto-detection",
|
| 473 |
-
)
|
| 474 |
-
tos_gr = gr.Checkbox(
|
| 475 |
-
label="Agree",
|
| 476 |
-
value=False,
|
| 477 |
-
info="I agree to the terms of the CPML: https://coqui.ai/cpml",
|
| 478 |
-
)
|
| 479 |
-
|
| 480 |
tts_button = gr.Button("Send", elem_id="send-btn", visible=True)
|
| 481 |
|
| 482 |
with gr.Column():
|
|
@@ -492,10 +325,6 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
| 492 |
language_gr,
|
| 493 |
ref_gr,
|
| 494 |
mic_gr,
|
| 495 |
-
use_mic_gr,
|
| 496 |
-
clean_ref_gr,
|
| 497 |
-
auto_det_lang_gr,
|
| 498 |
-
tos_gr,
|
| 499 |
],
|
| 500 |
outputs=[video_gr, audio_gr, out_text_gr, ref_audio_gr],
|
| 501 |
)
|
|
|
|
| 8 |
# download for mecab
|
| 9 |
os.system("python -m unidic download")
|
| 10 |
|
|
|
|
|
|
|
| 11 |
|
| 12 |
import csv
|
| 13 |
import datetime
|
|
|
|
| 33 |
|
| 34 |
# will use api to restart space on a unrecoverable error
|
| 35 |
api = HfApi(token=HF_TOKEN)
|
|
|
|
| 36 |
|
| 37 |
# This will trigger downloading model
|
| 38 |
print("Downloading if not downloaded Coqui XTTS V2")
|
|
|
|
| 75 |
prompt,
|
| 76 |
language,
|
| 77 |
audio_file_pth,
|
|
|
|
|
|
|
| 78 |
voice_cleanup,
|
|
|
|
|
|
|
| 79 |
):
|
| 80 |
+
if language not in supported_languages:
|
| 81 |
+
gr.Warning(
|
| 82 |
+
f"Language you put {language} in is not in is not in our Supported Languages, please choose from dropdown"
|
| 83 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
+
return (
|
| 86 |
+
None,
|
| 87 |
+
None,
|
| 88 |
+
None,
|
| 89 |
+
None,
|
| 90 |
+
)
|
| 91 |
|
| 92 |
+
speaker_wav = audio_file_pth
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
if len(prompt) < 2:
|
| 95 |
+
gr.Warning("Please give a longer prompt text")
|
| 96 |
+
return (None, None, None, None)
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
if len(prompt) > 200:
|
| 99 |
+
gr.Warning(
|
| 100 |
+
"Text length limited to 200 characters for this demo, please try shorter text. You can clone this space and edit code for your own usage"
|
| 101 |
+
)
|
| 102 |
+
return (None, None, None, None)
|
| 103 |
|
| 104 |
+
try:
|
| 105 |
+
metrics_text = ""
|
| 106 |
+
t_latent = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
try:
|
| 109 |
+
(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
gpt_cond_latent,
|
| 111 |
speaker_embedding,
|
| 112 |
+
) = MODEL.get_conditioning_latents(
|
| 113 |
+
audio_path=speaker_wav,
|
| 114 |
+
gpt_cond_len=30,
|
| 115 |
+
gpt_cond_chunk_len=4,
|
| 116 |
+
max_ref_length=60,
|
| 117 |
)
|
| 118 |
+
|
| 119 |
+
except Exception as e:
|
| 120 |
+
print("Speaker encoding error", str(e))
|
| 121 |
+
gr.Warning(
|
| 122 |
+
"It appears something wrong with reference, did you unmute your microphone?"
|
| 123 |
)
|
| 124 |
+
return (None, None, None, None)
|
| 125 |
+
|
| 126 |
+
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
|
| 127 |
+
|
| 128 |
+
print("I: Generating new audio...")
|
| 129 |
+
t0 = time.time()
|
| 130 |
+
out = MODEL.inference(
|
| 131 |
+
prompt,
|
| 132 |
+
language,
|
| 133 |
+
gpt_cond_latent,
|
| 134 |
+
speaker_embedding,
|
| 135 |
+
repetition_penalty=5.0,
|
| 136 |
+
temperature=0.75,
|
| 137 |
+
)
|
| 138 |
+
inference_time = time.time() - t0
|
| 139 |
+
print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds")
|
| 140 |
+
metrics_text += (
|
| 141 |
+
f"Time to generate audio: {round(inference_time*1000)} milliseconds\n"
|
| 142 |
+
)
|
| 143 |
+
real_time_factor = (time.time() - t0) / out["wav"].shape[-1] * 24000
|
| 144 |
+
print(f"Real-time factor (RTF): {real_time_factor}")
|
| 145 |
+
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
| 146 |
+
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
| 147 |
+
|
| 148 |
+
except RuntimeError as e:
|
| 149 |
+
if "device-side assert" in str(e):
|
| 150 |
+
# cannot do anything on cuda device side error, need tor estart
|
| 151 |
+
print(
|
| 152 |
+
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
|
| 153 |
+
flush=True,
|
| 154 |
)
|
| 155 |
+
gr.Warning("Unhandled Exception encounter, please retry in a minute")
|
| 156 |
+
print("Cuda device-assert Runtime encountered need restart")
|
| 157 |
+
if not DEVICE_ASSERT_DETECTED:
|
| 158 |
+
DEVICE_ASSERT_DETECTED = 1
|
| 159 |
+
DEVICE_ASSERT_PROMPT = prompt
|
| 160 |
+
DEVICE_ASSERT_LANG = language
|
| 161 |
+
|
| 162 |
+
# just before restarting save what caused the issue so we can handle it in future
|
| 163 |
+
# Uploading Error data only happens for unrecovarable error
|
| 164 |
+
error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
|
| 165 |
+
error_data = [
|
| 166 |
+
error_time,
|
| 167 |
prompt,
|
| 168 |
language,
|
| 169 |
+
audio_file_pth,
|
| 170 |
+
voice_cleanup,
|
| 171 |
+
]
|
| 172 |
+
error_data = [str(e) if type(e) != str else e for e in error_data]
|
| 173 |
+
print(error_data)
|
| 174 |
+
print(speaker_wav)
|
| 175 |
+
write_io = StringIO()
|
| 176 |
+
csv.writer(write_io).writerows([error_data])
|
| 177 |
+
csv_upload = write_io.getvalue().encode()
|
| 178 |
+
|
| 179 |
+
filename = error_time + "_" + str(uuid.uuid4()) + ".csv"
|
| 180 |
+
print("Writing error csv")
|
| 181 |
+
error_api = HfApi()
|
| 182 |
+
error_api.upload_file(
|
| 183 |
+
path_or_fileobj=csv_upload,
|
| 184 |
+
path_in_repo=filename,
|
| 185 |
+
repo_id="coqui/xtts-flagged-dataset",
|
| 186 |
+
repo_type="dataset",
|
| 187 |
)
|
| 188 |
|
| 189 |
+
# speaker_wav
|
| 190 |
+
print("Writing error reference audio")
|
| 191 |
+
speaker_filename = error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
|
| 192 |
+
error_api = HfApi()
|
| 193 |
+
error_api.upload_file(
|
| 194 |
+
path_or_fileobj=speaker_wav,
|
| 195 |
+
path_in_repo=speaker_filename,
|
| 196 |
+
repo_id="coqui/xtts-flagged-dataset",
|
| 197 |
+
repo_type="dataset",
|
|
|
|
|
|
|
| 198 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
+
# HF Space specific.. This error is unrecoverable need to restart space
|
| 201 |
+
space = api.get_space_runtime(repo_id=repo_id)
|
| 202 |
+
if space.stage != "BUILDING":
|
| 203 |
+
api.restart_space(repo_id=repo_id)
|
| 204 |
else:
|
| 205 |
+
print("TRIED TO RESTART but space is building")
|
| 206 |
+
|
| 207 |
+
else:
|
| 208 |
+
if "Failed to decode" in str(e):
|
| 209 |
+
print("Speaker encoding error", str(e))
|
| 210 |
+
gr.Warning(
|
| 211 |
+
"It appears something wrong with reference, did you unmute your microphone?"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
)
|
| 213 |
+
else:
|
| 214 |
+
print("RuntimeError: non device-side assert error:", str(e))
|
| 215 |
+
gr.Warning("Something unexpected happened please retry again.")
|
| 216 |
+
return (
|
| 217 |
+
None,
|
| 218 |
+
None,
|
| 219 |
+
None,
|
| 220 |
+
None,
|
| 221 |
+
)
|
| 222 |
+
return (
|
| 223 |
+
gr.make_waveform(
|
| 224 |
+
audio="output.wav",
|
| 225 |
+
),
|
| 226 |
+
"output.wav",
|
| 227 |
+
metrics_text,
|
| 228 |
+
speaker_wav,
|
| 229 |
+
)
|
| 230 |
|
| 231 |
|
| 232 |
title = "viXTTS Demo"
|
|
|
|
| 310 |
info="Use your microphone to record audio",
|
| 311 |
label="Use Microphone for Reference",
|
| 312 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
tts_button = gr.Button("Send", elem_id="send-btn", visible=True)
|
| 314 |
|
| 315 |
with gr.Column():
|
|
|
|
| 325 |
language_gr,
|
| 326 |
ref_gr,
|
| 327 |
mic_gr,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
],
|
| 329 |
outputs=[video_gr, audio_gr, out_text_gr, ref_audio_gr],
|
| 330 |
)
|