Update app.py
Browse files
app.py
CHANGED
|
@@ -2,9 +2,10 @@ import csv
|
|
| 2 |
import datetime
|
| 3 |
import os
|
| 4 |
import re
|
|
|
|
| 5 |
import time
|
| 6 |
import uuid
|
| 7 |
-
from io import StringIO
|
| 8 |
import gradio as gr
|
| 9 |
import spaces
|
| 10 |
import torch
|
|
@@ -14,13 +15,20 @@ from TTS.tts.configs.xtts_config import XttsConfig
|
|
| 14 |
from TTS.tts.models.xtts import Xtts
|
| 15 |
from vinorm import TTSnorm
|
| 16 |
from content_generation import create_content # Nhập hàm create_content từ file content_generation.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
#
|
| 19 |
os.system("python -m unidic download")
|
|
|
|
|
|
|
| 20 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 21 |
api = HfApi(token=HF_TOKEN)
|
| 22 |
|
| 23 |
-
#
|
| 24 |
print("Downloading if not downloaded viXTTS")
|
| 25 |
checkpoint_dir = "model/"
|
| 26 |
repo_id = "capleaf/viXTTS"
|
|
@@ -39,6 +47,7 @@ if not all(file in files_in_dir for file in required_files):
|
|
| 39 |
filename="speakers_xtts.pth",
|
| 40 |
local_dir=checkpoint_dir,
|
| 41 |
)
|
|
|
|
| 42 |
xtts_config = os.path.join(checkpoint_dir, "config.json")
|
| 43 |
config = XttsConfig()
|
| 44 |
config.load_json(xtts_config)
|
|
@@ -48,10 +57,12 @@ MODEL.load_checkpoint(
|
|
| 48 |
)
|
| 49 |
if torch.cuda.is_available():
|
| 50 |
MODEL.cuda()
|
|
|
|
| 51 |
supported_languages = config.languages
|
| 52 |
-
if
|
| 53 |
supported_languages.append("vi")
|
| 54 |
|
|
|
|
| 55 |
def normalize_vietnamese_text(text):
|
| 56 |
text = (
|
| 57 |
TTSnorm(text, unknown=False, lower=False, rule=True)
|
|
@@ -68,6 +79,7 @@ def normalize_vietnamese_text(text):
|
|
| 68 |
)
|
| 69 |
return text
|
| 70 |
|
|
|
|
| 71 |
def calculate_keep_len(text, lang):
|
| 72 |
"""Simple hack for short sentences"""
|
| 73 |
if lang in ["ja", "zh-cn"]:
|
|
@@ -80,33 +92,166 @@ def calculate_keep_len(text, lang):
|
|
| 80 |
return 13000 * word_count + 2000 * num_punct
|
| 81 |
return -1
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
@spaces.GPU
|
| 84 |
def predict(
|
| 85 |
prompt,
|
| 86 |
language,
|
| 87 |
audio_file_pth,
|
| 88 |
normalize_text=True,
|
| 89 |
-
use_llm=False,
|
| 90 |
-
content_type="Theo yêu cầu",
|
| 91 |
):
|
| 92 |
if use_llm:
|
| 93 |
-
# Nếu sử dụng LLM, tạo nội dung văn bản từ đầu vào
|
| 94 |
print("I: Generating text with LLM...")
|
| 95 |
generated_text = create_content(prompt, content_type, language)
|
| 96 |
print(f"Generated text: {generated_text}")
|
| 97 |
-
prompt = generated_text
|
| 98 |
-
|
| 99 |
if language not in supported_languages:
|
| 100 |
metrics_text = gr.Warning(
|
| 101 |
f"Language you put {language} in is not in our Supported Languages, please choose from dropdown"
|
| 102 |
)
|
| 103 |
return (None, metrics_text)
|
| 104 |
-
|
| 105 |
speaker_wav = audio_file_pth
|
| 106 |
if len(prompt) < 2:
|
| 107 |
metrics_text = gr.Warning("Please give a longer prompt text")
|
| 108 |
return (None, metrics_text)
|
| 109 |
-
|
| 110 |
try:
|
| 111 |
metrics_text = ""
|
| 112 |
t_latent = time.time()
|
|
@@ -126,7 +271,6 @@ def predict(
|
|
| 126 |
"It appears something wrong with reference, did you unmute your microphone?"
|
| 127 |
)
|
| 128 |
return (None, metrics_text)
|
| 129 |
-
|
| 130 |
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
|
| 131 |
if normalize_text and language == "vi":
|
| 132 |
prompt = normalize_vietnamese_text(prompt)
|
|
@@ -149,14 +293,11 @@ def predict(
|
|
| 149 |
real_time_factor = (time.time() - t0) / out["wav"].shape[-1] * 24000
|
| 150 |
print(f"Real-time factor (RTF): {real_time_factor}")
|
| 151 |
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
| 152 |
-
|
| 153 |
-
# Temporary hack for short sentences
|
| 154 |
keep_len = calculate_keep_len(prompt, language)
|
| 155 |
out["wav"] = out["wav"][:keep_len]
|
| 156 |
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
| 157 |
except RuntimeError as e:
|
| 158 |
if "device-side assert" in str(e):
|
| 159 |
-
# cannot do anything on cuda device side error, need to restart
|
| 160 |
print(
|
| 161 |
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
|
| 162 |
flush=True,
|
|
@@ -185,8 +326,6 @@ def predict(
|
|
| 185 |
repo_id="coqui/xtts-flagged-dataset",
|
| 186 |
repo_type="dataset",
|
| 187 |
)
|
| 188 |
-
# speaker_wav
|
| 189 |
-
print("Writing error reference audio")
|
| 190 |
speaker_filename = error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
|
| 191 |
error_api = HfApi()
|
| 192 |
error_api.upload_file(
|
|
@@ -195,7 +334,6 @@ def predict(
|
|
| 195 |
repo_id="coqui/xtts-flagged-dataset",
|
| 196 |
repo_type="dataset",
|
| 197 |
)
|
| 198 |
-
# HF Space specific.. This error is unrecoverable need to restart space
|
| 199 |
space = api.get_space_runtime(repo_id=repo_id)
|
| 200 |
if space.stage != "BUILDING":
|
| 201 |
api.restart_space(repo_id=repo_id)
|
|
@@ -215,7 +353,7 @@ def predict(
|
|
| 215 |
return (None, metrics_text)
|
| 216 |
return ("output.wav", metrics_text)
|
| 217 |
|
| 218 |
-
#
|
| 219 |
with gr.Blocks(analytics_enabled=False) as demo:
|
| 220 |
with gr.Row():
|
| 221 |
with gr.Column():
|
|
@@ -225,9 +363,8 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
| 225 |
"""
|
| 226 |
)
|
| 227 |
with gr.Column():
|
| 228 |
-
# placeholder to align the image
|
| 229 |
pass
|
| 230 |
-
|
| 231 |
with gr.Row():
|
| 232 |
with gr.Column():
|
| 233 |
input_text_gr = gr.Textbox(
|
|
@@ -238,24 +375,7 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
| 238 |
language_gr = gr.Dropdown(
|
| 239 |
label="Language (Ngôn ngữ)",
|
| 240 |
choices=[
|
| 241 |
-
"vi",
|
| 242 |
-
"en",
|
| 243 |
-
"es",
|
| 244 |
-
"fr",
|
| 245 |
-
"de",
|
| 246 |
-
"it",
|
| 247 |
-
"pt",
|
| 248 |
-
"pl",
|
| 249 |
-
"tr",
|
| 250 |
-
"ru",
|
| 251 |
-
"nl",
|
| 252 |
-
"cs",
|
| 253 |
-
"ar",
|
| 254 |
-
"zh-cn",
|
| 255 |
-
"ja",
|
| 256 |
-
"ko",
|
| 257 |
-
"hu",
|
| 258 |
-
"hi",
|
| 259 |
],
|
| 260 |
max_choices=1,
|
| 261 |
value="vi",
|
|
@@ -286,11 +406,14 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
| 286 |
visible=True,
|
| 287 |
variant="primary",
|
| 288 |
)
|
| 289 |
-
|
| 290 |
with gr.Column():
|
| 291 |
audio_gr = gr.Audio(label="Synthesised Audio", autoplay=True)
|
| 292 |
out_text_gr = gr.Text(label="Metrics")
|
| 293 |
-
|
|
|
|
|
|
|
|
|
|
| 294 |
tts_button.click(
|
| 295 |
predict,
|
| 296 |
[
|
|
@@ -298,11 +421,20 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
| 298 |
language_gr,
|
| 299 |
ref_gr,
|
| 300 |
normalize_text,
|
| 301 |
-
use_llm_checkbox,
|
| 302 |
-
content_type_dropdown,
|
| 303 |
],
|
| 304 |
outputs=[audio_gr, out_text_gr],
|
| 305 |
api_name="predict",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
)
|
| 307 |
|
| 308 |
demo.queue()
|
|
|
|
| 2 |
import datetime
|
| 3 |
import os
|
| 4 |
import re
|
| 5 |
+
import subprocess
|
| 6 |
import time
|
| 7 |
import uuid
|
| 8 |
+
from io import BytesIO, StringIO
|
| 9 |
import gradio as gr
|
| 10 |
import spaces
|
| 11 |
import torch
|
|
|
|
| 15 |
from TTS.tts.models.xtts import Xtts
|
| 16 |
from vinorm import TTSnorm
|
| 17 |
from content_generation import create_content # Nhập hàm create_content từ file content_generation.py
|
| 18 |
+
from PIL import Image
|
| 19 |
+
from pathlib import Path
|
| 20 |
+
import requests
|
| 21 |
+
import json
|
| 22 |
+
import hashlib
|
| 23 |
|
| 24 |
+
# Download for mecab
|
| 25 |
os.system("python -m unidic download")
|
| 26 |
+
|
| 27 |
+
# Cấu hình API và mô hình
|
| 28 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 29 |
api = HfApi(token=HF_TOKEN)
|
| 30 |
|
| 31 |
+
# Tải mô hình viXTTS
|
| 32 |
print("Downloading if not downloaded viXTTS")
|
| 33 |
checkpoint_dir = "model/"
|
| 34 |
repo_id = "capleaf/viXTTS"
|
|
|
|
| 47 |
filename="speakers_xtts.pth",
|
| 48 |
local_dir=checkpoint_dir,
|
| 49 |
)
|
| 50 |
+
|
| 51 |
xtts_config = os.path.join(checkpoint_dir, "config.json")
|
| 52 |
config = XttsConfig()
|
| 53 |
config.load_json(xtts_config)
|
|
|
|
| 57 |
)
|
| 58 |
if torch.cuda.is_available():
|
| 59 |
MODEL.cuda()
|
| 60 |
+
|
| 61 |
supported_languages = config.languages
|
| 62 |
+
if "vi" not in supported_languages:
|
| 63 |
supported_languages.append("vi")
|
| 64 |
|
| 65 |
+
# Hàm chuẩn hóa văn bản tiếng Việt
|
| 66 |
def normalize_vietnamese_text(text):
|
| 67 |
text = (
|
| 68 |
TTSnorm(text, unknown=False, lower=False, rule=True)
|
|
|
|
| 79 |
)
|
| 80 |
return text
|
| 81 |
|
| 82 |
+
# Hàm tính toán độ dài giữ lại cho audio ngắn
|
| 83 |
def calculate_keep_len(text, lang):
|
| 84 |
"""Simple hack for short sentences"""
|
| 85 |
if lang in ["ja", "zh-cn"]:
|
|
|
|
| 92 |
return 13000 * word_count + 2000 * num_punct
|
| 93 |
return -1
|
| 94 |
|
| 95 |
+
# Hàm tạo mô tả ảnh từ nội dung audio
|
| 96 |
+
def generate_image_description(prompt):
|
| 97 |
+
return f"A visual representation of: {prompt}"
|
| 98 |
+
|
| 99 |
+
# Hàm gọi API tạo ảnh
|
| 100 |
+
def txt2img(prompt, width, height):
|
| 101 |
+
model_id = "770694094415489962" # Model ID cố định
|
| 102 |
+
vae_id = "sdxl-vae-fp16-fix.safetensors" # VAE cố định
|
| 103 |
+
lora_items = [
|
| 104 |
+
{"loraModel": "766419665653268679", "weight": 0.7},
|
| 105 |
+
{"loraModel": "777630084346589138", "weight": 0.7},
|
| 106 |
+
{"loraModel": "776587863287492519", "weight": 0.7}
|
| 107 |
+
]
|
| 108 |
+
txt2img_data = {
|
| 109 |
+
"request_id": hashlib.md5(str(int(time.time())).encode()).hexdigest(),
|
| 110 |
+
"stages": [
|
| 111 |
+
{
|
| 112 |
+
"type": "INPUT_INITIALIZE",
|
| 113 |
+
"inputInitialize": {
|
| 114 |
+
"seed": -1,
|
| 115 |
+
"count": 1
|
| 116 |
+
}
|
| 117 |
+
},
|
| 118 |
+
{
|
| 119 |
+
"type": "DIFFUSION",
|
| 120 |
+
"diffusion": {
|
| 121 |
+
"width": width,
|
| 122 |
+
"height": height,
|
| 123 |
+
"prompts": [
|
| 124 |
+
{
|
| 125 |
+
"text": prompt
|
| 126 |
+
}
|
| 127 |
+
],
|
| 128 |
+
"negativePrompts": [
|
| 129 |
+
{
|
| 130 |
+
"text": "nsfw"
|
| 131 |
+
}
|
| 132 |
+
],
|
| 133 |
+
"sdModel": model_id,
|
| 134 |
+
"sdVae": vae_id,
|
| 135 |
+
"sampler": "Euler a",
|
| 136 |
+
"steps": 20,
|
| 137 |
+
"cfgScale": 3,
|
| 138 |
+
"clipSkip": 1,
|
| 139 |
+
"etaNoiseSeedDelta": 31337,
|
| 140 |
+
"lora": {
|
| 141 |
+
"items": lora_items
|
| 142 |
+
}
|
| 143 |
+
}
|
| 144 |
+
}
|
| 145 |
+
]
|
| 146 |
+
}
|
| 147 |
+
body = json.dumps(txt2img_data)
|
| 148 |
+
headers = {
|
| 149 |
+
'Content-Type': 'application/json',
|
| 150 |
+
'Accept': 'application/json',
|
| 151 |
+
'Authorization': f'Bearer {os.getenv("api_key_token")}'
|
| 152 |
+
}
|
| 153 |
+
response = requests.post(f"https://ap-east-1.tensorart.cloud/v1/jobs", json=txt2img_data, headers=headers)
|
| 154 |
+
if response.status_code != 200:
|
| 155 |
+
return f"Error: {response.status_code} - {response.text}"
|
| 156 |
+
response_data = response.json()
|
| 157 |
+
job_id = response_data['job']['id']
|
| 158 |
+
print(f"Job created. ID: {job_id}")
|
| 159 |
+
start_time = time.time()
|
| 160 |
+
timeout = 300 # Giới hạn thời gian chờ là 300 giây (5 phút)
|
| 161 |
+
while True:
|
| 162 |
+
time.sleep(10)
|
| 163 |
+
elapsed_time = time.time() - start_time
|
| 164 |
+
if elapsed_time > timeout:
|
| 165 |
+
return f"Error: Job timed out after {timeout} seconds."
|
| 166 |
+
response = requests.get(f"https://ap-east-1.tensorart.cloud/v1/jobs/{job_id}", headers=headers)
|
| 167 |
+
if response.status_code != 200:
|
| 168 |
+
return f"Error: {response.status_code} - {response.text}"
|
| 169 |
+
get_job_response_data = response.json()
|
| 170 |
+
job_status = get_job_response_data['job']['status']
|
| 171 |
+
print(f"Job status: {job_status}")
|
| 172 |
+
if job_status == 'SUCCESS':
|
| 173 |
+
if 'successInfo' in get_job_response_data['job']:
|
| 174 |
+
image_url = get_job_response_data['job']['successInfo']['images'][0]['url']
|
| 175 |
+
print(f"Job succeeded. Image URL: {image_url}")
|
| 176 |
+
response_image = requests.get(image_url)
|
| 177 |
+
img = Image.open(BytesIO(response_image.content))
|
| 178 |
+
return img
|
| 179 |
+
else:
|
| 180 |
+
return "Error: Output is missing in the job response."
|
| 181 |
+
elif job_status == 'FAILED':
|
| 182 |
+
return "Error: Job failed. Please try again with different settings."
|
| 183 |
+
|
| 184 |
+
# Hàm tạo video từ ảnh và audio
|
| 185 |
+
def create_video(image_path, audio_path, output_path):
|
| 186 |
+
command = [
|
| 187 |
+
"ffmpeg",
|
| 188 |
+
"-i", image_path,
|
| 189 |
+
"-i", audio_path,
|
| 190 |
+
"-filter_complex",
|
| 191 |
+
"[1:a]aformat=channel_layouts=mono,showwaves=s=800x250:mode=line:[email protected][w];[0:v][w]overlay=(W-w)/2:(H-h)/2",
|
| 192 |
+
"-c:v", "libx264",
|
| 193 |
+
"-c:a", "aac",
|
| 194 |
+
"-y", output_path
|
| 195 |
+
]
|
| 196 |
+
subprocess.run(command, check=True)
|
| 197 |
+
|
| 198 |
+
# Hàm xử lý sự kiện khi nhấn nút "Tạo Video"
|
| 199 |
+
def generate_video(audio_file, prompt):
|
| 200 |
+
if not os.path.exists(audio_file):
|
| 201 |
+
return None, "Audio file not found. Please generate audio first."
|
| 202 |
+
|
| 203 |
+
# Bước 1: Tạo mô tả ảnh
|
| 204 |
+
image_description = generate_image_description(prompt)
|
| 205 |
+
|
| 206 |
+
# Bước 2: Gọi API tạo ảnh
|
| 207 |
+
try:
|
| 208 |
+
image = txt2img(image_description, width=800, height=600)
|
| 209 |
+
if isinstance(image, str): # Nếu có lỗi từ API
|
| 210 |
+
return None, image
|
| 211 |
+
|
| 212 |
+
# Lưu ảnh vào thư mục
|
| 213 |
+
image_path = os.path.join(SAVE_DIR, "generated_image.png")
|
| 214 |
+
image.save(image_path)
|
| 215 |
+
except Exception as e:
|
| 216 |
+
return None, f"Error generating image: {str(e)}"
|
| 217 |
+
|
| 218 |
+
# Bước 3: Tạo video từ ảnh và audio
|
| 219 |
+
video_output_path = os.path.join(SAVE_DIR, "output_video.mp4")
|
| 220 |
+
try:
|
| 221 |
+
create_video(image_path, audio_file, video_output_path)
|
| 222 |
+
except Exception as e:
|
| 223 |
+
return None, f"Error creating video: {str(e)}"
|
| 224 |
+
|
| 225 |
+
return video_output_path, "Video created successfully!"
|
| 226 |
+
|
| 227 |
+
# Thư mục lưu trữ ảnh và video
|
| 228 |
+
SAVE_DIR = "generated_images"
|
| 229 |
+
Path(SAVE_DIR).mkdir(exist_ok=True)
|
| 230 |
+
|
| 231 |
+
# Hàm dự đoán và tạo audio
|
| 232 |
@spaces.GPU
|
| 233 |
def predict(
|
| 234 |
prompt,
|
| 235 |
language,
|
| 236 |
audio_file_pth,
|
| 237 |
normalize_text=True,
|
| 238 |
+
use_llm=False,
|
| 239 |
+
content_type="Theo yêu cầu",
|
| 240 |
):
|
| 241 |
if use_llm:
|
|
|
|
| 242 |
print("I: Generating text with LLM...")
|
| 243 |
generated_text = create_content(prompt, content_type, language)
|
| 244 |
print(f"Generated text: {generated_text}")
|
| 245 |
+
prompt = generated_text
|
|
|
|
| 246 |
if language not in supported_languages:
|
| 247 |
metrics_text = gr.Warning(
|
| 248 |
f"Language you put {language} in is not in our Supported Languages, please choose from dropdown"
|
| 249 |
)
|
| 250 |
return (None, metrics_text)
|
|
|
|
| 251 |
speaker_wav = audio_file_pth
|
| 252 |
if len(prompt) < 2:
|
| 253 |
metrics_text = gr.Warning("Please give a longer prompt text")
|
| 254 |
return (None, metrics_text)
|
|
|
|
| 255 |
try:
|
| 256 |
metrics_text = ""
|
| 257 |
t_latent = time.time()
|
|
|
|
| 271 |
"It appears something wrong with reference, did you unmute your microphone?"
|
| 272 |
)
|
| 273 |
return (None, metrics_text)
|
|
|
|
| 274 |
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
|
| 275 |
if normalize_text and language == "vi":
|
| 276 |
prompt = normalize_vietnamese_text(prompt)
|
|
|
|
| 293 |
real_time_factor = (time.time() - t0) / out["wav"].shape[-1] * 24000
|
| 294 |
print(f"Real-time factor (RTF): {real_time_factor}")
|
| 295 |
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
|
|
|
|
|
|
| 296 |
keep_len = calculate_keep_len(prompt, language)
|
| 297 |
out["wav"] = out["wav"][:keep_len]
|
| 298 |
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
| 299 |
except RuntimeError as e:
|
| 300 |
if "device-side assert" in str(e):
|
|
|
|
| 301 |
print(
|
| 302 |
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
|
| 303 |
flush=True,
|
|
|
|
| 326 |
repo_id="coqui/xtts-flagged-dataset",
|
| 327 |
repo_type="dataset",
|
| 328 |
)
|
|
|
|
|
|
|
| 329 |
speaker_filename = error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
|
| 330 |
error_api = HfApi()
|
| 331 |
error_api.upload_file(
|
|
|
|
| 334 |
repo_id="coqui/xtts-flagged-dataset",
|
| 335 |
repo_type="dataset",
|
| 336 |
)
|
|
|
|
| 337 |
space = api.get_space_runtime(repo_id=repo_id)
|
| 338 |
if space.stage != "BUILDING":
|
| 339 |
api.restart_space(repo_id=repo_id)
|
|
|
|
| 353 |
return (None, metrics_text)
|
| 354 |
return ("output.wav", metrics_text)
|
| 355 |
|
| 356 |
+
# Giao diện Gradio
|
| 357 |
with gr.Blocks(analytics_enabled=False) as demo:
|
| 358 |
with gr.Row():
|
| 359 |
with gr.Column():
|
|
|
|
| 363 |
"""
|
| 364 |
)
|
| 365 |
with gr.Column():
|
|
|
|
| 366 |
pass
|
| 367 |
+
|
| 368 |
with gr.Row():
|
| 369 |
with gr.Column():
|
| 370 |
input_text_gr = gr.Textbox(
|
|
|
|
| 375 |
language_gr = gr.Dropdown(
|
| 376 |
label="Language (Ngôn ngữ)",
|
| 377 |
choices=[
|
| 378 |
+
"vi", "en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja", "ko", "hu", "hi",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
],
|
| 380 |
max_choices=1,
|
| 381 |
value="vi",
|
|
|
|
| 406 |
visible=True,
|
| 407 |
variant="primary",
|
| 408 |
)
|
| 409 |
+
|
| 410 |
with gr.Column():
|
| 411 |
audio_gr = gr.Audio(label="Synthesised Audio", autoplay=True)
|
| 412 |
out_text_gr = gr.Text(label="Metrics")
|
| 413 |
+
video_button = gr.Button("Tạo Video 🎥", visible=False)
|
| 414 |
+
video_output = gr.Video(label="Generated Video", visible=False)
|
| 415 |
+
video_status = gr.Text(label="Video Status")
|
| 416 |
+
|
| 417 |
tts_button.click(
|
| 418 |
predict,
|
| 419 |
[
|
|
|
|
| 421 |
language_gr,
|
| 422 |
ref_gr,
|
| 423 |
normalize_text,
|
| 424 |
+
use_llm_checkbox,
|
| 425 |
+
content_type_dropdown,
|
| 426 |
],
|
| 427 |
outputs=[audio_gr, out_text_gr],
|
| 428 |
api_name="predict",
|
| 429 |
+
).then(
|
| 430 |
+
lambda: [gr.update(visible=True)],
|
| 431 |
+
outputs=[video_button]
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
video_button.click(
|
| 435 |
+
generate_video,
|
| 436 |
+
inputs=[audio_gr, input_text_gr],
|
| 437 |
+
outputs=[video_output, video_status],
|
| 438 |
)
|
| 439 |
|
| 440 |
demo.queue()
|