Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_core.prompts import PromptTemplate
|
| 2 |
+
import os
|
| 3 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
| 4 |
+
from langchain_community.vectorstores import FAISS
|
| 5 |
+
from langchain_community.llms.ctransformers import CTransformers
|
| 6 |
+
from langchain.chains.retrieval_qa.base import RetrievalQA
|
| 7 |
+
import streamlit as st
|
| 8 |
+
import fitz # PyMuPDF
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import io
|
| 11 |
+
|
| 12 |
+
DB_FAISS_PATH = 'vectorstores/'
|
| 13 |
+
#pdf_path = 'data/Harrisons_Internal_Medicine_2022,_21th_Edition_Vol_1_&_Vol_2_.pdf'
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
custom_prompt_template = '''use the following pieces of information to answer the user's questions.
|
| 17 |
+
If you don't know the answer, please just say that don't know the answer, don't try to make up an answer.
|
| 18 |
+
Context : {context}
|
| 19 |
+
Question : {question}
|
| 20 |
+
only return the helpful answer below and nothing else.
|
| 21 |
+
'''
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def set_custom_prompt():
|
| 25 |
+
"""
|
| 26 |
+
Prompt template for QA retrieval for vector stores
|
| 27 |
+
"""
|
| 28 |
+
prompt = PromptTemplate(template=custom_prompt_template,
|
| 29 |
+
input_variables=['context', 'question'])
|
| 30 |
+
return prompt
|
| 31 |
+
|
| 32 |
+
def load_llm():
|
| 33 |
+
llm = CTransformers(
|
| 34 |
+
#model='epfl-llm/meditron-7b',
|
| 35 |
+
model = 'TheBloke/Llama-2-7B-Chat-GGML',
|
| 36 |
+
model_type='llama',
|
| 37 |
+
max_new_token=512,
|
| 38 |
+
temperature=0.5
|
| 39 |
+
)
|
| 40 |
+
return llm
|
| 41 |
+
|
| 42 |
+
# def load_embeddings():
|
| 43 |
+
# embeddings = HuggingFaceBgeEmbeddings(model_name='NeuML/pubmedbert-base-embeddings',
|
| 44 |
+
# model_kwargs={'device': 'cpu'})
|
| 45 |
+
# return embeddings
|
| 46 |
+
|
| 47 |
+
# def load_faiss_index(embeddings):
|
| 48 |
+
# db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True)
|
| 49 |
+
# return db
|
| 50 |
+
|
| 51 |
+
def retrieval_qa_chain(llm, prompt, db):
|
| 52 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 53 |
+
llm=llm,
|
| 54 |
+
chain_type='stuff',
|
| 55 |
+
retriever=db.as_retriever(search_kwargs={'k': 2}),
|
| 56 |
+
return_source_documents=True,
|
| 57 |
+
chain_type_kwargs={'prompt': prompt}
|
| 58 |
+
)
|
| 59 |
+
return qa_chain
|
| 60 |
+
|
| 61 |
+
def qa_bot():
|
| 62 |
+
embeddings = HuggingFaceBgeEmbeddings(model_name = 'sentence-transformers/all-MiniLM-L6-v2',
|
| 63 |
+
model_kwargs = {'device':'cpu'})
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True)
|
| 67 |
+
llm = load_llm()
|
| 68 |
+
qa_prompt = set_custom_prompt()
|
| 69 |
+
qa = retrieval_qa_chain(llm, qa_prompt, db)
|
| 70 |
+
return qa
|
| 71 |
+
|
| 72 |
+
def final_result(query):
|
| 73 |
+
qa_result = qa_bot()
|
| 74 |
+
response = qa_result({'query': query})
|
| 75 |
+
return response
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def get_pdf_page_as_image(pdf_path, page_number):
|
| 79 |
+
document = fitz.open(pdf_path)
|
| 80 |
+
page = document.load_page(page_number)
|
| 81 |
+
pix = page.get_pixmap()
|
| 82 |
+
img = Image.open(io.BytesIO(pix.tobytes()))
|
| 83 |
+
return img
|
| 84 |
+
|
| 85 |
+
# # Initialize the bot
|
| 86 |
+
# bot = qa_bot()
|
| 87 |
+
|
| 88 |
+
# Streamlit webpage title
|
| 89 |
+
st.title('Medical Chatbot')
|
| 90 |
+
|
| 91 |
+
# User input
|
| 92 |
+
user_query = st.text_input("Please enter your question:")
|
| 93 |
+
|
| 94 |
+
# Button to get answer
|
| 95 |
+
if st.button('Get Answer'):
|
| 96 |
+
if user_query:
|
| 97 |
+
# Call the function from your chatbot script
|
| 98 |
+
response = final_result(user_query)
|
| 99 |
+
if response:
|
| 100 |
+
# Displaying the response
|
| 101 |
+
st.write("### Answer")
|
| 102 |
+
st.write(response['result'])
|
| 103 |
+
|
| 104 |
+
# Displaying source document details if available
|
| 105 |
+
if 'source_documents' in response:
|
| 106 |
+
st.write("### Source Document Information")
|
| 107 |
+
for doc in response['source_documents']:
|
| 108 |
+
# Retrieve and format page content by replacing '\n' with new line
|
| 109 |
+
formatted_content = doc.page_content.replace("\\n", "\n")
|
| 110 |
+
st.write("#### Document Content")
|
| 111 |
+
st.text_area(label="Page Content", value=formatted_content, height=300)
|
| 112 |
+
|
| 113 |
+
# Retrieve source and page from metadata
|
| 114 |
+
source = doc.metadata['source']
|
| 115 |
+
page = doc.metadata['page']
|
| 116 |
+
st.write(f"Source: {source}")
|
| 117 |
+
st.write(f"Page Number: {page+1}")
|
| 118 |
+
|
| 119 |
+
# Display the PDF page as an image
|
| 120 |
+
# pdf_page_image = get_pdf_page_as_image(pdf_path, page)
|
| 121 |
+
# st.image(pdf_page_image, caption=f"Page {page+1} from {source}")
|
| 122 |
+
|
| 123 |
+
else:
|
| 124 |
+
st.write("Sorry, I couldn't find an answer to your question.")
|
| 125 |
+
else:
|
| 126 |
+
st.write("Please enter a question to get an answer.")
|