Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
| 5 |
+
from threading import Thread
|
| 6 |
+
|
| 7 |
+
model_path = 'dreamerdeo/Sailor2-0.8B-Chat'
|
| 8 |
+
|
| 9 |
+
# Loading the tokenizer and model from Hugging Face's model hub.
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
|
| 12 |
+
|
| 13 |
+
# using CUDA for an optimal experience
|
| 14 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 15 |
+
model = model.to(device)
|
| 16 |
+
|
| 17 |
+
# Defining a custom stopping criteria class for the model's text generation.
|
| 18 |
+
class StopOnTokens(StoppingCriteria):
|
| 19 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 20 |
+
stop_ids = [151645] # IDs of tokens where the generation should stop.
|
| 21 |
+
for stop_id in stop_ids:
|
| 22 |
+
if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token.
|
| 23 |
+
return True
|
| 24 |
+
return False
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
system_role= 'system'
|
| 28 |
+
user_role = 'user'
|
| 29 |
+
assistant_role = 'assistant'
|
| 30 |
+
|
| 31 |
+
sft_start_token = "<|im_start|>"
|
| 32 |
+
sft_end_token = "<|im_end|>"
|
| 33 |
+
ct_end_token = "<|endoftext|>"
|
| 34 |
+
|
| 35 |
+
system_prompt= \
|
| 36 |
+
'You are an AI assistant named Sailor2, created by Sea AI Lab. \
|
| 37 |
+
As an AI assistant, you can answer questions in English, Chinese, and Southeast Asian languages \
|
| 38 |
+
such as Burmese, Cebuano, Ilocano, Indonesian, Javanese, Khmer, Lao, Malay, Sundanese, Tagalog, Thai, Vietnamese, and Waray. \
|
| 39 |
+
Your responses should be friendly, unbiased, informative, detailed, and faithful.'
|
| 40 |
+
|
| 41 |
+
system_prompt = f"<|im_start|>{system_role}\n{system_prompt}<|im_end|>"
|
| 42 |
+
|
| 43 |
+
# Function to generate model predictions.
|
| 44 |
+
|
| 45 |
+
@spaces.GPU()
|
| 46 |
+
def predict(message, history):
|
| 47 |
+
# history = []
|
| 48 |
+
history_transformer_format = history + [[message, ""]]
|
| 49 |
+
stop = StopOnTokens()
|
| 50 |
+
|
| 51 |
+
# Formatting the input for the model.
|
| 52 |
+
messages = system_prompt + sft_end_token.join([sft_end_token.join([f"\n{sft_start_token}{user_role}\n" + item[0], f"\n{sft_start_token}{assistant_role}\n" + item[1]])
|
| 53 |
+
for item in history_transformer_format])
|
| 54 |
+
model_inputs = tokenizer([messages], return_tensors="pt").to(device)
|
| 55 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
| 56 |
+
generate_kwargs = dict(
|
| 57 |
+
model_inputs,
|
| 58 |
+
streamer=streamer,
|
| 59 |
+
max_new_tokens=1024,
|
| 60 |
+
do_sample=True,
|
| 61 |
+
top_p=0.8,
|
| 62 |
+
top_k=20,
|
| 63 |
+
temperature=0.7,
|
| 64 |
+
num_beams=1,
|
| 65 |
+
stopping_criteria=StoppingCriteriaList([stop]),
|
| 66 |
+
repetition_penalty=1.1,
|
| 67 |
+
)
|
| 68 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 69 |
+
t.start() # Starting the generation in a separate thread.
|
| 70 |
+
partial_message = ""
|
| 71 |
+
for new_token in streamer:
|
| 72 |
+
partial_message += new_token
|
| 73 |
+
if sft_end_token in partial_message: # Breaking the loop if the stop token is generated.
|
| 74 |
+
break
|
| 75 |
+
yield partial_message
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
css = """
|
| 79 |
+
full-height {
|
| 80 |
+
height: 100%;
|
| 81 |
+
}
|
| 82 |
+
"""
|
| 83 |
+
|
| 84 |
+
prompt_examples = [
|
| 85 |
+
'How to cook a fish?',
|
| 86 |
+
'Cara memanggang ikan',
|
| 87 |
+
'วิธีย่างปลา',
|
| 88 |
+
'Cách nướng cá'
|
| 89 |
+
]
|
| 90 |
+
|
| 91 |
+
placeholder = """
|
| 92 |
+
<div style="opacity: 0.5;">
|
| 93 |
+
<img src="https://raw.githubusercontent.com/sail-sg/sailor-llm/main/misc/banner.jpg" style="width:30%;">
|
| 94 |
+
<br>Sailor models are designed to understand and generate text across diverse linguistic landscapes of these SEA regions:
|
| 95 |
+
<br>🇮🇩Indonesian, 🇹🇭Thai, 🇻🇳Vietnamese, 🇲🇾Malay, and 🇱🇦Lao.
|
| 96 |
+
</div>
|
| 97 |
+
"""
|
| 98 |
+
|
| 99 |
+
chatbot = gr.Chatbot(label='Sailor', placeholder=placeholder)
|
| 100 |
+
with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as demo:
|
| 101 |
+
# gr.Markdown("""<center><font size=8>Sailor-Chat Bot⚓</center>""")
|
| 102 |
+
gr.Markdown("""<p align="center"><img src="https://github.com/sail-sg/sailor-llm/raw/main/misc/wide_sailor_banner.jpg" style="height: 110px"/><p>""")
|
| 103 |
+
gr.ChatInterface(predict, chatbot=chatbot, fill_height=True, examples=prompt_examples, css=css)
|
| 104 |
+
|
| 105 |
+
demo.launch() # Launching the web interface.
|