Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| import os | |
| import glob | |
| from typing import List | |
| from dotenv import load_dotenv | |
| from multiprocessing import Pool | |
| from tqdm import tqdm | |
| from langchain.document_loaders import ( | |
| CSVLoader, | |
| EverNoteLoader, | |
| PDFMinerLoader, | |
| TextLoader, | |
| UnstructuredEmailLoader, | |
| UnstructuredEPubLoader, | |
| UnstructuredHTMLLoader, | |
| UnstructuredMarkdownLoader, | |
| UnstructuredODTLoader, | |
| UnstructuredPowerPointLoader, | |
| UnstructuredWordDocumentLoader, | |
| ) | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.vectorstores import Chroma | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.docstore.document import Document | |
| from constants import CHROMA_SETTINGS | |
| load_dotenv() | |
| # Load environment variables | |
| persist_directory = os.environ.get('PERSIST_DIRECTORY') | |
| source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents') | |
| embeddings_model_name = os.environ.get('EMBEDDINGS_MODEL_NAME') | |
| chunk_size = 500 | |
| chunk_overlap = 50 | |
| # Custom document loaders | |
| class MyElmLoader(UnstructuredEmailLoader): | |
| """Wrapper to fallback to text/plain when default does not work""" | |
| def load(self) -> List[Document]: | |
| """Wrapper adding fallback for elm without html""" | |
| try: | |
| try: | |
| doc = UnstructuredEmailLoader.load(self) | |
| except ValueError as e: | |
| if 'text/html content not found in email' in str(e): | |
| # Try plain text | |
| self.unstructured_kwargs["content_source"]="text/plain" | |
| doc = UnstructuredEmailLoader.load(self) | |
| else: | |
| raise | |
| except Exception as e: | |
| # Add file_path to exception message | |
| raise type(e)(f"{self.file_path}: {e}") from e | |
| return doc | |
| # Map file extensions to document loaders and their arguments | |
| LOADER_MAPPING = { | |
| ".csv": (CSVLoader, {}), | |
| # ".docx": (Docx2txtLoader, {}), | |
| ".doc": (UnstructuredWordDocumentLoader, {}), | |
| ".docx": (UnstructuredWordDocumentLoader, {}), | |
| ".enex": (EverNoteLoader, {}), | |
| ".eml": (MyElmLoader, {}), | |
| ".epub": (UnstructuredEPubLoader, {}), | |
| ".html": (UnstructuredHTMLLoader, {}), | |
| ".md": (UnstructuredMarkdownLoader, {}), | |
| ".odt": (UnstructuredODTLoader, {}), | |
| ".pdf": (PDFMinerLoader, {}), | |
| ".ppt": (UnstructuredPowerPointLoader, {}), | |
| ".pptx": (UnstructuredPowerPointLoader, {}), | |
| ".txt": (TextLoader, {"encoding": "utf8"}), | |
| # Add more mappings for other file extensions and loaders as needed | |
| } | |
| def load_single_document(file_path: str) -> Document: | |
| ext = "." + file_path.rsplit(".", 1)[-1] | |
| if ext in LOADER_MAPPING: | |
| loader_class, loader_args = LOADER_MAPPING[ext] | |
| loader = loader_class(file_path, **loader_args) | |
| return loader.load()[0] | |
| raise ValueError(f"Unsupported file extension '{ext}'") | |
| def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]: | |
| """ | |
| Loads all documents from the source documents directory, ignoring specified files | |
| """ | |
| all_files = [] | |
| for ext in LOADER_MAPPING: | |
| all_files.extend( | |
| glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True) | |
| ) | |
| filtered_files = [file_path for file_path in all_files if file_path not in ignored_files] | |
| with Pool(processes=os.cpu_count()) as pool: | |
| results = [] | |
| with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar: | |
| for i, doc in enumerate(pool.imap_unordered(load_single_document, filtered_files)): | |
| results.append(doc) | |
| pbar.update() | |
| return results | |
| def process_documents(ignored_files: List[str] = []) -> List[Document]: | |
| """ | |
| Load documents and split in chunks | |
| """ | |
| print(f"Loading documents from {source_directory}") | |
| documents = load_documents(source_directory, ignored_files) | |
| if not documents: | |
| print("No new documents to load") | |
| exit(0) | |
| print(f"Loaded {len(documents)} new documents from {source_directory}") | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
| texts = text_splitter.split_documents(documents) | |
| print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)") | |
| return texts | |
| def does_vectorstore_exist(persist_directory: str) -> bool: | |
| """ | |
| Checks if vectorstore exists | |
| """ | |
| if os.path.exists(os.path.join(persist_directory, 'index')): | |
| if os.path.exists(os.path.join(persist_directory, 'chroma-collections.parquet')) and os.path.exists(os.path.join(persist_directory, 'chroma-embeddings.parquet')): | |
| list_index_files = glob.glob(os.path.join(persist_directory, 'index/*.bin')) | |
| list_index_files += glob.glob(os.path.join(persist_directory, 'index/*.pkl')) | |
| # At least 3 documents are needed in a working vectorstore | |
| if len(list_index_files) > 3: | |
| return True | |
| return False | |
| def main(): | |
| # Create embeddings | |
| embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name) | |
| if does_vectorstore_exist(persist_directory): | |
| # Update and store locally vectorstore | |
| print(f"Appending to existing vectorstore at {persist_directory}") | |
| db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS) | |
| collection = db.get() | |
| texts = process_documents([metadata['source'] for metadata in collection['metadatas']]) | |
| print(f"Creating embeddings. May take some minutes...") | |
| db.add_documents(texts) | |
| else: | |
| # Create and store locally vectorstore | |
| print("Creating new vectorstore") | |
| texts = process_documents() | |
| print(f"Creating embeddings. May take some minutes...") | |
| db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS) | |
| db.persist() | |
| db = None | |
| print(f"Ingestion complete! You can now run privateGPT.py to query your documents") | |
| if __name__ == "__main__": | |
| main() | |