VelocityLM / src /model /layers.py
dixisouls's picture
Initial Commit
27b9282
"""Custom layers for the transformer model."""
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Tuple
import warnings
warnings.filterwarnings("ignore")
class RMSNorm(nn.Module):
"""Root Mean Square Layer Normalization."""
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.eps = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
return self.weight * hidden_states.to(input_dtype)
class RotaryEmbedding(nn.Module):
"""Rotary Position Embedding."""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build cached cos/sin
self._set_cos_sin_cache(
seq_len=max_position_embeddings,
device=self.inv_freq.device,
dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
@staticmethod
def rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids):
cos = cos[position_ids].unsqueeze(1)
sin = sin[position_ids].unsqueeze(1)
q_embed = (q * cos) + (self.rotate_half(q) * sin)
k_embed = (k * cos) + (self.rotate_half(k) * sin)
return q_embed, k_embed
class SwiGLU(nn.Module):
"""SwiGLU activation function."""
def __init__(self, hidden_size, intermediate_size, hidden_act="silu"):
super().__init__()
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
self.act_fn = F.silu if hidden_act == "silu" else F.gelu
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))