Spaces:
Sleeping
Sleeping
| """State-of-the-art Transformer model implementation.""" | |
| import math | |
| from typing import Optional, Tuple | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.nn import CrossEntropyLoss | |
| from dataclasses import dataclass | |
| import warnings | |
| warnings.filterwarnings("ignore") | |
| from .layers import RMSNorm, RotaryEmbedding, SwiGLU | |
| class ModelOutput: | |
| """Model output container.""" | |
| loss: Optional[torch.Tensor] = None | |
| logits: Optional[torch.Tensor] = None | |
| hidden_states: Optional[Tuple[torch.Tensor]] = None | |
| attentions: Optional[Tuple[torch.Tensor]] = None | |
| class CausalSelfAttention(nn.Module): | |
| """Multi-head self-attention with causal mask and RoPE.""" | |
| def __init__(self, config): | |
| super().__init__() | |
| assert config.hidden_size % config.num_attention_heads == 0 | |
| self.num_attention_heads = config.num_attention_heads | |
| self.head_dim = config.hidden_size // config.num_attention_heads | |
| self.hidden_size = config.hidden_size | |
| self.q_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False) | |
| self.k_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False) | |
| self.v_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False) | |
| self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False) | |
| self.attention_dropout = nn.Dropout(config.attention_dropout) | |
| self.rotary_emb = RotaryEmbedding( | |
| self.head_dim, | |
| max_position_embeddings=config.max_position_embeddings, | |
| base=config.rope_theta, | |
| ) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| use_cache: bool = False, | |
| ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]: | |
| bsz, q_len, _ = hidden_states.size() | |
| q = self.q_proj(hidden_states) | |
| k = self.k_proj(hidden_states) | |
| v = self.v_proj(hidden_states) | |
| q = q.view(bsz, q_len, self.num_attention_heads, self.head_dim).transpose(1, 2) | |
| k = k.view(bsz, q_len, self.num_attention_heads, self.head_dim).transpose(1, 2) | |
| v = v.view(bsz, q_len, self.num_attention_heads, self.head_dim).transpose(1, 2) | |
| # Apply rotary embeddings | |
| cos, sin = self.rotary_emb(v, seq_len=q_len) | |
| q, k = self.rotary_emb.apply_rotary_pos_emb(q, k, cos, sin, position_ids) | |
| # Flash attention or standard attention | |
| attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(self.head_dim) | |
| if attention_mask is not None: | |
| attn_weights = attn_weights + attention_mask | |
| attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype) | |
| attn_weights = self.attention_dropout(attn_weights) | |
| attn_output = torch.matmul(attn_weights, v) | |
| attn_output = attn_output.transpose(1, 2).contiguous() | |
| attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
| attn_output = self.o_proj(attn_output) | |
| return attn_output, None | |
| class TransformerBlock(nn.Module): | |
| """Transformer block with RMSNorm and SwiGLU.""" | |
| def __init__(self, config): | |
| super().__init__() | |
| self.hidden_size = config.hidden_size | |
| self.self_attn = CausalSelfAttention(config) | |
| self.mlp = SwiGLU( | |
| hidden_size=config.hidden_size, | |
| intermediate_size=config.intermediate_size, | |
| hidden_act=config.hidden_act, | |
| ) | |
| self.input_layernorm = RMSNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.hidden_dropout = nn.Dropout(config.hidden_dropout) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.Tensor] = None, | |
| past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
| use_cache: bool = False, | |
| ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]: | |
| residual = hidden_states | |
| hidden_states = self.input_layernorm(hidden_states) | |
| # Self Attention | |
| hidden_states, present_key_value = self.self_attn( | |
| hidden_states=hidden_states, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=past_key_value, | |
| use_cache=use_cache, | |
| ) | |
| hidden_states = self.hidden_dropout(hidden_states) | |
| hidden_states = residual + hidden_states | |
| # MLP | |
| residual = hidden_states | |
| hidden_states = self.post_attention_layernorm(hidden_states) | |
| hidden_states = self.mlp(hidden_states) | |
| hidden_states = self.hidden_dropout(hidden_states) | |
| hidden_states = residual + hidden_states | |
| return hidden_states, present_key_value | |
| class TransformerModel(nn.Module): | |
| """Main transformer model.""" | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.vocab_size = config.vocab_size | |
| self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) | |
| self.layers = nn.ModuleList( | |
| [TransformerBlock(config) for _ in range(config.num_hidden_layers)] | |
| ) | |
| self.norm = RMSNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.gradient_checkpointing = False | |
| # Initialize weights | |
| self.apply(self._init_weights) | |
| def _init_weights(self, module): | |
| if isinstance(module, nn.Linear): | |
| torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range) | |
| if module.bias is not None: | |
| torch.nn.init.zeros_(module.bias) | |
| elif isinstance(module, nn.Embedding): | |
| torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range) | |
| def get_input_embeddings(self): | |
| return self.embed_tokens | |
| def set_input_embeddings(self, value): | |
| self.embed_tokens = value | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: bool = False, | |
| output_hidden_states: bool = False, | |
| return_dict: bool = True, | |
| ) -> torch.Tensor: | |
| batch_size, seq_length = input_ids.shape | |
| # Embed tokens | |
| hidden_states = self.embed_tokens(input_ids) | |
| # Create position IDs | |
| if position_ids is None: | |
| position_ids = torch.arange( | |
| seq_length, dtype=torch.long, device=input_ids.device | |
| ).unsqueeze(0) | |
| # Create causal mask | |
| causal_mask = torch.triu( | |
| torch.full((seq_length, seq_length), float('-inf'), device=input_ids.device), | |
| diagonal=1 | |
| ).unsqueeze(0).unsqueeze(0) # [1, 1, seq_len, seq_len] | |
| if attention_mask is not None: | |
| # Convert padding mask [batch, seq_len] to 4D [batch, 1, 1, seq_len] | |
| # and combine with causal mask | |
| expanded_mask = attention_mask[:, None, None, :] # [batch, 1, 1, seq_len] | |
| expanded_mask = (1.0 - expanded_mask) * -10000.0 # Convert 0s to -inf | |
| attention_mask = expanded_mask + causal_mask.expand(input_ids.shape[0], -1, -1, -1) | |
| else: | |
| attention_mask = causal_mask.expand(input_ids.shape[0], -1, -1, -1) | |
| # Forward through layers | |
| for layer in self.layers: | |
| if self.gradient_checkpointing and self.training: | |
| hidden_states, _ = torch.utils.checkpoint.checkpoint( | |
| layer, | |
| hidden_states, | |
| attention_mask, | |
| position_ids, | |
| None, | |
| False, | |
| use_reentrant=False, | |
| ) | |
| else: | |
| hidden_states, _ = layer( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| past_key_value=None, | |
| use_cache=False, | |
| ) | |
| hidden_states = self.norm(hidden_states) | |
| return hidden_states | |
| class TransformerForCausalLM(nn.Module): | |
| """Transformer model with language modeling head.""" | |
| def __init__(self, config): | |
| super().__init__() | |
| self.model = TransformerModel(config) | |
| self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
| # Tie weights | |
| self.lm_head.weight = self.model.embed_tokens.weight | |
| def forward( | |
| self, | |
| input_ids: torch.LongTensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| labels: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: bool = False, | |
| output_hidden_states: bool = False, | |
| return_dict: bool = True, | |
| ) -> ModelOutput: | |
| hidden_states = self.model( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| logits = self.lm_head(hidden_states) | |
| loss = None | |
| if labels is not None: | |
| shift_logits = logits[..., :-1, :].contiguous() | |
| shift_labels = labels[..., 1:].contiguous() | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct( | |
| shift_logits.view(-1, shift_logits.size(-1)), | |
| shift_labels.view(-1) | |
| ) | |
| return ModelOutput( | |
| loss=loss, | |
| logits=logits, | |
| hidden_states=hidden_states, | |
| attentions=None, | |
| ) | |
| def gradient_checkpointing_enable(self): | |
| self.model.gradient_checkpointing = True |