File size: 7,928 Bytes
27b9282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
"""Text generation utilities for the trained model."""

import torch
import torch.nn.functional as F
from typing import List, Optional, Union
from transformers import AutoTokenizer
import logging

logger = logging.getLogger(__name__)


class TextGenerator:
    """Text generation with various decoding strategies."""
    
    def __init__(self, model, tokenizer, device='cuda'):
        self.model = model
        self.tokenizer = tokenizer
        self.device = device
        self.model.to(device)
        self.model.eval()
        
    @torch.no_grad()
    def generate(
        self,
        prompt: Union[str, List[str]],
        max_length: int = 100,
        temperature: float = 1.0,
        top_k: Optional[int] = 50,
        top_p: Optional[float] = 0.9,
        num_return_sequences: int = 1,
        do_sample: bool = True,
        repetition_penalty: float = 1.0,
    ) -> List[str]:
        """Generate text from prompt(s)."""
        
        # Handle single string input
        if isinstance(prompt, str):
            prompts = [prompt]
        else:
            prompts = prompt
            
        # Tokenize prompts
        inputs = self.tokenizer(
            prompts,
            return_tensors='pt',
            padding=True,
            truncation=True,
            max_length=max_length,
        ).to(self.device)
        
        input_ids = inputs['input_ids']
        attention_mask = inputs['attention_mask']
        
        # Generate
        batch_size = input_ids.shape[0]
        generated_ids = input_ids.clone()
        
        for _ in range(max_length - input_ids.shape[1]):
            # Get model predictions
            outputs = self.model(
                input_ids=generated_ids,
                attention_mask=attention_mask,
            )
            
            # Get logits for the last token
            next_token_logits = outputs.logits[:, -1, :]
            
            # Apply repetition penalty
            if repetition_penalty != 1.0:
                for i in range(batch_size):
                    for token_id in set(generated_ids[i].tolist()):
                        next_token_logits[i, token_id] /= repetition_penalty
                        
            # Apply temperature
            if temperature != 1.0:
                next_token_logits = next_token_logits / temperature
                
            # Apply top-k filtering
            if top_k is not None:
                indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
                next_token_logits[indices_to_remove] = float('-inf')
                
            # Apply top-p (nucleus) filtering
            if top_p is not None:
                sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
                cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
                
                # Remove tokens with cumulative probability above the threshold
                sorted_indices_to_remove = cumulative_probs > top_p
                sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
                sorted_indices_to_remove[..., 0] = 0
                
                indices_to_remove = sorted_indices_to_remove.scatter(
                    1, sorted_indices, sorted_indices_to_remove
                )
                next_token_logits[indices_to_remove] = float('-inf')
                
            # Sample from the distribution
            if do_sample:
                probs = F.softmax(next_token_logits, dim=-1)
                next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
            else:
                next_tokens = torch.argmax(next_token_logits, dim=-1)
                
            # Append to generated sequence
            generated_ids = torch.cat([generated_ids, next_tokens.unsqueeze(1)], dim=1)
            
            # Update attention mask
            attention_mask = torch.cat([
                attention_mask,
                torch.ones((batch_size, 1), device=self.device)
            ], dim=1)
            
            # Check for EOS token
            if (next_tokens == self.tokenizer.eos_token_id).all():
                break
                
        # Decode generated sequences
        generated_texts = []
        for i in range(batch_size):
            generated_text = self.tokenizer.decode(
                generated_ids[i],
                skip_special_tokens=True,
                clean_up_tokenization_spaces=True
            )
            generated_texts.append(generated_text)
            
        return generated_texts
        
    def beam_search(
        self,
        prompt: str,
        max_length: int = 100,
        num_beams: int = 4,
        length_penalty: float = 1.0,
        early_stopping: bool = True,
    ) -> str:
        """Generate text using beam search."""
        # Implementation of beam search
        # This is a simplified version - full implementation would be more complex
        
        inputs = self.tokenizer(
            prompt,
            return_tensors='pt',
            truncation=True,
            max_length=max_length,
        ).to(self.device)
        
        # For now, fallback to greedy decoding
        return self.generate(
            prompt,
            max_length=max_length,
            do_sample=False,
            num_return_sequences=1
        )[0]


def load_generator(checkpoint_path: str, device: str = 'cuda'):
    """Load model and create generator."""
    import yaml
    from pathlib import Path
    import sys
    sys.path.append(str(Path(__file__).parent.parent.parent))
    
    from src.model.transformer import TransformerForCausalLM
    
    # Load config
    config_path = Path(checkpoint_path) / 'config.json'
    with open(config_path, 'r') as f:
        import json
        config = json.load(f)
        
    # Create model config
    class ModelConfig:
        def __init__(self, config_dict):
            for key, value in config_dict.items():
                setattr(self, key, value)
                
    model_config = ModelConfig(config['model'])
    
    # Load model
    model = TransformerForCausalLM(model_config)
    state_dict = torch.load(
        Path(checkpoint_path) / 'pytorch_model.bin',
        map_location=device
    )
    model.load_state_dict(state_dict)
    
    # Load tokenizer
    tokenizer = AutoTokenizer.from_pretrained(config['tokenizer']['tokenizer_name'])
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
        
    # Create generator
    generator = TextGenerator(model, tokenizer, device)
    
    return generator


if __name__ == '__main__':
    """Example usage."""
    import argparse
    
    parser = argparse.ArgumentParser()
    parser.add_argument('--checkpoint', type=str, required=True, help='Path to model checkpoint')
    parser.add_argument('--prompt', type=str, required=True, help='Input prompt')
    parser.add_argument('--max-length', type=int, default=100, help='Maximum generation length')
    parser.add_argument('--temperature', type=float, default=0.8, help='Sampling temperature')
    parser.add_argument('--top-k', type=int, default=50, help='Top-k filtering')
    parser.add_argument('--top-p', type=float, default=0.9, help='Top-p (nucleus) filtering')
    parser.add_argument('--device', type=str, default='cuda', help='Device to use')
    
    args = parser.parse_args()
    
    # Load generator
    print("Loading model...")
    generator = load_generator(args.checkpoint, args.device)
    
    # Generate text
    print(f"Prompt: {args.prompt}")
    print("Generating...")
    
    generated = generator.generate(
        args.prompt,
        max_length=args.max_length,
        temperature=args.temperature,
        top_k=args.top_k,
        top_p=args.top_p,
    )
    
    print(f"Generated: {generated[0]}")