Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,874 Bytes
27b9282 f4bd108 27b9282 670063f 27b9282 670063f 27b9282 f4bd108 27b9282 2d5237f 27b9282 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 |
"""Gradio app for the custom LLM with streaming support and ZeroGPU integration."""
import gradio as gr
import torch
import torch.nn.functional as F
from typing import Iterator, Optional, Union, List
from transformers import AutoTokenizer
import json
import warnings
import sys
from pathlib import Path
# Add src to path
sys.path.append(str(Path(__file__).parent))
warnings.filterwarnings("ignore")
try:
import spaces
HAS_SPACES = True
except ImportError:
HAS_SPACES = False
# Mock decorator for local testing
def spaces_decorator(gpu_memory=None):
def decorator(func):
return func
return decorator
spaces = type('MockSpaces', (), {'GPU': spaces_decorator})
from src.model.transformer import TransformerForCausalLM
class StreamingTextGenerator:
"""Streaming text generation for the custom LLM."""
def __init__(self, model, tokenizer, device='cuda'):
self.model = model
self.tokenizer = tokenizer
self.device = device
self.model.to(device)
self.model.eval()
def generate_stream(
self,
prompt: str,
max_new_tokens: int = 512,
temperature: float = 0.8,
top_p: float = 0.9,
top_k: Optional[int] = 50,
repetition_penalty: float = 1.1,
do_sample: bool = True,
) -> Iterator[str]:
"""Generate text with streaming output."""
# Tokenize prompt
inputs = self.tokenizer(
prompt,
return_tensors='pt',
padding=False,
truncation=True,
max_length=1024, # Leave room for generation
).to(self.device)
input_ids = inputs['input_ids']
attention_mask = inputs['attention_mask']
# Initialize generated sequence
generated_ids = input_ids.clone()
generated_text = prompt
with torch.no_grad():
for step in range(max_new_tokens):
# Get model predictions
outputs = self.model(
input_ids=generated_ids,
attention_mask=attention_mask,
)
# Get logits for the last token
next_token_logits = outputs.logits[0, -1, :].clone()
# Apply repetition penalty
if repetition_penalty != 1.0:
for token_id in set(generated_ids[0].tolist()):
next_token_logits[token_id] /= repetition_penalty
# Apply temperature
if temperature > 0:
next_token_logits = next_token_logits / temperature
# Apply top-k filtering
if top_k is not None and top_k > 0:
top_k_logits, _ = torch.topk(next_token_logits, min(top_k, next_token_logits.size(-1)))
min_top_k = top_k_logits[-1]
next_token_logits = torch.where(
next_token_logits < min_top_k,
torch.full_like(next_token_logits, float('-inf')),
next_token_logits
)
# Apply top-p (nucleus) filtering
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above threshold
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].clone()
sorted_indices_to_remove[0] = False
indices_to_remove = sorted_indices_to_remove.scatter(0, sorted_indices, sorted_indices_to_remove)
next_token_logits[indices_to_remove] = float('-inf')
# Sample next token
if do_sample and temperature > 0:
probs = F.softmax(next_token_logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
else:
next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)
# Check for EOS token
if next_token.item() == self.tokenizer.eos_token_id:
break
# Append to generated sequence
generated_ids = torch.cat([generated_ids, next_token.unsqueeze(0)], dim=-1)
# Update attention mask
attention_mask = torch.cat([
attention_mask,
torch.ones((1, 1), device=self.device, dtype=attention_mask.dtype)
], dim=-1)
# Decode and yield new token
new_text = self.tokenizer.decode(
generated_ids[0],
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
# Only yield the new part
if len(new_text) > len(generated_text):
generated_text = new_text
yield generated_text
def download_model_from_hf():
"""Download model from HuggingFace repository."""
from huggingface_hub import hf_hub_download
import os
model_repo = "dixisouls/VelocityLM"
cache_dir = Path("model_cache")
cache_dir.mkdir(exist_ok=True)
print("π₯ Downloading model from HuggingFace...")
# Download config.json
config_path = hf_hub_download(
repo_id=model_repo,
filename="config.json",
cache_dir=cache_dir,
local_files_only=False
)
# Download pytorch_model.bin
model_path = hf_hub_download(
repo_id=model_repo,
filename="pytorch_model.bin",
cache_dir=cache_dir,
local_files_only=False
)
print("β
Model downloaded successfully!")
return config_path, model_path
def load_model_and_tokenizer():
"""Load the trained model and tokenizer."""
import os
# Check if model exists locally, if not download from HF
cache_dir = Path("model_cache")
local_config = None
local_model = None
# Try to find cached files
if cache_dir.exists():
for root, dirs, files in os.walk(cache_dir):
if "config.json" in files:
local_config = Path(root) / "config.json"
if "pytorch_model.bin" in files:
local_model = Path(root) / "pytorch_model.bin"
# Download if not found locally
if not local_config or not local_model:
config_path, model_path = download_model_from_hf()
else:
config_path = str(local_config)
model_path = str(local_model)
print("π Using cached model files")
# Load config
with open(config_path, 'r') as f:
config = json.load(f)
# Create model config object
class ModelConfig:
def __init__(self, config_dict):
for key, value in config_dict.items():
setattr(self, key, value)
model_config = ModelConfig(config['model'])
# Load model
print("π§ Initializing model...")
model = TransformerForCausalLM(model_config)
# Load state dict from pytorch_model.bin
print("π¦ Loading model weights...")
model_state_dict = torch.load(
model_path,
map_location='cpu'
)
model.load_state_dict(model_state_dict, strict=False)
print("β
Model weights loaded!")
# Load tokenizer
print("π€ Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(config['tokenizer']['tokenizer_name'])
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("π Model and tokenizer ready!")
return model, tokenizer
# Global variables for model and generator
model = None
tokenizer = None
generator = None
def initialize_model():
"""Initialize model and tokenizer."""
global model, tokenizer, generator
if model is None:
print("Loading model and tokenizer...")
model, tokenizer = load_model_and_tokenizer()
device = "cuda" if torch.cuda.is_available() else "cpu"
generator = StreamingTextGenerator(model, tokenizer, device=device)
print(f"Model loaded on {device}")
@spaces.GPU(duration=120) if HAS_SPACES else lambda x: x
def generate_response(
prompt: str,
max_new_tokens: int = 64,
temperature: float = 0.8,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.1,
) -> Iterator[str]:
"""Generate streaming response."""
# Initialize model if needed
initialize_model()
if not prompt.strip():
yield "Please enter a prompt."
return
try:
# Generate with streaming
for partial_text in generator.generate_stream(
prompt=prompt,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k if top_k > 0 else None,
repetition_penalty=repetition_penalty,
do_sample=temperature > 0,
):
yield partial_text
except Exception as e:
yield f"Error generating text: {str(e)}"
# Create Gradio interface
def create_interface():
"""Create the Gradio interface."""
# Custom CSS for enhanced UI
custom_css = """
.gradio-container {
max-width: 1200px !important;
margin: 0 auto !important;
}
.header-text {
text-align: center;
background: linear-gradient(45deg, #667eea 0%, #764ba2 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
font-size: 2.5em !important;
font-weight: bold !important;
margin-bottom: 0.5em !important;
}
.subtitle-text {
text-align: center;
color: #666;
font-size: 1.2em !important;
margin-bottom: 2em !important;
}
.parameter-box {
background: linear-gradient(135deg, #2d3748 0%, #1a202c 100%) !important;
border-radius: 15px !important;
padding: 20px !important;
border: 1px solid #4a5568 !important;
}
.parameter-box summary {
color: #ffffff !important;
font-weight: bold !important;
background: rgba(255, 255, 255, 0.1) !important;
padding: 10px !important;
border-radius: 10px !important;
}
.parameter-box details summary {
color: #ffffff !important;
font-weight: bold !important;
}
/* Make ALL text white in the parameter box */
.parameter-box,
.parameter-box *,
.parameter-box label,
.parameter-box span,
.parameter-box p,
.parameter-box div,
.parameter-box small {
color: #ffffff !important;
}
/* Ensure input values are also white */
.parameter-box input[type="number"],
.parameter-box .gr-textbox input {
color: #ffffff !important;
background: rgba(255, 255, 255, 0.1) !important;
border: 1px solid #4a5568 !important;
}
/* Make the centered description text white too */
.parameter-box > p {
color: #ffffff !important;
text-align: center !important;
}
.output-box {
border-radius: 15px !important;
border: 1px solid #e1e5e9 !important;
}
.generate-btn {
background: linear-gradient(45deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
color: white !important;
font-weight: bold !important;
font-size: 1.1em !important;
padding: 15px 30px !important;
border-radius: 25px !important;
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important;
transition: all 0.3s ease !important;
}
.generate-btn:hover {
transform: translateY(-2px) !important;
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6) !important;
}
.clear-btn {
background: linear-gradient(45deg, #ff6b6b 0%, #ee5a24 100%) !important;
border: none !important;
color: white !important;
font-weight: bold !important;
border-radius: 20px !important;
padding: 10px 20px !important;
box-shadow: 0 2px 10px rgba(255, 107, 107, 0.3) !important;
}
.info-box {
background: linear-gradient(135deg, #ffecd2 0%, #fcb69f 100%) !important;
border-radius: 15px !important;
padding: 20px !important;
border: 1px solid #f0c27b !important;
margin-top: 20px !important;
}
.example-box {
background: linear-gradient(135def, #e8f5e8 0%, #d4edda 100%) !important;
border-radius: 15px !important;
padding: 15px !important;
border: 1px solid #c3e6cb !important;
}
.metric-card {
background: white !important;
border-radius: 10px !important;
padding: 15px !important;
text-align: center !important;
box-shadow: 0 2px 10px rgba(0,0,0,0.1) !important;
border-left: 4px solid #667eea !important;
}
.progress-bar {
background: linear-gradient(45deg, #667eea 0%, #764ba2 100%) !important;
}
"""
with gr.Blocks(
title="VelocityLM - Fast Text Generation",
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="purple",
neutral_hue="gray"
),
css=custom_css
) as demo:
# Header with gradient text
gr.HTML("""
<div style="text-align: center; margin-bottom: 2rem;">
<h1 class="header-text">VelocityLM</h1>
<p class="subtitle-text">Advanced 2B Parameter Foundational Language Model</p>
<div style="display: flex; justify-content: center; gap: 2rem; margin: 1.5rem 0;">
<div class="metric-card">
<h3 style="margin: 0; color: #667eea;">2B+</h3>
<p style="margin: 5px 0 0 0; color: #666; font-size: 0.9em;">Parameters</p>
</div>
<div class="metric-card">
<h3 style="margin: 0; color: #667eea;">2048</h3>
<p style="margin: 5px 0 0 0; color: #666; font-size: 0.9em;">Context Length</p>
</div>
</div>
</div>
""")
gr.Markdown(
"""
<div style="text-align: center; background: #1a1a1a;
padding: 20px; border-radius: 15px; margin-bottom: 2rem; border: 1px solid #333;">
<p style="margin: 0; font-size: 1.1em; color: #ffffff;">
π― <strong>Modern Architecture:</strong> RoPE β’ RMSNorm β’ SwiGLU β’ Multi-Head Attention<br>
β¨ <strong>Features:</strong> Text Generation β’ Configurable Sampling β’ GPU Accelerated
</p>
</div>
""",
)
with gr.Row(equal_height=True):
# Input Column
with gr.Column(scale=2, min_width=400):
gr.HTML("<div style='margin-bottom: 1rem;'><h3 style='color: #667eea; margin: 0;'>π¬ Input Prompt</h3></div>")
prompt_input = gr.Textbox(
lines=6,
placeholder="β¨ Enter your creative prompt here...\n\nExample: Write a story about a future where AI and humans collaborate to solve climate change...",
label="Your Prompt",
show_copy_button=True,
container=True,
elem_classes=["input-box"]
)
# Advanced Parameters Section
with gr.Accordion("ποΈ Advanced Generation Parameters", open=False, elem_classes=["parameter-box"]):
gr.HTML("<p style='text-align: center; color: #333; margin-bottom: 1rem;'>Fine-tune your generation settings</p>")
with gr.Row():
max_new_tokens = gr.Slider(
minimum=1,
maximum=1024,
value=64,
step=1,
label="π’ Max New Tokens",
info="Maximum number of tokens to generate"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.8,
step=0.1,
label="π‘οΈ Temperature",
info="Higher = more creative, lower = more focused"
)
with gr.Row():
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="π― Top-p",
info="Nucleus sampling threshold"
)
top_k = gr.Slider(
minimum=0,
maximum=200,
value=50,
step=5,
label="π Top-k",
info="Top-k sampling limit (0 = disabled)"
)
repetition_penalty = gr.Slider(
minimum=1.0,
maximum=2.0,
value=1.1,
step=0.05,
label="π Repetition Penalty",
info="Reduce repetitive text (higher = less repetition)"
)
# Generate Button with enhanced styling
gr.HTML("<div style='margin: 1.5rem 0;'>")
generate_btn = gr.Button(
"π Generate Text",
variant="primary",
size="lg",
elem_classes=["generate-btn"],
scale=1
)
gr.HTML("</div>")
# Quick Settings Presets
gr.HTML("<div style='margin-top: 1rem;'><h4 style='color: #667eea; margin-bottom: 0.5rem;'>β‘ Quick Presets</h4></div>")
with gr.Row():
creative_btn = gr.Button("π¨ Creative", size="sm", variant="secondary")
balanced_btn = gr.Button("βοΈ Balanced", size="sm", variant="secondary")
precise_btn = gr.Button("π― Precise", size="sm", variant="secondary")
# Output Column
with gr.Column(scale=3, min_width=500):
gr.HTML("<div style='margin-bottom: 1rem; display: flex; justify-content: space-between; align-items: center;'><h3 style='color: #667eea; margin: 0;'>π Generated Output</h3></div>")
output_text = gr.Textbox(
lines=22,
label="Generated Text",
show_copy_button=True,
interactive=False,
placeholder="Your generated text will appear here...\n\nβ¨ Streaming in real-time\nπ Powered by custom 2B parameter model",
elem_classes=["output-box"],
container=True
)
# Action buttons
with gr.Row():
clear_btn = gr.Button("ποΈ Clear All", variant="secondary", elem_classes=["clear-btn"])
# Enhanced Examples Section
gr.HTML("<div style='margin: 2rem 0;'><h3 style='color: #667eea; text-align: center; margin-bottom: 1rem;'>π― Example Prompts</h3></div>")
with gr.Accordion("π Prompt Examples", open=True, elem_classes=["example-box"]):
gr.Examples(
examples=[
["Once upon a time in a distant galaxy, there lived a civilization that had never seen the stars."],
["The old lighthouse keeper noticed something strange about the fog that night."],
["In the depths of the Amazon rainforest, Dr. Martinez made a discovery that would change everything."],
["The last bookstore on Earth was about to close its doors forever when"],
["As the spaceship approached the mysterious planet, the crew realized"],
["The clockmaker's shop had been abandoned for fifty years, but every morning at precisely 9 AM"],
["Deep beneath the city, in tunnels forgotten by time, archaeologist Elena found"],
["The message in a bottle had traveled across three oceans before washing ashore"],
],
inputs=[prompt_input],
label="Click any example to get started!",
examples_per_page=4
)
# Event handlers for main functionality
generate_btn.click(
fn=generate_response,
inputs=[
prompt_input,
max_new_tokens,
temperature,
top_p,
top_k,
repetition_penalty,
],
outputs=[output_text],
show_progress=True,
)
# Preset button handlers
creative_btn.click(
fn=lambda: (1.2, 0.95, 40, 1.05),
outputs=[temperature, top_p, top_k, repetition_penalty]
)
balanced_btn.click(
fn=lambda: (0.8, 0.9, 50, 1.1),
outputs=[temperature, top_p, top_k, repetition_penalty]
)
precise_btn.click(
fn=lambda: (0.3, 0.8, 20, 1.2),
outputs=[temperature, top_p, top_k, repetition_penalty]
)
# Utility button handlers
clear_btn.click(
fn=lambda: ("", ""),
outputs=[prompt_input, output_text]
)
return demo
if __name__ == "__main__":
# Initialize for local testing
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=False,
) |