developer0hye's picture
Update app.py
fbbee5a verified
raw
history blame
6.66 kB
import gradio as gr
import spaces
import argparse
import cv2
from PIL import Image
import numpy as np
import warnings
import torch
warnings.filterwarnings("ignore")
# Replace custom imports with Transformers
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
# Add supervision for better visualization
import supervision as sv
# Model ID for Hugging Face
model_id = "IDEA-Research/grounding-dino-base"
# Load model and processor using Transformers
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device)
@spaces.GPU
def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
# Convert numpy array to PIL Image if needed
if isinstance(input_image, np.ndarray):
if input_image.ndim == 3:
input_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
input_image = Image.fromarray(input_image)
init_image = input_image.convert("RGB")
# Process input using transformers
inputs = processor(images=init_image, text=grounding_caption, return_tensors="pt").to(device)
# Run inference
with torch.no_grad():
outputs = model(**inputs)
# Post-process results
results = processor.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
threshold=box_threshold,
text_threshold=text_threshold,
target_sizes=[init_image.size[::-1]]
)
result = results[0]
# Convert image for supervision visualization
image_np = np.array(init_image)
# Create detections for supervision
boxes = []
labels = []
confidences = []
class_ids = []
for i, (box, score, label) in enumerate(zip(result["boxes"], result["scores"], result["labels"])):
# box is xyxy format [xmin, ymin, xmax, ymax]
xyxy = box.tolist()
boxes.append(xyxy)
labels.append(label)
confidences.append(float(score))
class_ids.append(i) # Use index as class_id (integer)
# Build the text summary in the requested format
if boxes:
lines = []
for label, xyxy, conf in zip(labels, boxes, confidences):
x1, y1, x2, y2 = [int(round(v)) for v in xyxy]
# Format: class confidence top_left_x, top_left_y, bot_x, bot_y
lines.append(f"{label} {conf:.3f} {x1}, {y1}, {x2}, {y2}")
detection_text = "\n".join(lines)
else:
detection_text = "No detections."
# Create Detections object for supervision & annotate
if boxes:
detections = sv.Detections(
xyxy=np.array(boxes),
confidence=np.array(confidences),
class_id=np.array(class_ids, dtype=np.int32),
)
text_scale = sv.calculate_optimal_text_scale(resolution_wh=init_image.size)
line_thickness = sv.calculate_optimal_line_thickness(resolution_wh=init_image.size)
# Create annotators
box_annotator = sv.BoxAnnotator(
thickness=2,
color=sv.ColorPalette.DEFAULT,
)
label_annotator = sv.LabelAnnotator(
color=sv.ColorPalette.DEFAULT,
text_color=sv.Color.WHITE,
text_scale=text_scale,
text_thickness=line_thickness,
text_padding=3
)
# Create formatted labels for each detection
formatted_labels = [
f"{label}: {conf:.2f}"
for label, conf in zip(labels, confidences)
]
# Apply annotations to the image
annotated_image = box_annotator.annotate(scene=image_np, detections=detections)
annotated_image = label_annotator.annotate(
scene=annotated_image,
detections=detections,
labels=formatted_labels
)
else:
annotated_image = image_np
# Convert back to PIL Image
image_with_box = Image.fromarray(annotated_image)
# Return both the annotated image and the detection text
return image_with_box, detection_text
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounding DINO demo", add_help=True)
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
args = parser.parse_args()
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("<h1><center>Grounding DINO Base<h1><center>")
gr.Markdown("<h3><center>Open-World Detection with <a href='https://github.com/IDEA-Research/GroundingDINO'>Grounding DINO</a><h3><center>")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
grounding_caption = gr.Textbox(
label="Detection Prompt (lowercase + each ends with a dot)",
value="a person. a car."
)
run_button = gr.Button("Run")
with gr.Accordion("Advanced options", open=False):
box_threshold = gr.Slider(
minimum=0.0, maximum=1.0, value=0.3, step=0.001,
label="Box Threshold"
)
text_threshold = gr.Slider(
minimum=0.0, maximum=1.0, value=0.25, step=0.001,
label="Text Threshold"
)
with gr.Column():
gallery = gr.Image(
label="Detection Result",
type="pil"
)
det_text = gr.Textbox(
label="Detections (class confidence top_left_x, top_left_y, bot_x, bot_y)",
lines=12,
interactive=False,
show_copy_button=True
)
run_button.click(
fn=run_grounding,
inputs=[input_image, grounding_caption, box_threshold, text_threshold],
outputs=[gallery, det_text]
)
gr.Examples(
examples=[
["000000039769.jpg", "a cat. a remote control.", 0.3, 0.25],
["KakaoTalk_20250430_163200504.jpg", "cup. screen. hand.", 0.3, 0.25]
],
inputs=[input_image, grounding_caption, box_threshold, text_threshold],
outputs=[gallery, det_text],
fn=run_grounding,
cache_examples=True,
)
demo.launch(share=args.share, debug=args.debug, show_error=True)