File size: 7,626 Bytes
5bccb37 55b6378 382c1fc 5bccb37 382c1fc 014228c 382c1fc ea17cac 382c1fc ea17cac 014228c ea17cac 382c1fc 55b6378 ea17cac 9be9c3b e70d81e 382c1fc e70d81e d58546f 014228c d58546f e70d81e 014228c e70d81e 014228c 41d1ec3 d58546f 014228c e70d81e 014228c e70d81e 014228c e70d81e 014228c e70d81e 014228c e70d81e 014228c e70d81e fbbee5a e70d81e 014228c e70d81e 014228c e70d81e 014228c e70d81e 014228c e70d81e 014228c e70d81e 014228c e70d81e 014228c e70d81e 014228c e70d81e 014228c e70d81e 014228c e70d81e 382c1fc e70d81e 382c1fc e70d81e 382c1fc e70d81e 382c1fc 88b7365 ea17cac 382c1fc 9be9c3b ea17cac e70d81e 88b7365 e70d81e 88b7365 e70d81e 88b7365 e70d81e d58546f 88b7365 382c1fc 88b7365 c235e67 88b7365 e70d81e fbbee5a e70d81e 382c1fc 88b7365 e70d81e ea17cac e70d81e 88b7365 e70d81e 88b7365 014228c ea17cac e70d81e ea17cac e70d81e 88b7365 e70d81e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import gradio as gr
import spaces
import argparse
import cv2
from PIL import Image
import numpy as np
import warnings
import torch
warnings.filterwarnings("ignore")
# Replace custom imports with Transformers
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
# Add supervision for better visualization
import supervision as sv
# Model IDs for Hugging Face
MODEL_IDS = {
"MM Grounding DINO Large": "rziga/mm_grounding_dino_large_all",
"MM Grounding DINO Base": "rziga/mm_grounding_dino_base_all"
}
# Global variables for model caching
device = "cuda" if torch.cuda.is_available() else "cpu"
loaded_model_name = None
processor = None
model = None
@spaces.GPU
def run_grounding(input_image, grounding_caption, model_choice, box_threshold, text_threshold):
global loaded_model_name, processor, model
# Load or reload model if changed
if loaded_model_name != model_choice:
model_id = MODEL_IDS[model_choice]
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device)
loaded_model_name = model_choice
# Convert numpy array to PIL Image if needed
if isinstance(input_image, np.ndarray):
if input_image.ndim == 3:
input_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
input_image = Image.fromarray(input_image)
init_image = input_image.convert("RGB")
# Process caption into list of list format for mm grounding dino
# Split by period and strip whitespace
text_labels = [[label.strip() for label in grounding_caption.split('.') if label.strip()]]
# Process input using transformers
inputs = processor(images=init_image, text=text_labels, return_tensors="pt").to(device)
# Run inference
with torch.no_grad():
outputs = model(**inputs)
# Post-process results
results = processor.post_process_grounded_object_detection(
outputs,
threshold=box_threshold,
target_sizes=[(init_image.size[1], init_image.size[0])]
)
result = results[0]
# Convert image for supervision visualization
image_np = np.array(init_image)
# Create detections for supervision
boxes = []
labels = []
confidences = []
class_ids = []
for i, (box, score, label) in enumerate(zip(result["boxes"], result["scores"], result["labels"])):
# box is xyxy format [xmin, ymin, xmax, ymax]
xyxy = box.tolist()
boxes.append(xyxy)
labels.append(label)
confidences.append(float(score))
class_ids.append(i) # Use index as class_id (integer)
# Build the text summary in the requested format
if boxes:
lines = []
for label, xyxy, conf in zip(labels, boxes, confidences):
x1, y1, x2, y2 = [int(round(v)) for v in xyxy]
# Format: class confidence top_left_x, top_left_y, bot_x, bot_y
lines.append(f"{label} {conf:.3f} {x1}, {y1}, {x2}, {y2}")
detection_text = "\n".join(lines)
else:
detection_text = "No detections."
# Create Detections object for supervision & annotate
if boxes:
detections = sv.Detections(
xyxy=np.array(boxes),
confidence=np.array(confidences),
class_id=np.array(class_ids, dtype=np.int32),
)
text_scale = sv.calculate_optimal_text_scale(resolution_wh=init_image.size)
line_thickness = sv.calculate_optimal_line_thickness(resolution_wh=init_image.size)
# Create annotators
box_annotator = sv.BoxAnnotator(
thickness=2,
color=sv.ColorPalette.DEFAULT,
)
label_annotator = sv.LabelAnnotator(
color=sv.ColorPalette.DEFAULT,
text_color=sv.Color.WHITE,
text_scale=text_scale,
text_thickness=line_thickness,
text_padding=3
)
# Create formatted labels for each detection
formatted_labels = [
f"{label}: {conf:.2f}"
for label, conf in zip(labels, confidences)
]
# Apply annotations to the image
annotated_image = box_annotator.annotate(scene=image_np, detections=detections)
annotated_image = label_annotator.annotate(
scene=annotated_image,
detections=detections,
labels=formatted_labels
)
else:
annotated_image = image_np
# Convert back to PIL Image
image_with_box = Image.fromarray(annotated_image)
# Return both the annotated image and the detection text
return image_with_box, detection_text
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounding DINO demo", add_help=True)
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
args = parser.parse_args()
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("<h1><center>MM Grounding DINO (Large & Base)<h1><center>")
gr.Markdown("<h3><center>Open-World Detection with MM Grounding DINO Models<h3><center>")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
model_choice = gr.Radio(
choices=list(MODEL_IDS.keys()),
value="MM Grounding DINO Large",
label="Select Model",
info="Choose between Large (better performance) or Base (faster) model"
)
grounding_caption = gr.Textbox(
label="Detection Prompt (lowercase + each ends with a dot)",
value="a person. a car."
)
run_button = gr.Button("Run")
with gr.Accordion("Advanced options", open=False):
box_threshold = gr.Slider(
minimum=0.0, maximum=1.0, value=0.3, step=0.001,
label="Box Threshold"
)
text_threshold = gr.Slider(
minimum=0.0, maximum=1.0, value=0.25, step=0.001,
label="Text Threshold (not used in MM Grounding DINO)",
visible=False
)
with gr.Column():
gallery = gr.Image(
label="Detection Result",
type="pil"
)
det_text = gr.Textbox(
label="Detections (class confidence top_left_x, top_left_y, bot_x, bot_y)",
lines=12,
interactive=False,
show_copy_button=True
)
run_button.click(
fn=run_grounding,
inputs=[input_image, grounding_caption, model_choice, box_threshold, text_threshold],
outputs=[gallery, det_text]
)
gr.Examples(
examples=[
["000000039769.jpg", "a cat. a remote control.", "MM Grounding DINO Large", 0.3, 0.25],
["KakaoTalk_20250430_163200504.jpg", "cup. screen. hand.", "MM Grounding DINO Base", 0.3, 0.25]
],
inputs=[input_image, grounding_caption, model_choice, box_threshold, text_threshold],
outputs=[gallery, det_text],
fn=run_grounding,
cache_examples=True,
)
demo.launch(share=args.share, debug=args.debug, show_error=True)
|