Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Optional | |
| import spaces | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| import io | |
| import base64, os | |
| from utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img | |
| import torch | |
| from PIL import Image | |
| # yolo_model = get_yolo_model(model_path='weights/icon_detect/best.pt') | |
| # caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption_florence") | |
| from ultralytics import YOLO | |
| yolo_model = YOLO('weights/icon_detect/best.pt').to('cuda') | |
| from transformers import AutoProcessor, AutoModelForCausalLM | |
| processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained("weights/icon_caption_florence", torch_dtype=torch.float16, trust_remote_code=True).to('cuda') | |
| caption_model_processor = {'processor': processor, 'model': model} | |
| print('finish loading model!!!') | |
| platform = 'pc' | |
| if platform == 'pc': | |
| draw_bbox_config = { | |
| 'text_scale': 0.8, | |
| 'text_thickness': 2, | |
| 'text_padding': 2, | |
| 'thickness': 2, | |
| } | |
| elif platform == 'web': | |
| draw_bbox_config = { | |
| 'text_scale': 0.8, | |
| 'text_thickness': 2, | |
| 'text_padding': 3, | |
| 'thickness': 3, | |
| } | |
| elif platform == 'mobile': | |
| draw_bbox_config = { | |
| 'text_scale': 0.8, | |
| 'text_thickness': 2, | |
| 'text_padding': 3, | |
| 'thickness': 3, | |
| } | |
| MARKDOWN = """ | |
| # OmniParser for Pure Vision Based General GUI Agent 🔥 | |
| <div> | |
| <a href="https://arxiv.org/pdf/2408.00203"> | |
| <img src="https://img.shields.io/badge/arXiv-2408.00203-b31b1b.svg" alt="Arxiv" style="display:inline-block;"> | |
| </a> | |
| </div> | |
| OmniParser is a screen parsing tool to convert general GUI screen to structured elements. ✅ | |
| """ | |
| # DEVICE = torch.device('cuda') | |
| # @spaces.GPU | |
| # @torch.autocast(device_type="cuda", dtype=torch.bfloat16) | |
| def process( | |
| image_input, | |
| box_threshold, | |
| iou_threshold | |
| ) -> Optional[Image.Image]: | |
| image_save_path = 'imgs/saved_image_demo.png' | |
| image_input.save(image_save_path) | |
| # import pdb; pdb.set_trace() | |
| ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_save_path, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9}, use_paddleocr=True) | |
| text, ocr_bbox = ocr_bbox_rslt | |
| # print('prompt:', prompt) | |
| dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_save_path, yolo_model, BOX_TRESHOLD = box_threshold, output_coord_in_ratio=False, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text,iou_threshold=iou_threshold) | |
| image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img))) | |
| print('finish processing') | |
| # Format the coordinates output in a more readable way | |
| # coordinates_text = "Bounding Box Coordinates (x, y, width, height):\n" | |
| # for box_id, coords in sorted(label_coordinates.items(), key=lambda x: int(x[0])): | |
| # # Convert numpy array to list and round values | |
| # coords_list = coords.tolist() | |
| # coords_formatted = [f"{coord:.1f}" for coord in coords_list] | |
| # coordinates_text += f"Box {box_id}: [{coords_formatted[0]}, {coords_formatted[1]}, {coords_formatted[2]}, {coords_formatted[3]}]\n" | |
| combined_content = [] | |
| for i, content in enumerate(parsed_content_list): | |
| if content.startswith('Text Box ID'): | |
| box_id = str(i) | |
| else: | |
| # Extract the ID number from Icon Box ID format | |
| box_id = content.split('Icon Box ID ')[1].split(':')[0] | |
| coords = label_coordinates.get(box_id) | |
| if coords is not None: # Changed from 'if coords:' to handle numpy arrays | |
| coords_str = [round(x) for x in coords] # Convert numpy values to rounded integers | |
| combined_content.append(f"{content} | Coordinates: {coords_str}") | |
| else: | |
| combined_content.append(content) | |
| print(combined_content) | |
| parsed_content_list = '\n'.join(parsed_content_list) | |
| return image, str(parsed_content_list), str(combined_content) | |
| with gr.Blocks() as demo: | |
| gr.Markdown(MARKDOWN) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_input_component = gr.Image( | |
| type='pil', label='Upload image') | |
| box_threshold_component = gr.Slider( | |
| label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05) | |
| iou_threshold_component = gr.Slider( | |
| label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1) | |
| submit_button_component = gr.Button( | |
| value='Submit', variant='primary') | |
| with gr.Column(): | |
| image_output_component = gr.Image(type='pil', label='Image Output') | |
| text_output_component = gr.Textbox(label='Parsed screen elements', placeholder='Text Output') | |
| coordinates_output_component = gr.Textbox( | |
| label='Bounding Box Coordinates', | |
| placeholder='Coordinates will appear here', | |
| lines=20, # Increased lines to show more coordinates | |
| interactive=False # Make it read-only | |
| ) | |
| submit_button_component.click( | |
| fn=process, | |
| inputs=[ | |
| image_input_component, | |
| box_threshold_component, | |
| iou_threshold_component | |
| ], | |
| outputs=[ | |
| image_output_component, | |
| text_output_component, | |
| coordinates_output_component | |
| ] | |
| ) | |
| demo.queue().launch(share=False, show_error=True) | |
| # demo.launch(debug=False, show_error=True, share=True) | |
| # demo.launch(share=True, server_port=7861, server_name='0.0.0.0') | |
| # demo.queue().launch(share=False) |