Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,40 +1,46 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import tensorflow as tf
|
| 3 |
-
import numpy as np
|
| 4 |
import librosa
|
| 5 |
-
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
audio, sr = librosa.load(file, sr=16000)
|
| 13 |
-
mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=13)
|
| 14 |
-
return np.expand_dims(mfccs, axis=0)
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
translated_text = translation_model.predict([predicted_text])
|
| 20 |
-
return translated_text
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
return current_time.hour >= 18
|
| 25 |
|
| 26 |
-
def
|
| 27 |
-
|
|
|
|
| 28 |
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import librosa
|
| 2 |
+
import numpy as np
|
| 3 |
|
| 4 |
+
def preprocess_audio(file_path):
|
| 5 |
+
y, sr = librosa.load(file_path, sr=16000)
|
| 6 |
+
mel_spectrogram = librosa.feature.melspectrogram(y=y, sr=sr)
|
| 7 |
+
return mel_spectrogram
|
| 8 |
|
| 9 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer, MarianMTModel, MarianTokenizer
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Load pre-trained models
|
| 12 |
+
speech_to_text_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-xlsr-53")
|
| 13 |
+
speech_to_text_tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-large-xlsr-53")
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
translation_model = MarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-hi")
|
| 16 |
+
translation_tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-hi")
|
|
|
|
| 17 |
|
| 18 |
+
def translate_audio(file_path):
|
| 19 |
+
# Preprocess the audio
|
| 20 |
+
mel_spectrogram = preprocess_audio(file_path)
|
| 21 |
|
| 22 |
+
# Convert to text
|
| 23 |
+
audio_input = speech_to_text_tokenizer(file_path, return_tensors="pt").input_values
|
| 24 |
+
logits = speech_to_text_model(audio_input).logits
|
| 25 |
+
predicted_ids = logits.argmax(dim=-1)
|
| 26 |
+
transcription = speech_to_text_tokenizer.batch_decode(predicted_ids)[0]
|
| 27 |
|
| 28 |
+
# Translate text
|
| 29 |
+
translation_input = translation_tokenizer(transcription, return_tensors="pt")
|
| 30 |
+
translated_output = translation_model.generate(**translation_input)
|
| 31 |
+
translation = translation_tokenizer.batch_decode(translated_output, skip_special_tokens=True)[0]
|
| 32 |
+
|
| 33 |
+
return translation
|
| 34 |
+
|
| 35 |
+
import datetime
|
| 36 |
+
|
| 37 |
+
def should_translate():
|
| 38 |
+
now = datetime.datetime.now()
|
| 39 |
+
return now.hour >= 18
|
| 40 |
+
|
| 41 |
+
def handle_translation(file_path):
|
| 42 |
+
if should_translate():
|
| 43 |
+
return translate_audio(file_path)
|
| 44 |
+
else:
|
| 45 |
+
return "Translation is only available after 6 PM IST."
|
| 46 |
+
|