Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from haystack import Pipeline | |
| from haystack.document_stores import FAISSDocumentStore | |
| from haystack.nodes import Shaper, PromptNode, PromptTemplate, PromptModel, EmbeddingRetriever | |
| from haystack.nodes.retriever.web import WebRetriever | |
| def get_plain_pipeline(): | |
| prompt_open_ai = PromptModel(model_name_or_path="text-davinci-003", api_key=st.secrets["OPENAI_API_KEY"]) | |
| # Now let make one PromptNode use the default model and the other one the OpenAI model: | |
| plain_llm_template = PromptTemplate(name="plain_llm", prompt_text="Answer the following question: $query") | |
| node_openai = PromptNode(prompt_open_ai, default_prompt_template=plain_llm_template, max_length=300) | |
| pipeline = Pipeline() | |
| pipeline.add_node(component=node_openai, name="prompt_node", inputs=["Query"]) | |
| return pipeline | |
| def get_retrieval_augmented_pipeline(): | |
| ds = FAISSDocumentStore(faiss_index_path="data/my_faiss_index.faiss", | |
| faiss_config_path="data/my_faiss_index.json") | |
| retriever = EmbeddingRetriever( | |
| document_store=ds, | |
| embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1", | |
| model_format="sentence_transformers", | |
| top_k=2 | |
| ) | |
| shaper = Shaper(func="join_documents", inputs={"documents": "documents"}, outputs=["documents"]) | |
| default_template = PromptTemplate( | |
| name="question-answering", | |
| prompt_text="Given the context please answer the question. Context: $documents; Question: " | |
| "$query; Answer:", | |
| ) | |
| # Let's initiate the PromptNode | |
| node = PromptNode("text-davinci-003", default_prompt_template=default_template, | |
| api_key=st.secrets["OPENAI_API_KEY"], max_length=500) | |
| # Let's create a pipeline with Shaper and PromptNode | |
| pipeline = Pipeline() | |
| pipeline.add_node(component=retriever, name='retriever', inputs=['Query']) | |
| pipeline.add_node(component=shaper, name="shaper", inputs=["retriever"]) | |
| pipeline.add_node(component=node, name="prompt_node", inputs=["shaper"]) | |
| return pipeline | |
| def get_web_retrieval_augmented_pipeline(): | |
| search_key = st.secrets["WEBRET_API_KEY"] | |
| web_retriever = WebRetriever(api_key=search_key, search_engine_provider="SerperDev") | |
| shaper = Shaper(func="join_documents", inputs={"documents": "documents"}, outputs=["documents"]) | |
| default_template = PromptTemplate( | |
| name="question-answering", | |
| prompt_text="Given the context please answer the question. Context: $documents; Question: " | |
| "$query; Answer:", | |
| ) | |
| # Let's initiate the PromptNode | |
| node = PromptNode("text-davinci-003", default_prompt_template=default_template, | |
| api_key=st.secrets["OPENAI_API_KEY"], max_length=500) | |
| # Let's create a pipeline with Shaper and PromptNode | |
| pipeline = Pipeline() | |
| pipeline.add_node(component=web_retriever, name='retriever', inputs=['Query']) | |
| pipeline.add_node(component=shaper, name="shaper", inputs=["retriever"]) | |
| pipeline.add_node(component=node, name="prompt_node", inputs=["shaper"]) | |
| return pipeline | |