Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2023-2024 DeepSeek. | |
| # | |
| # Permission is hereby granted, free of charge, to any person obtaining a copy of | |
| # this software and associated documentation files (the "Software"), to deal in | |
| # the Software without restriction, including without limitation the rights to | |
| # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of | |
| # the Software, and to permit persons to whom the Software is furnished to do so, | |
| # subject to the following conditions: | |
| # | |
| # The above copyright notice and this permission notice shall be included in all | |
| # copies or substantial portions of the Software. | |
| # | |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS | |
| # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR | |
| # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
| # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
| # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
| from dataclasses import dataclass | |
| from typing import Dict, List | |
| import torch | |
| from PIL.Image import Image | |
| from transformers import LlamaTokenizerFast | |
| from transformers.processing_utils import ProcessorMixin | |
| from janus.models.image_processing_vlm import VLMImageProcessor | |
| from janus.utils.conversation import get_conv_template | |
| class DictOutput(object): | |
| def keys(self): | |
| return self.__dict__.keys() | |
| def __getitem__(self, item): | |
| return self.__dict__[item] | |
| def __setitem__(self, key, value): | |
| self.__dict__[key] = value | |
| class VLChatProcessorOutput(DictOutput): | |
| sft_format: str | |
| input_ids: torch.Tensor | |
| pixel_values: torch.Tensor | |
| num_image_tokens: torch.IntTensor | |
| def __len__(self): | |
| return len(self.input_ids) | |
| class BatchedVLChatProcessorOutput(DictOutput): | |
| sft_format: List[str] | |
| input_ids: torch.Tensor | |
| pixel_values: torch.Tensor | |
| attention_mask: torch.Tensor | |
| images_seq_mask: torch.BoolTensor | |
| images_emb_mask: torch.BoolTensor | |
| def to(self, device, dtype=torch.bfloat16): | |
| self.input_ids = self.input_ids.to(device) | |
| self.attention_mask = self.attention_mask.to(device) | |
| self.images_seq_mask = self.images_seq_mask.to(device) | |
| self.images_emb_mask = self.images_emb_mask.to(device) | |
| self.pixel_values = self.pixel_values.to(device=device, dtype=dtype) | |
| return self | |
| class VLChatProcessor(ProcessorMixin): | |
| image_processor_class = "AutoImageProcessor" | |
| tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast") | |
| attributes = ["image_processor", "tokenizer"] | |
| system_prompt = ( | |
| "You are a helpful language and vision assistant. " | |
| "You are able to understand the visual content that the user provides, " | |
| "and assist the user with a variety of tasks using natural language." | |
| ) | |
| def __init__( | |
| self, | |
| image_processor: VLMImageProcessor, | |
| tokenizer: LlamaTokenizerFast, | |
| image_tag: str = "<image_placeholder>", | |
| image_start_tag: str = "<begin_of_image>", | |
| image_end_tag: str = "<end_of_image>", | |
| pad_tag: str = "<|▁pad▁|>", | |
| num_image_tokens: int = 576, | |
| add_special_token: bool = False, | |
| sft_format: str = "deepseek", | |
| mask_prompt: bool = True, | |
| ignore_id: int = -100, | |
| **kwargs, | |
| ): | |
| self.image_processor = image_processor | |
| self.tokenizer = tokenizer | |
| image_id = self.tokenizer.vocab.get(image_tag) | |
| if image_id is None: | |
| special_tokens = [image_tag] | |
| special_tokens_dict = {"additional_special_tokens": special_tokens} | |
| self.tokenizer.add_special_tokens(special_tokens_dict) | |
| print(f"Add image tag = {image_tag} to the tokenizer") | |
| self.image_tag = image_tag | |
| self.image_start_tag = image_start_tag | |
| self.image_end_tag = image_end_tag | |
| self.pad_tag = pad_tag | |
| self.num_image_tokens = num_image_tokens | |
| self.add_special_token = add_special_token | |
| self.sft_format = sft_format | |
| self.mask_prompt = mask_prompt | |
| self.ignore_id = ignore_id | |
| super().__init__( | |
| image_processor, | |
| tokenizer, | |
| image_tag, | |
| num_image_tokens, | |
| add_special_token, | |
| sft_format, | |
| mask_prompt, | |
| ignore_id, | |
| **kwargs, | |
| ) | |
| def new_chat_template(self): | |
| conv = get_conv_template(self.sft_format) | |
| conv.set_system_message(self.system_prompt) | |
| return conv | |
| def apply_sft_template_for_multi_turn_prompts( | |
| self, | |
| conversations: List[Dict[str, str]], | |
| sft_format: str = "deepseek", | |
| system_prompt: str = "", | |
| ): | |
| """ | |
| Applies the SFT template to conversation. | |
| An example of conversation: | |
| conversation = [ | |
| { | |
| "role": "User", | |
| "content": "<image_placeholder> is Figure 1.\n<image_placeholder> is Figure 2.\nWhich image is brighter?", | |
| "images": [ | |
| "./multi-images/attribute_comparison_1.png", | |
| "./multi-images/attribute_comparison_2.png" | |
| ] | |
| }, | |
| { | |
| "role": "Assistant", | |
| "content": "" | |
| } | |
| ] | |
| Args: | |
| conversations (List[Dict]): A conversation with a List of Dict[str, str] text. | |
| sft_format (str, optional): The format of the SFT template to use. Defaults to "deepseek". | |
| system_prompt (str, optional): The system prompt to use in the SFT template. Defaults to "". | |
| Returns: | |
| sft_prompt (str): The formatted text. | |
| """ | |
| conv = get_conv_template(sft_format) | |
| conv.set_system_message(system_prompt) | |
| for message in conversations: | |
| conv.append_message(message["role"], message["content"].strip()) | |
| sft_prompt = conv.get_prompt().strip() | |
| return sft_prompt | |
| def image_token(self): | |
| return self.image_tag | |
| def image_id(self): | |
| image_id = self.tokenizer.vocab.get(self.image_tag) | |
| return image_id | |
| def image_start_id(self): | |
| image_start_id = self.tokenizer.vocab.get(self.image_start_tag) | |
| return image_start_id | |
| def image_end_id(self): | |
| image_end_id = self.tokenizer.vocab.get(self.image_end_tag) | |
| return image_end_id | |
| def image_start_token(self): | |
| return self.image_start_tag | |
| def image_end_token(self): | |
| return self.image_end_tag | |
| def pad_id(self): | |
| pad_id = self.tokenizer.vocab.get(self.pad_tag) | |
| # pad_id = self.tokenizer.pad_token_id | |
| # if pad_id is None: | |
| # pad_id = self.tokenizer.eos_token_id | |
| return pad_id | |
| def add_image_token( | |
| self, | |
| image_indices: List[int], | |
| input_ids: torch.LongTensor, | |
| ): | |
| """ | |
| Args: | |
| image_indices (List[int]): [index_0, index_1, ..., index_j] | |
| input_ids (torch.LongTensor): [N] | |
| Returns: | |
| input_ids (torch.LongTensor): [N + image tokens] | |
| num_image_tokens (torch.IntTensor): [n_images] | |
| """ | |
| input_slices = [] | |
| start = 0 | |
| for index in image_indices: | |
| if self.add_special_token: | |
| end = index + 1 | |
| else: | |
| end = index | |
| # original text tokens | |
| input_slices.append(input_ids[start:end]) | |
| # add boi, image tokens, eoi and set the mask as False | |
| input_slices.append(self.image_start_id * torch.ones((1), dtype=torch.long)) | |
| input_slices.append( | |
| self.image_id * torch.ones((self.num_image_tokens,), dtype=torch.long) | |
| ) | |
| input_slices.append(self.image_end_id * torch.ones((1), dtype=torch.long)) | |
| start = index + 1 | |
| # the left part | |
| input_slices.append(input_ids[start:]) | |
| # concat all slices | |
| input_ids = torch.cat(input_slices, dim=0) | |
| num_image_tokens = torch.IntTensor([self.num_image_tokens] * len(image_indices)) | |
| return input_ids, num_image_tokens | |
| def process_one( | |
| self, | |
| prompt: str = None, | |
| conversations: List[Dict[str, str]] = None, | |
| images: List[Image] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Args: | |
| prompt (str): the formatted prompt; | |
| conversations (List[Dict]): conversations with a list of messages; | |
| images (List[ImageType]): the list of images; | |
| **kwargs: | |
| Returns: | |
| outputs (BaseProcessorOutput): the output of the processor, | |
| - input_ids (torch.LongTensor): [N + image tokens] | |
| - target_ids (torch.LongTensor): [N + image tokens] | |
| - images (torch.FloatTensor): [n_images, 3, H, W] | |
| - image_id (int): the id of the image token | |
| - num_image_tokens (List[int]): the number of image tokens | |
| """ | |
| assert ( | |
| prompt is None or conversations is None | |
| ), "prompt and conversations cannot be used at the same time." | |
| if prompt is None: | |
| # apply sft format | |
| sft_format = self.apply_sft_template_for_multi_turn_prompts( | |
| conversations=conversations, | |
| sft_format=self.sft_format, | |
| system_prompt=self.system_prompt, | |
| ) | |
| else: | |
| sft_format = prompt | |
| # tokenize | |
| input_ids = self.tokenizer.encode(sft_format) | |
| input_ids = torch.LongTensor(input_ids) | |
| # add image tokens to the input_ids | |
| image_token_mask: torch.BoolTensor = input_ids == self.image_id | |
| image_indices = image_token_mask.nonzero() | |
| input_ids, num_image_tokens = self.add_image_token( | |
| image_indices=image_indices, | |
| input_ids=input_ids, | |
| ) | |
| # load images | |
| images_outputs = self.image_processor(images, return_tensors="pt") | |
| prepare = VLChatProcessorOutput( | |
| sft_format=sft_format, | |
| input_ids=input_ids, | |
| pixel_values=images_outputs.pixel_values, | |
| num_image_tokens=num_image_tokens, | |
| ) | |
| return prepare | |
| def __call__( | |
| self, | |
| *, | |
| prompt: str = None, | |
| conversations: List[Dict[str, str]] = None, | |
| images: List[Image] = None, | |
| force_batchify: bool = True, | |
| **kwargs, | |
| ): | |
| """ | |
| Args: | |
| prompt (str): the formatted prompt; | |
| conversations (List[Dict]): conversations with a list of messages; | |
| images (List[ImageType]): the list of images; | |
| force_batchify (bool): force batchify the inputs; | |
| **kwargs: | |
| Returns: | |
| outputs (BaseProcessorOutput): the output of the processor, | |
| - input_ids (torch.LongTensor): [N + image tokens] | |
| - images (torch.FloatTensor): [n_images, 3, H, W] | |
| - image_id (int): the id of the image token | |
| - num_image_tokens (List[int]): the number of image tokens | |
| """ | |
| prepare = self.process_one( | |
| prompt=prompt, conversations=conversations, images=images | |
| ) | |
| if force_batchify: | |
| prepare = self.batchify([prepare]) | |
| return prepare | |
| def batchify( | |
| self, prepare_list: List[VLChatProcessorOutput] | |
| ) -> BatchedVLChatProcessorOutput: | |
| """ | |
| Preprocesses the inputs for multimodal inference. | |
| Args: | |
| prepare_list (List[VLChatProcessorOutput]): A list of VLChatProcessorOutput. | |
| Returns: | |
| BatchedVLChatProcessorOutput: A dictionary of the inputs to use for multimodal inference. | |
| """ | |
| batch_size = len(prepare_list) | |
| sft_format = [] | |
| n_images = [] | |
| seq_lens = [] | |
| for prepare in prepare_list: | |
| n_images.append(len(prepare.num_image_tokens)) | |
| seq_lens.append(len(prepare)) | |
| input_token_max_len = max(seq_lens) | |
| max_n_images = max(1, max(n_images)) | |
| batched_input_ids = torch.full( | |
| (batch_size, input_token_max_len), self.pad_id | |
| ).long() # FIXME | |
| batched_attention_mask = torch.zeros((batch_size, input_token_max_len)).long() | |
| batched_pixel_values = torch.zeros( | |
| (batch_size, max_n_images, *self.image_processor.default_shape) | |
| ).float() | |
| batched_images_seq_mask = torch.zeros((batch_size, input_token_max_len)).bool() | |
| batched_images_emb_mask = torch.zeros( | |
| (batch_size, max_n_images, self.num_image_tokens) | |
| ).bool() | |
| for i, prepare in enumerate(prepare_list): | |
| input_ids = prepare.input_ids | |
| seq_len = len(prepare) | |
| n_image = len(prepare.num_image_tokens) | |
| # left-padding | |
| batched_attention_mask[i, -seq_len:] = 1 | |
| batched_input_ids[i, -seq_len:] = torch.LongTensor(input_ids) | |
| batched_images_seq_mask[i, -seq_len:] = input_ids == self.image_id | |
| if n_image > 0: | |
| batched_pixel_values[i, :n_image] = prepare.pixel_values | |
| for j, n_image_tokens in enumerate(prepare.num_image_tokens): | |
| batched_images_emb_mask[i, j, :n_image_tokens] = True | |
| sft_format.append(prepare.sft_format) | |
| batched_prepares = BatchedVLChatProcessorOutput( | |
| input_ids=batched_input_ids, | |
| attention_mask=batched_attention_mask, | |
| pixel_values=batched_pixel_values, | |
| images_seq_mask=batched_images_seq_mask, | |
| images_emb_mask=batched_images_emb_mask, | |
| sft_format=sft_format, | |
| ) | |
| return batched_prepares | |