File size: 48,019 Bytes
0d00d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
{
  "title": "Independent Component Analysis Mastery: 100 MCQs",
  "description": "A comprehensive set of 100 multiple-choice questions to test and deepen your understanding of ICA, covering fundamentals, assumptions, applications, and practical scenarios.",
  "questions": [
    {
      "id": 1,
      "questionText": "What is the main goal of Independent Component Analysis (ICA)?",
      "options": [
        "To separate a multivariate signal into additive independent components",
        "To predict a continuous target variable",
        "To cluster similar data points",
        "To reduce the dimensionality of data"
      ],
      "correctAnswerIndex": 0,
      "explanation": "ICA aims to decompose mixed signals into statistically independent components, often used in blind source separation."
    },
    {
      "id": 2,
      "questionText": "Which assumption is crucial for ICA?",
      "options": [
        "All features are equally scaled",
        "Components are statistically independent and non-Gaussian",
        "Components are Gaussian",
        "Data has no missing values"
      ],
      "correctAnswerIndex": 1,
      "explanation": "ICA requires that the underlying sources be statistically independent and non-Gaussian to successfully separate them."
    },
    {
      "id": 3,
      "questionText": "ICA is commonly applied in:",
      "options": [
        "Predicting stock prices",
        "Image recognition only",
        "Dimensionality reduction only",
        "Blind source separation, like separating mixed audio signals"
      ],
      "correctAnswerIndex": 3,
      "explanation": "ICA is widely used for separating mixed signals, such as audio, EEG, and financial signals, where independence is assumed."
    },
    {
      "id": 4,
      "questionText": "Scenario: You mix two audio signals into two recordings. Applying ICA:",
      "options": [
        "Will reduce dimensions only",
        "Will cluster the recordings",
        "Cannot do anything without labels",
        "Can recover the original separate audio sources"
      ],
      "correctAnswerIndex": 3,
      "explanation": "ICA can separate mixed signals into the original independent sources, assuming statistical independence."
    },
    {
      "id": 5,
      "questionText": "Which property differentiates ICA from PCA?",
      "options": [
        "ICA finds independent components, PCA finds uncorrelated components",
        "ICA reduces dimensions, PCA does not",
        "ICA works only for Gaussian data",
        "PCA requires independence, ICA does not"
      ],
      "correctAnswerIndex": 0,
      "explanation": "PCA decorrelates data but does not ensure independence. ICA focuses on statistical independence of components."
    },
    {
      "id": 6,
      "questionText": "Scenario: You apply ICA on 3 mixed signals but get more than 3 components. Likely reason?",
      "options": [
        "Algorithm error or wrong number of components specified",
        "Random initialization causes extra components",
        "Mixing is linear, so components must increase",
        "ICA always produces more components"
      ],
      "correctAnswerIndex": 0,
      "explanation": "The number of extracted independent components should not exceed the number of observed mixtures."
    },
    {
      "id": 7,
      "questionText": "ICA assumes the mixing process is:",
      "options": [
        "Nonlinear only",
        "Non-invertible",
        "Randomly noisy",
        "Linear and invertible"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Standard ICA assumes the observed signals are linear mixtures of independent sources, which allows recovery."
    },
    {
      "id": 8,
      "questionText": "Scenario: You apply ICA on EEG data. Purpose?",
      "options": [
        "Remove artifacts like eye blinks",
        "Reduce dimensionality only",
        "Cluster subjects",
        "Predict disease directly"
      ],
      "correctAnswerIndex": 0,
      "explanation": "ICA can separate EEG components and isolate artifacts for cleaner signal analysis."
    },
    {
      "id": 9,
      "questionText": "Which metric is commonly used to measure independence in ICA?",
      "options": [
        "Euclidean distance",
        "Correlation coefficient",
        "Variance explained",
        "Kurtosis or mutual information"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Non-Gaussianity measures like kurtosis or mutual information are used to quantify statistical independence."
    },
    {
      "id": 10,
      "questionText": "Scenario: Two independent sources are Gaussian. Applying ICA?",
      "options": [
        "Separation will work perfectly",
        "ICA will automatically decorrelate",
        "Cannot separate them because Gaussian sources do not satisfy ICA assumptions",
        "PCA is better"
      ],
      "correctAnswerIndex": 2,
      "explanation": "ICA requires non-Gaussian sources; Gaussian independent sources cannot be separated due to rotational ambiguity."
    },
    {
      "id": 11,
      "questionText": "Scenario: You observe mixed signals from two microphones. ICA aims to:",
      "options": [
        "Cluster the microphone locations",
        "Predict the next sound sample",
        "Reduce noise only",
        "Separate the original sound sources"
      ],
      "correctAnswerIndex": 3,
      "explanation": "ICA separates mixed signals into their statistically independent source components."
    },
    {
      "id": 12,
      "questionText": "What type of data scaling is usually recommended before ICA?",
      "options": [
        "Normalization to [0,1]",
        "Centering and whitening",
        "Log transformation",
        "No scaling needed"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Centering (zero mean) and whitening (decorrelation) improve ICA performance."
    },
    {
      "id": 13,
      "questionText": "Scenario: ICA applied on two mixed images. Output?",
      "options": [
        "Generate random noise",
        "Compress the images",
        "Recover original independent images",
        "Reduce image resolution"
      ],
      "correctAnswerIndex": 2,
      "explanation": "ICA can separate mixed signals in images, like separating overlapping patterns."
    },
    {
      "id": 14,
      "questionText": "ICA works best when sources are:",
      "options": [
        "Gaussian",
        "Non-Gaussian and independent",
        "Highly correlated",
        "Categorical"
      ],
      "correctAnswerIndex": 1,
      "explanation": "ICA relies on non-Gaussianity and independence to separate components successfully."
    },
    {
      "id": 15,
      "questionText": "Scenario: Two audio signals mixed linearly, ICA extracts 2 components. Issue if you extract 3?",
      "options": [
        "Extra component is meaningless",
        "Algorithm improves accuracy",
        "Signals become correlated",
        "Automatically reduces to 2"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Number of extracted components should match observed mixtures; extra components do not correspond to real sources."
    },
    {
      "id": 16,
      "questionText": "ICA differs from PCA because:",
      "options": [
        "ICA reduces dimensions, PCA does not",
        "PCA finds independent components, ICA finds uncorrelated components",
        "PCA decorrelates, ICA seeks independence",
        "ICA is supervised"
      ],
      "correctAnswerIndex": 2,
      "explanation": "PCA removes correlation, ICA removes higher-order dependencies (statistical independence)."
    },
    {
      "id": 17,
      "questionText": "Scenario: You want to denoise images using ICA. How?",
      "options": [
        "Randomly remove pixels",
        "Apply PCA only",
        "Cluster similar images",
        "Separate noise components from signals and remove them"
      ],
      "correctAnswerIndex": 3,
      "explanation": "ICA can isolate noise as an independent component, enabling its removal."
    },
    {
      "id": 18,
      "questionText": "Scenario: Applying ICA on mixed financial time series. Goal?",
      "options": [
        "Reduce time resolution",
        "Predict exact future prices",
        "Extract independent latent factors affecting markets",
        "Cluster assets"
      ],
      "correctAnswerIndex": 2,
      "explanation": "ICA identifies underlying independent sources driving observed mixed signals."
    },
    {
      "id": 19,
      "questionText": "ICA requires which property of the mixing matrix?",
      "options": [
        "Diagonal",
        "Singular",
        "Invertible",
        "Random"
      ],
      "correctAnswerIndex": 2,
      "explanation": "The mixing matrix must be invertible to recover the original sources."
    },
    {
      "id": 20,
      "questionText": "Scenario: Two signals are perfectly Gaussian. ICA outcome?",
      "options": [
        "Separation works normally",
        "Cannot separate sources due to rotational ambiguity",
        "Algorithm produces errors",
        "Signals are automatically decorrelated"
      ],
      "correctAnswerIndex": 1,
      "explanation": "ICA cannot separate Gaussian sources as any orthogonal rotation preserves Gaussianity."
    },
    {
      "id": 21,
      "questionText": "ICA can be used in which biomedical application?",
      "options": [
        "Genetic sequencing",
        "X-ray imaging only",
        "Blood pressure measurement",
        "EEG artifact removal"
      ],
      "correctAnswerIndex": 3,
      "explanation": "ICA is commonly used to separate eye-blink and muscle artifacts from EEG recordings."
    },
    {
      "id": 22,
      "questionText": "Scenario: ICA on audio + noise mixture. Noise is independent. Outcome?",
      "options": [
        "Noise can be separated and removed",
        "Signals become correlated",
        "Noise remains mixed",
        "Cannot separate due to Gaussian assumption"
      ],
      "correctAnswerIndex": 0,
      "explanation": "ICA can isolate independent noise components for removal."
    },
    {
      "id": 23,
      "questionText": "Scenario: ICA applied to images with overlapping letters. Goal?",
      "options": [
        "Predict next letter",
        "Separate individual letter images",
        "Remove color information",
        "Compress the image"
      ],
      "correctAnswerIndex": 1,
      "explanation": "ICA separates mixed patterns into independent sources, such as letters overlapping in images."
    },
    {
      "id": 24,
      "questionText": "Which algorithm is commonly used for ICA?",
      "options": [
        "K-means",
        "SVM",
        "FastICA",
        "Decision Tree"
      ],
      "correctAnswerIndex": 2,
      "explanation": "FastICA is a popular algorithm that maximizes non-Gaussianity to find independent components."
    },
    {
      "id": 25,
      "questionText": "Scenario: You mix 3 audio signals. Observed signals = 3. How many ICs can you extract?",
      "options": [
        "More than 3",
        "1",
        "At most 3",
        "Cannot extract any"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Number of independent components cannot exceed number of observed mixtures."
    },
    {
      "id": 26,
      "questionText": "Scenario: ICA applied to sensor signals with outliers. Best practice?",
      "options": [
        "Increase dimensions",
        "Ignore outliers",
        "Preprocess or remove outliers before ICA",
        "Randomly mix signals"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Outliers distort estimated independent components; preprocessing improves performance."
    },
    {
      "id": 27,
      "questionText": "Scenario: ICA on financial returns data. Why non-Gaussianity is needed?",
      "options": [
        "Independence does not matter",
        "Gaussian sources are easier",
        "Gaussian data cannot be analyzed",
        "Non-Gaussianity ensures sources are uniquely recoverable"
      ],
      "correctAnswerIndex": 3,
      "explanation": "ICA leverages higher-order statistics of non-Gaussian sources for unique separation."
    },
    {
      "id": 28,
      "questionText": "Scenario: ICA applied on images of faces. Use case?",
      "options": [
        "Identify independent facial features",
        "Predict identity directly",
        "Compress images",
        "Cluster faces only"
      ],
      "correctAnswerIndex": 0,
      "explanation": "ICA can extract independent features like eyes, nose, mouth patterns for face recognition."
    },
    {
      "id": 29,
      "questionText": "Scenario: Whitening is done before ICA. Why?",
      "options": [
        "Random initialization",
        "Reduces dimensionality only",
        "Reduces correlation and simplifies component extraction",
        "Removes labels"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Whitening transforms data to uncorrelated components, improving ICA convergence."
    },
    {
      "id": 30,
      "questionText": "Scenario: ICA applied to music mixture. Output components are rotated. Why?",
      "options": [
        "Algorithm failed",
        "Features are missing",
        "ICA is unique up to scaling and permutation",
        "Data is Gaussian"
      ],
      "correctAnswerIndex": 2,
      "explanation": "ICA components are identifiable only up to scaling and order; rotation/permutation does not affect independence."
    },
    {
      "id": 31,
      "questionText": "Scenario: ICA applied to mixed EEG signals. You observe one component is dominated by eye-blink artifacts. Best action?",
      "options": [
        "Keep all components",
        "Apply PCA only",
        "Remove that component to clean EEG",
        "Randomly select another component"
      ],
      "correctAnswerIndex": 2,
      "explanation": "ICA separates independent sources; removing artifact-dominated components cleans the EEG signal."
    },
    {
      "id": 32,
      "questionText": "ICA assumes that the sources are:",
      "options": [
        "Correlated and Gaussian",
        "Non-Gaussian and statistically independent",
        "Categorical only",
        "Binary and independent"
      ],
      "correctAnswerIndex": 1,
      "explanation": "ICA relies on non-Gaussianity and independence to successfully separate mixed signals."
    },
    {
      "id": 33,
      "questionText": "Scenario: Two mixed audio signals, one is nearly Gaussian. Applying ICA?",
      "options": [
        "Algorithm automatically converts to non-Gaussian",
        "Separation works perfectly",
        "May not separate Gaussian source",
        "Ignore the Gaussian source"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Gaussian sources cannot be uniquely separated due to rotational ambiguity in ICA."
    },
    {
      "id": 34,
      "questionText": "Scenario: You apply ICA on financial time series. One extracted component shows sudden spikes. Likely reason?",
      "options": [
        "Independent shock or outlier in market data",
        "Gaussian assumption violated",
        "Algorithm failure",
        "Too few observations"
      ],
      "correctAnswerIndex": 0,
      "explanation": "ICA separates independent sources; sudden spikes may correspond to independent events or outliers."
    },
    {
      "id": 35,
      "questionText": "ICA can be combined with PCA. Why?",
      "options": [
        "PCA improves independence",
        "Reduce dimensionality and noise before applying ICA",
        "Only for visualization",
        "ICA replaces PCA"
      ],
      "correctAnswerIndex": 1,
      "explanation": "PCA whitening simplifies ICA computation and reduces noise in high-dimensional data."
    },
    {
      "id": 36,
      "questionText": "Scenario: ICA applied to two mixed audio signals. Number of sources = number of observations. What if more sources than observations?",
      "options": [
        "ICA works normally",
        "Cannot fully recover sources",
        "Ignore extra sources",
        "Extra sources merged automatically"
      ],
      "correctAnswerIndex": 1,
      "explanation": "ICA requires the number of observed mixtures ≥ number of sources for unique recovery."
    },
    {
      "id": 37,
      "questionText": "ICA maximizes:",
      "options": [
        "Variance explained",
        "Non-Gaussianity of components",
        "Correlation between signals",
        "Euclidean distance"
      ],
      "correctAnswerIndex": 1,
      "explanation": "ICA algorithms maximize non-Gaussianity (kurtosis, negentropy) to find independent components."
    },
    {
      "id": 38,
      "questionText": "Scenario: ICA on images with overlapping text. Extracted component is noisy. Solution?",
      "options": [
        "Apply PCA only",
        "Remove components randomly",
        "Preprocess images, apply filtering, then ICA",
        "Increase number of components"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Noise can be reduced by preprocessing before ICA for clearer separation."
    },
    {
      "id": 39,
      "questionText": "Scenario: You use ICA for blind source separation of mixed speech signals. One component is silent. Likely cause?",
      "options": [
        "Gaussian assumption violated",
        "Random initialization failed",
        "Algorithm error",
        "ICA extracted a component with very low contribution from sources"
      ],
      "correctAnswerIndex": 3,
      "explanation": "ICA may extract components with negligible variance, appearing silent but still independent."
    },
    {
      "id": 40,
      "questionText": "Scenario: ICA applied to EEG, but one channel shows mixture of multiple brain regions. Why?",
      "options": [
        "Algorithm failed",
        "Signal is mixed; ICA separates independent sources, but spatial resolution limited",
        "Data is Gaussian",
        "Channel is corrupted"
      ],
      "correctAnswerIndex": 1,
      "explanation": "ICA can separate sources, but physical sensor overlap may cause mixed contributions."
    },
    {
      "id": 41,
      "questionText": "Scenario: ICA applied on high-dimensional dataset. Observed singular matrix. Solution?",
      "options": [
        "Ignore issue",
        "Apply PCA for dimensionality reduction before ICA",
        "Increase output dimensions",
        "Remove random features"
      ],
      "correctAnswerIndex": 1,
      "explanation": "High-dimensional data can cause singular covariance; PCA reduces dimensions and stabilizes ICA."
    },
    {
      "id": 42,
      "questionText": "Scenario: ICA applied to audio signals with strong noise. Best approach?",
      "options": [
        "Reduce number of components",
        "Increase ICA iterations",
        "Preprocess to reduce noise or apply filtering",
        "Use raw signals"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Noise affects ICA separation; preprocessing improves quality."
    },
    {
      "id": 43,
      "questionText": "Scenario: ICA applied on two mixed images; one image is highly uniform. Effect?",
      "options": [
        "Algorithm automatically enhances it",
        "ICA may have difficulty separating low-variance components",
        "No effect",
        "Outputs random component"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Low-variance sources contribute little to the mixture, making separation challenging."
    },
    {
      "id": 44,
      "questionText": "Scenario: ICA applied to mixed sensor signals, some channels missing. Effect?",
      "options": [
        "Data automatically interpolated",
        "ICA works normally",
        "Algorithm generates random values",
        "Cannot fully recover sources"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Missing observations reduce information; ICA cannot recover all independent components."
    },
    {
      "id": 45,
      "questionText": "Scenario: ICA on audio and image data combined. Feasible?",
      "options": [
        "Only images can be separated",
        "No, ICA works only for audio",
        "Yes, if signals are mixed and independent",
        "Only if data is Gaussian"
      ],
      "correctAnswerIndex": 2,
      "explanation": "ICA separates independent components regardless of domain, provided assumptions hold."
    },
    {
      "id": 46,
      "questionText": "Scenario: ICA applied to EEG signals. A component contains mixed artifacts. Why?",
      "options": [
        "Artifacts may not be perfectly independent",
        "Gaussian assumption violated",
        "Number of components too high",
        "Algorithm error"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Non-perfect independence of sources may cause mixed artifact components."
    },
    {
      "id": 47,
      "questionText": "ICA vs PCA: Which captures higher-order statistics?",
      "options": [
        "PCA",
        "ICA",
        "Neither",
        "Both equally"
      ],
      "correctAnswerIndex": 1,
      "explanation": "ICA uses higher-order statistics (non-Gaussianity), while PCA relies only on covariance (second-order statistics)."
    },
    {
      "id": 48,
      "questionText": "Scenario: ICA applied on two mixed audio tracks. Output shows small artifacts. Best practice?",
      "options": [
        "Discard ICA result",
        "Randomly re-initialize algorithm",
        "Increase number of components",
        "Post-process with filtering or denoising"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Post-processing can clean residual artifacts after ICA separation."
    },
    {
      "id": 49,
      "questionText": "Scenario: ICA applied to financial signals. One component is highly skewed. Why?",
      "options": [
        "ICA extracts non-Gaussian independent components, skewed distributions are typical",
        "Noise corrupted data",
        "Algorithm failed",
        "Increase number of components"
      ],
      "correctAnswerIndex": 0,
      "explanation": "ICA maximizes non-Gaussianity; skewed components are expected and represent independent sources."
    },
    {
      "id": 50,
      "questionText": "Scenario: ICA applied on audio signals. Components randomly scaled. Why?",
      "options": [
        "Algorithm failed",
        "Number of components wrong",
        "Data is Gaussian",
        "ICA components are identifiable up to scaling and permutation"
      ],
      "correctAnswerIndex": 3,
      "explanation": "ICA cannot determine original amplitude; scaling ambiguity is inherent in ICA."
    },
    {
      "id": 51,
      "questionText": "Scenario: ICA applied to two mixed images, one component inverted. Reason?",
      "options": [
        "Gaussian assumption violated",
        "ICA components are determined up to sign (polarity) ambiguity",
        "Algorithm error",
        "Noise dominance"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Sign ambiguity is common in ICA; independent components may appear inverted but remain valid."
    },
    {
      "id": 52,
      "questionText": "Scenario: You want to reduce dimensionality but retain independent features. Strategy?",
      "options": [
        "Apply PCA only",
        "Combine PCA for whitening, then ICA",
        "Apply ICA only",
        "Randomly remove features"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Whitening via PCA reduces dimensionality and removes correlations, improving ICA performance."
    },
    {
      "id": 53,
      "questionText": "Scenario: ICA applied to mixed music recordings. Some components overlap in frequency. Effect?",
      "options": [
        "Algorithm fails entirely",
        "No effect",
        "Partial separation; ICA may not fully disentangle overlapping frequency bands",
        "Complete separation"
      ],
      "correctAnswerIndex": 2,
      "explanation": "ICA separates independent sources; overlapping frequency bands can reduce separation quality."
    },
    {
      "id": 54,
      "questionText": "Scenario: ICA applied to EEG with eye blink artifacts. Component shows partial overlap with brain signals. Action?",
      "options": [
        "Carefully remove or attenuate artifact component to avoid losing brain signal",
        "Keep all components",
        "Remove completely",
        "Apply PCA only"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Overlapping components may contain both artifact and signal; selective attenuation preserves information."
    },
    {
      "id": 55,
      "questionText": "Scenario: ICA applied on audio mixture; one speaker quiet. Component extracted is faint. Why?",
      "options": [
        "Algorithm failed",
        "Source contribution is low, reflected in component magnitude",
        "Gaussian assumption violated",
        "Random initialization"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Components magnitude reflects source contribution; faint signals indicate weak source presence."
    },
    {
      "id": 56,
      "questionText": "ICA is particularly useful when signals are:",
      "options": [
        "Nonlinear only",
        "Gaussian and correlated",
        "Linearly mixed and non-Gaussian",
        "Categorical"
      ],
      "correctAnswerIndex": 2,
      "explanation": "ICA assumes linear mixing and non-Gaussian independent sources for successful separation."
    },
    {
      "id": 57,
      "questionText": "Scenario: ICA on mixed images produces components rotated. Reason?",
      "options": [
        "Algorithm error",
        "Data too noisy",
        "ICA components are identifiable only up to rotation, scaling, and permutation",
        "Gaussian assumption violated"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Rotation ambiguity is inherent; components may appear rotated but remain valid independent sources."
    },
    {
      "id": 58,
      "questionText": "Scenario: ICA applied to noisy EEG signals. Preprocessing includes:",
      "options": [
        "Removing labels only",
        "Random sampling",
        "Centering, whitening, artifact filtering",
        "No preprocessing"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Preprocessing enhances ICA performance by decorrelating signals and reducing noise."
    },
    {
      "id": 59,
      "questionText": "Scenario: ICA applied to financial data. Extracted component shows extreme values occasionally. Reason?",
      "options": [
        "Gaussian assumption violated",
        "Algorithm error",
        "Data missing",
        "Represents independent market shocks or events"
      ],
      "correctAnswerIndex": 3,
      "explanation": "ICA isolates independent events; extreme values may correspond to real shocks in sources."
    },
    {
      "id": 60,
      "questionText": "Scenario: ICA applied to audio mixture, one component silent. Best approach?",
      "options": [
        "Check source contribution; low-energy components may appear silent",
        "Increase iterations",
        "Mix signals randomly",
        "Discard ICA result"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Low-contribution sources produce faint components; it is normal in ICA separation."
    },
    {
      "id": 61,
      "questionText": "ICA assumes that the number of sources is:",
      "options": [
        "Always greater than mixtures",
        "Less than or equal to the number of observed mixtures",
        "Irrelevant",
        "Equal to one"
      ],
      "correctAnswerIndex": 1,
      "explanation": "ICA cannot separate more sources than observed signals; otherwise, the problem is underdetermined."
    },
    {
      "id": 62,
      "questionText": "Scenario: ICA applied on images of overlapping objects. Components are partially mixed. Solution?",
      "options": [
        "Randomly rotate components",
        "Discard ICA",
        "Improve preprocessing, reduce noise, adjust number of components",
        "Increase output dimension"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Better preprocessing and correct component selection improve separation quality."
    },
    {
      "id": 63,
      "questionText": "Scenario: ICA applied to audio, separated component inverted. Why?",
      "options": [
        "Algorithm failed",
        "Gaussian assumption violated",
        "Sign ambiguity is inherent in ICA",
        "Noise dominates"
      ],
      "correctAnswerIndex": 2,
      "explanation": "ICA components may be scaled and inverted; this does not affect independence."
    },
    {
      "id": 64,
      "questionText": "Scenario: ICA applied to mixed audio signals, one component shows slight distortion. Likely cause?",
      "options": [
        "Sources are not perfectly independent or noise present",
        "Algorithm failure",
        "Gaussian assumption violated",
        "Too few iterations"
      ],
      "correctAnswerIndex": 0,
      "explanation": "ICA assumes independence; slight dependence or noise can cause minor distortions in separated components."
    },
    {
      "id": 65,
      "questionText": "Scenario: You apply ICA to multi-sensor EEG recordings. Some components show mixed brain regions. Reason?",
      "options": [
        "Physical sensors capture overlapping signals; ICA cannot fully separate",
        "Algorithm failed",
        "Data is Gaussian",
        "Number of components too high"
      ],
      "correctAnswerIndex": 0,
      "explanation": "ICA separates independent sources, but sensor overlap can mix contributions from multiple regions."
    },
    {
      "id": 66,
      "questionText": "Scenario: ICA applied to images; one extracted component is nearly zero. Likely cause?",
      "options": [
        "Algorithm error",
        "The source has very low variance or contribution",
        "Gaussian assumption violated",
        "Too many iterations"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Low-variance sources appear faint or nearly zero in ICA outputs; this is normal behavior."
    },
    {
      "id": 67,
      "questionText": "Scenario: ICA applied to EEG data, but noise dominates. Best approach?",
      "options": [
        "Ignore noise",
        "Increase number of components",
        "Preprocess signals to remove artifacts before ICA",
        "Apply random scaling"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Preprocessing to remove artifacts improves ICA performance and separation quality."
    },
    {
      "id": 68,
      "questionText": "Scenario: ICA applied on financial data. Extracted components show skewed distributions. Why?",
      "options": [
        "Algorithm failed",
        "ICA extracts non-Gaussian independent components; skewness is expected",
        "Gaussian assumption violated",
        "Data incomplete"
      ],
      "correctAnswerIndex": 1,
      "explanation": "ICA maximizes non-Gaussianity, so skewed components reflect true independent sources."
    },
    {
      "id": 69,
      "questionText": "Scenario: ICA applied to mixed audio; one component appears inverted. Reason?",
      "options": [
        "Algorithm error",
        "Noise dominates",
        "ICA components are identifiable only up to sign (polarity) ambiguity",
        "Gaussian assumption violated"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Sign ambiguity is inherent in ICA; inverted components are valid independent sources."
    },
    {
      "id": 70,
      "questionText": "Scenario: ICA applied to multi-channel EEG, some channels missing. Effect?",
      "options": [
        "Algorithm produces random components",
        "Cannot fully recover all independent sources",
        "Gaussian assumption fails",
        "ICA works normally"
      ],
      "correctAnswerIndex": 1,
      "explanation": "ICA requires enough observed signals; missing channels reduce information and prevent full source recovery."
    },
    {
      "id": 71,
      "questionText": "Scenario: You applied ICA on EEG data with 64 channels and extracted 64 components. Some components are mixtures of multiple brain signals. Likely reason?",
      "options": [
        "Algorithm failed",
        "Gaussian assumption violated",
        "Sources are not perfectly independent and sensors pick overlapping signals",
        "Noise dominates"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Even with sufficient components, overlapping signals and partial dependence can cause mixed components."
    },
    {
      "id": 72,
      "questionText": "Scenario: ICA applied to financial returns of multiple assets. Some components show extreme spikes. Interpretation?",
      "options": [
        "Algorithm failure",
        "Gaussian sources assumption violated",
        "Represents independent shocks in the market",
        "Data insufficient"
      ],
      "correctAnswerIndex": 2,
      "explanation": "ICA isolates independent sources; extreme spikes can correspond to sudden market events or shocks."
    },
    {
      "id": 73,
      "questionText": "Scenario: You mix three audio sources into two channels. Applying ICA?",
      "options": [
        "Cannot fully recover all sources; problem is underdetermined",
        "ICA works normally",
        "Extra components are generated automatically",
        "Components become Gaussian"
      ],
      "correctAnswerIndex": 0,
      "explanation": "ICA requires the number of observed mixtures ≥ number of sources; fewer mixtures make full recovery impossible."
    },
    {
      "id": 74,
      "questionText": "Scenario: ICA applied on multi-sensor EEG with strong noise. Some components dominated by noise. Recommended action?",
      "options": [
        "Ignore noise",
        "Reduce number of components",
        "Preprocess signals to reduce noise and artifacts before ICA",
        "Apply PCA only"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Noise can dominate ICA outputs; preprocessing ensures cleaner separation of meaningful sources."
    },
    {
      "id": 75,
      "questionText": "Scenario: ICA applied to images with overlapping handwritten letters. One extracted component is faint and noisy. Likely reason?",
      "options": [
        "Algorithm failed",
        "Gaussian assumption violated",
        "Low variance of source or high noise contribution",
        "Too many components extracted"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Low-contribution sources appear faint; preprocessing or filtering can improve component clarity."
    },
    {
      "id": 76,
      "questionText": "Scenario: ICA applied to mixed audio signals. Extracted components randomly scaled. Why?",
      "options": [
        "Gaussian assumption violated",
        "Algorithm error",
        "ICA components are identifiable up to scaling and permutation",
        "Data insufficient"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Scaling ambiguity is inherent in ICA; absolute amplitude cannot be determined."
    },
    {
      "id": 77,
      "questionText": "Scenario: ICA applied to multi-sensor EEG data; one component contains both eye-blink artifacts and brain signals. Best practice?",
      "options": [
        "Remove entire component",
        "Apply PCA only",
        "Ignore and keep all components",
        "Carefully attenuate artifact without removing valuable brain signals"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Overlapping components require careful processing to preserve meaningful information while reducing artifacts."
    },
    {
      "id": 78,
      "questionText": "Scenario: ICA applied on financial time series. One extracted component shows skewed returns distribution. Interpretation?",
      "options": [
        "Algorithm failed",
        "Reflects independent non-Gaussian factors driving the market",
        "Gaussian assumption violated",
        "Data insufficient"
      ],
      "correctAnswerIndex": 1,
      "explanation": "ICA extracts non-Gaussian independent components; skewness indicates independent market factors."
    },
    {
      "id": 79,
      "questionText": "Scenario: ICA applied to audio signals. One extracted component is nearly silent. Reason?",
      "options": [
        "Algorithm failed",
        "Source contribution to the mixture is very low",
        "Gaussian assumption violated",
        "Random initialization failed"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Faint components reflect sources with low variance or weak presence in the mixtures."
    },
    {
      "id": 80,
      "questionText": "Scenario: ICA applied on EEG with missing channels. Effect?",
      "options": [
        "Algorithm works normally",
        "Components are random",
        "Cannot fully recover all independent sources",
        "Gaussian assumption violated"
      ],
      "correctAnswerIndex": 2,
      "explanation": "ICA requires enough observed signals; missing channels reduce information and prevent full separation."
    },
    {
      "id": 81,
      "questionText": "Scenario: ICA applied to high-dimensional images. Some components are mixtures of multiple features. Recommended action?",
      "options": [
        "Increase number of components",
        "Randomly remove features",
        "Ignore and use ICA directly",
        "Apply PCA for dimensionality reduction and whitening before ICA"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Dimensionality reduction and whitening improve ICA stability and separation in high-dimensional data."
    },
    {
      "id": 82,
      "questionText": "Scenario: ICA applied on mixed audio, some frequency bands overlap. Outcome?",
      "options": [
        "Complete separation",
        "Algorithm fails entirely",
        "No effect",
        "Partial separation; overlapping frequencies reduce effectiveness"
      ],
      "correctAnswerIndex": 3,
      "explanation": "ICA assumes independence; overlapping frequency content may limit perfect separation."
    },
    {
      "id": 83,
      "questionText": "Scenario: ICA applied on EEG signals with eye-blink artifacts. Some components contain both artifacts and brain signals. Action?",
      "options": [
        "Keep all components",
        "Apply PCA only",
        "Remove entire component",
        "Selective attenuation to remove artifacts without losing brain activity"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Careful component processing preserves useful information while reducing artifacts."
    },
    {
      "id": 84,
      "questionText": "Scenario: ICA applied to two mixed images; extracted components inverted in polarity. Reason?",
      "options": [
        "Gaussian assumption violated",
        "Sign ambiguity is inherent in ICA",
        "Noise dominates",
        "Algorithm error"
      ],
      "correctAnswerIndex": 1,
      "explanation": "ICA components can have arbitrary sign; inversion does not affect independence."
    },
    {
      "id": 85,
      "questionText": "Scenario: ICA applied to multi-sensor EEG with strong artifacts. Components show partial mixing. Likely reason?",
      "options": [
        "Data insufficient",
        "Gaussian assumption violated",
        "Algorithm failed",
        "Sources are not perfectly independent or sensor overlap exists"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Partial dependence or overlapping sensor recordings can cause mixed components."
    },
    {
      "id": 86,
      "questionText": "Scenario: ICA applied to audio mixture; faint component extracted. Best interpretation?",
      "options": [
        "Algorithm failed",
        "Component corresponds to source with low contribution to mixture",
        "Gaussian assumption violated",
        "Too many iterations"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Low-energy sources produce faint components, which is normal in ICA."
    },
    {
      "id": 87,
      "questionText": "Scenario: ICA applied on EEG with 128 channels. Extracted components appear noisy. Recommended step?",
      "options": [
        "Discard ICA result",
        "Randomly mix channels",
        "Increase number of components",
        "Preprocess with filtering and artifact removal before ICA"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Preprocessing improves signal quality and ICA separation."
    },
    {
      "id": 88,
      "questionText": "Scenario: ICA applied to financial signals. Extracted component has extreme outliers. Likely interpretation?",
      "options": [
        "Algorithm failure",
        "Gaussian assumption violated",
        "Represents independent extreme market events",
        "Data missing"
      ],
      "correctAnswerIndex": 2,
      "explanation": "ICA isolates independent sources; extreme values may correspond to real shocks or events."
    },
    {
      "id": 89,
      "questionText": "Scenario: ICA applied on multi-sensor EEG; some components appear to be mixtures of several brain sources. Why?",
      "options": [
        "Algorithm failed",
        "Partial dependence or overlapping sensor recordings",
        "Gaussian assumption violated",
        "Number of components too high"
      ],
      "correctAnswerIndex": 1,
      "explanation": "ICA assumes independence; overlapping measurements can create mixed components."
    },
    {
      "id": 90,
      "questionText": "Scenario: ICA applied to mixed audio; one component appears silent. Action?",
      "options": [
        "Randomly re-initialize algorithm",
        "Discard ICA result",
        "Increase number of components",
        "Check source contribution; low-energy sources may appear silent"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Silent components usually reflect sources with minimal contribution; not a failure."
    },
    {
      "id": 91,
      "questionText": "Scenario: ICA applied on EEG with missing channels. Solution?",
      "options": [
        "Collect more channels or use methods for missing data",
        "Ignore missing channels",
        "Randomly fill missing data",
        "Apply PCA only"
      ],
      "correctAnswerIndex": 0,
      "explanation": "ICA requires sufficient observed signals; missing channels prevent full source recovery."
    },
    {
      "id": 92,
      "questionText": "Scenario: ICA applied on mixed images; low-variance components faint. Best approach?",
      "options": [
        "Discard faint components",
        "Enhance preprocessing or use more observations",
        "Increase ICA iterations only",
        "Randomly mix images"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Low-variance sources require preprocessing and sufficient data for effective separation."
    },
    {
      "id": 93,
      "questionText": "Scenario: ICA applied to EEG with eye-blink and muscle artifacts. Some components overlap. Action?",
      "options": [
        "Apply PCA only",
        "Keep all components",
        "Selective attenuation to remove artifacts without losing brain signal",
        "Remove all overlapping components"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Overlapping components require careful attenuation to preserve meaningful signals."
    },
    {
      "id": 94,
      "questionText": "Scenario: ICA applied on audio mixture; overlapping frequency content. Effect?",
      "options": [
        "Algorithm fails",
        "Partial separation; overlapping reduces effectiveness",
        "No effect",
        "Complete separation"
      ],
      "correctAnswerIndex": 1,
      "explanation": "ICA cannot perfectly separate overlapping frequencies; independence assumption is partially violated."
    },
    {
      "id": 95,
      "questionText": "Scenario: ICA applied to EEG with noisy channels. Recommended preprocessing?",
      "options": [
        "Filtering, artifact removal, centering, whitening",
        "Randomly remove channels",
        "Apply ICA directly",
        "Ignore preprocessing"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Preprocessing improves signal quality and ICA separation."
    },
    {
      "id": 96,
      "questionText": "Scenario: ICA applied to financial data; extracted component shows heavy skew. Interpretation?",
      "options": [
        "Data missing",
        "Represents independent non-Gaussian market factor",
        "Algorithm failed",
        "Gaussian assumption violated"
      ],
      "correctAnswerIndex": 1,
      "explanation": "ICA identifies independent non-Gaussian factors; skewness reflects this property."
    },
    {
      "id": 97,
      "questionText": "Scenario: ICA applied to multi-channel EEG; some components inverted. Reason?",
      "options": [
        "Algorithm error",
        "Noise dominates",
        "Sign ambiguity inherent in ICA",
        "Gaussian assumption violated"
      ],
      "correctAnswerIndex": 2,
      "explanation": "ICA components may appear inverted due to sign ambiguity; still valid."
    },
    {
      "id": 98,
      "questionText": "Scenario: ICA applied to audio signals; faint or near-zero components. Best explanation?",
      "options": [
        "Algorithm failed",
        "Gaussian assumption violated",
        "Low-contribution sources produce faint components",
        "Random initialization failed"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Components magnitude reflects source contribution; faint components indicate weak sources."
    },
    {
      "id": 99,
      "questionText": "Scenario: ICA applied on EEG; extracted components partially mixed. Solution?",
      "options": [
        "Increase ICA iterations only",
        "Randomly mix channels",
        "Improve preprocessing, adjust number of components, and check sensor overlap",
        "Discard ICA result"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Proper preprocessing and component selection improve separation of partially mixed sources."
    },
    {
      "id": 100,
      "questionText": "Scenario: ICA applied on audio mixture; one component dominated by noise. Best practice?",
      "options": [
        "Increase number of components",
        "Apply PCA only",
        "Preprocess to remove noise before ICA",
        "Ignore noise"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Noise can dominate ICA; preprocessing ensures meaningful source separation."
    }
  ]
}