File size: 47,584 Bytes
0d00d62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
{
  "title": "Generative Models Mastery: 100 MCQs",
  "description": "A complete 100-question set covering fundamental concepts, algorithms, architectures, optimization techniques, and applications of Generative Models.",
  "questions": [
    {
      "id": 1,
      "questionText": "What is the primary goal of a generative model?",
      "options": [
        "To classify input data into categories",
        "To cluster data points",
        "To reduce dimensionality of data",
        "To generate new data samples similar to the training data"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Generative models aim to learn the underlying distribution of the data and generate new samples that resemble the training data."
    },
    {
      "id": 2,
      "questionText": "Which of the following is a type of generative model?",
      "options": [
        "Random Forest",
        "K-Means Clustering",
        "Variational Autoencoder (VAE)",
        "Support Vector Machine (SVM)"
      ],
      "correctAnswerIndex": 2,
      "explanation": "VAEs are generative models that learn a latent representation and can generate new data samples."
    },
    {
      "id": 3,
      "questionText": "In generative modeling, what does the term 'latent space' refer to?",
      "options": [
        "The output prediction space",
        "A lower-dimensional representation capturing the underlying factors of variation",
        "A space for storing training labels",
        "The input feature space"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Latent space encodes the hidden factors that capture important structure in the data, which can be used for generation."
    },
    {
      "id": 4,
      "questionText": "Which of the following models uses a game-theoretic approach to generate data?",
      "options": [
        "Naive Bayes",
        "Variational Autoencoder (VAE)",
        "Generative Adversarial Network (GAN)",
        "Principal Component Analysis (PCA)"
      ],
      "correctAnswerIndex": 2,
      "explanation": "GANs consist of a generator and a discriminator competing in a minimax game to generate realistic samples."
    },
    {
      "id": 5,
      "questionText": "What distinguishes a generative model from a discriminative model?",
      "options": [
        "Generative models learn the data distribution, discriminative models learn decision boundaries",
        "Discriminative models are always unsupervised",
        "Generative models only classify data, discriminative models generate data",
        "Generative models cannot be probabilistic, discriminative models can"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Generative models learn P(x) or P(x, y), whereas discriminative models learn P(y|x) to classify data."
    },
    {
      "id": 6,
      "questionText": "Which of the following is a probabilistic generative model?",
      "options": [
        "Naive Bayes",
        "Decision Tree",
        "SVM",
        "K-Nearest Neighbors"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Naive Bayes models the joint probability of features and class labels, making it a probabilistic generative model."
    },
    {
      "id": 7,
      "questionText": "What is a key application of generative models in computer vision?",
      "options": [
        "Color quantization",
        "Edge detection",
        "Image synthesis and inpainting",
        "Classification of handwritten digits"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Generative models can produce realistic images, fill missing parts, or create new images from learned distributions."
    },
    {
      "id": 8,
      "questionText": "Which loss function is commonly used in Variational Autoencoders (VAE)?",
      "options": [
        "Mean squared error only",
        "Hinge loss",
        "Reconstruction loss + KL divergence",
        "Cross-entropy loss"
      ],
      "correctAnswerIndex": 2,
      "explanation": "VAE optimizes reconstruction loss to reconstruct input data and KL divergence to regularize the latent space."
    },
    {
      "id": 9,
      "questionText": "In GANs, what is the role of the discriminator?",
      "options": [
        "To calculate reconstruction error",
        "To generate new data samples",
        "To distinguish real data from generated data",
        "To compress data into latent space"
      ],
      "correctAnswerIndex": 2,
      "explanation": "The discriminator evaluates whether a given sample is real or generated, providing feedback to the generator."
    },
    {
      "id": 10,
      "questionText": "What is a common challenge in training GANs?",
      "options": [
        "Vanishing gradient in VAE encoder",
        "Mode collapse",
        "Lack of reconstruction loss",
        "Overfitting on the latent space"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Mode collapse occurs when the generator produces limited variety, failing to cover the full data distribution."
    },
    {
      "id": 11,
      "questionText": "Which model can both encode and generate data samples?",
      "options": [
        "K-Means",
        "SVM",
        "Decision Tree",
        "Autoencoder"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Autoencoders compress data into a latent space (encoding) and reconstruct it (decoding), enabling generation."
    },
    {
      "id": 12,
      "questionText": "In a VAE, why is the latent space regularized?",
      "options": [
        "To ensure maximum likelihood estimation",
        "To allow smooth sampling and meaningful interpolation",
        "To prevent overfitting on labels",
        "To increase reconstruction error"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Regularizing the latent space with KL divergence ensures that points sampled from the prior produce realistic outputs."
    },
    {
      "id": 13,
      "questionText": "Which generative model is non-probabilistic?",
      "options": [
        "Hidden Markov Model",
        "Gaussian Mixture Model",
        "Variational Autoencoder (VAE)",
        "Vanilla Autoencoder"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Vanilla autoencoders learn deterministic mappings and do not model probability distributions explicitly."
    },
    {
      "id": 14,
      "questionText": "Which of the following is an example of a sequential generative model?",
      "options": [
        "Decision Tree",
        "Convolutional Neural Network (CNN)",
        "K-Means",
        "Recurrent Neural Network (RNN) based language models"
      ],
      "correctAnswerIndex": 3,
      "explanation": "RNN-based models can generate sequences like text or music by learning sequential dependencies."
    },
    {
      "id": 15,
      "questionText": "Which generative model explicitly models the joint probability distribution of the data?",
      "options": [
        "K-Nearest Neighbors",
        "Feedforward Neural Network Classifier",
        "Gaussian Mixture Model (GMM)",
        "PCA"
      ],
      "correctAnswerIndex": 2,
      "explanation": "GMM models P(x) as a mixture of Gaussian distributions, capturing the underlying data distribution."
    },
    {
      "id": 16,
      "questionText": "In GAN training, what does the generator aim to maximize?",
      "options": [
        "The KL divergence",
        "The reconstruction loss",
        "The classification accuracy",
        "The probability of the discriminator being mistaken"
      ],
      "correctAnswerIndex": 3,
      "explanation": "The generator tries to produce samples that fool the discriminator into classifying them as real."
    },
    {
      "id": 17,
      "questionText": "What is a key difference between VAE and GAN?",
      "options": [
        "GAN cannot generate images",
        "VAE is probabilistic and uses reconstruction loss; GAN uses adversarial loss",
        "Both are deterministic autoencoders",
        "VAE uses adversarial loss; GAN uses reconstruction loss"
      ],
      "correctAnswerIndex": 1,
      "explanation": "VAE models a probabilistic latent space and reconstruction loss, while GANs use a generator-discriminator game with adversarial loss."
    },
    {
      "id": 18,
      "questionText": "Which type of generative model is suitable for clustering mixed continuous and categorical data?",
      "options": [
        "RNN",
        "Gaussian Mixture Model (GMM)",
        "SVM",
        "Convolutional Autoencoder"
      ],
      "correctAnswerIndex": 1,
      "explanation": "GMMs can model continuous data probabilistically, and extensions exist for mixed data types."
    },
    {
      "id": 19,
      "questionText": "What is the primary evaluation metric for generative models in image synthesis?",
      "options": [
        "Classification accuracy",
        "Mean squared error on labels",
        "Confusion matrix",
        "Inception Score (IS) or FID"
      ],
      "correctAnswerIndex": 3,
      "explanation": "IS and FID measure the quality and diversity of generated images compared to real data."
    },
    {
      "id": 20,
      "questionText": "Which of the following can generative models be used for in NLP?",
      "options": [
        "Word classification only",
        "Sentence segmentation",
        "Text generation and language modeling",
        "Named entity recognition exclusively"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Generative models like RNNs or Transformers can generate coherent text sequences or predict next words."
    },
    {
      "id": 21,
      "questionText": "Which approach is commonly used to stabilize GAN training?",
      "options": [
        "Using deterministic latent space",
        "Increasing KL divergence weight",
        "Removing the generator",
        "Label smoothing and batch normalization"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Label smoothing and normalization techniques help prevent instability in the generator-discriminator game."
    },
    {
      "id": 22,
      "questionText": "Which generative model can model complex, multi-modal distributions explicitly?",
      "options": [
        "Linear Regression",
        "Standard Autoencoder",
        "Decision Tree",
        "Normalizing Flows"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Normalizing flows model complex distributions by transforming a simple base distribution via invertible functions."
    },
    {
      "id": 23,
      "questionText": "Which of these models learns by minimizing divergence between true data distribution and model distribution?",
      "options": [
        "Variational Autoencoder",
        "K-Means",
        "Random Forest",
        "Decision Tree"
      ],
      "correctAnswerIndex": 0,
      "explanation": "VAE minimizes reconstruction loss plus KL divergence, aligning the latent distribution with a prior."
    },
    {
      "id": 24,
      "questionText": "Which type of generative model is based on a chain of conditional probabilities?",
      "options": [
        "GANs",
        "Autoregressive models",
        "Feedforward Neural Networks",
        "VAEs"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Autoregressive models predict each element conditioned on previous elements, modeling the joint distribution sequentially."
    },
    {
      "id": 25,
      "questionText": "What is a limitation of simple autoencoders as generative models?",
      "options": [
        "They are deterministic and cannot sample new points smoothly",
        "They overfit the discriminator",
        "They cannot reduce dimensionality",
        "They require adversarial loss"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Simple autoencoders do not model probability distributions, so sampling new latent points may not generate realistic data."
    },
    {
      "id": 26,
      "questionText": "Which of the following is a key property of a probabilistic generative model?",
      "options": [
        "It performs clustering only",
        "It estimates P(x) or P(x, y)",
        "It maximizes classification accuracy",
        "It does not use probability distributions"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Probabilistic generative models explicitly model probability distributions of data or data-label pairs."
    },
    {
      "id": 27,
      "questionText": "In conditional GANs (cGANs), what is provided to the generator additionally?",
      "options": [
        "Only random noise",
        "The discriminator's parameters",
        "Conditioning information such as class labels",
        "Reconstruction loss"
      ],
      "correctAnswerIndex": 2,
      "explanation": "cGANs use additional conditioning variables to control the type of data generated, e.g., generating specific class images."
    },
    {
      "id": 28,
      "questionText": "Which generative model is best for sequence-to-sequence data?",
      "options": [
        "Autoencoders without temporal structure",
        "Gaussian Mixture Models",
        "CNNs only",
        "RNN-based or Transformer models"
      ],
      "correctAnswerIndex": 3,
      "explanation": "RNNs or Transformers can handle sequential dependencies, making them suitable for generating sequences."
    },
    {
      "id": 29,
      "questionText": "Which of the following is a key challenge in training VAEs?",
      "options": [
        "Mode collapse",
        "Label smoothing",
        "Vanishing discriminator gradient",
        "Balancing reconstruction loss and KL divergence"
      ],
      "correctAnswerIndex": 3,
      "explanation": "VAEs need to trade off reconstruction accuracy with latent space regularization using KL divergence."
    },
    {
      "id": 30,
      "questionText": "Which scenario demonstrates the use of generative models in practice?",
      "options": [
        "Generating realistic human faces from learned distributions",
        "Sorting a list of numbers",
        "Clustering sensor data without generation",
        "Computing shortest path in a graph"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Generative models can synthesize new data samples, e.g., realistic faces, by learning underlying distributions."
    },
    {
      "id": 31,
      "questionText": "Which loss function is typically used in GANs?",
      "options": [
        "Mean squared error",
        "Reconstruction loss only",
        "KL divergence only",
        "Adversarial loss (minimax)"
      ],
      "correctAnswerIndex": 3,
      "explanation": "GANs are trained using adversarial loss in a minimax game between generator and discriminator."
    },
    {
      "id": 32,
      "questionText": "In a VAE, what is the purpose of the reparameterization trick?",
      "options": [
        "To reduce mode collapse",
        "To normalize input images",
        "To improve discriminator accuracy",
        "To allow backpropagation through stochastic sampling"
      ],
      "correctAnswerIndex": 3,
      "explanation": "The reparameterization trick expresses the sampled latent variable as a differentiable function, enabling gradient-based optimization."
    },
    {
      "id": 33,
      "questionText": "Which type of GAN explicitly conditions on auxiliary information?",
      "options": [
        "Wasserstein GAN",
        "Vanilla GAN",
        "Conditional GAN (cGAN)",
        "DCGAN"
      ],
      "correctAnswerIndex": 2,
      "explanation": "cGANs incorporate additional conditioning variables, such as class labels, to control generation."
    },
    {
      "id": 34,
      "questionText": "What is the main purpose of a discriminator in a GAN?",
      "options": [
        "To cluster data points",
        "To reconstruct input data",
        "To encode input into latent space",
        "To distinguish real data from generated data"
      ],
      "correctAnswerIndex": 3,
      "explanation": "The discriminator evaluates the authenticity of samples, guiding the generator to produce realistic outputs."
    },
    {
      "id": 35,
      "questionText": "Which architecture is commonly used for image generation in GANs?",
      "options": [
        "Recurrent layers only",
        "SVM classifier",
        "Convolutional layers (DCGAN)",
        "Fully connected only"
      ],
      "correctAnswerIndex": 2,
      "explanation": "DCGANs leverage convolutional layers to capture spatial hierarchies for high-quality image generation."
    },
    {
      "id": 36,
      "questionText": "What is mode collapse in GANs?",
      "options": [
        "When latent space is regularized",
        "When reconstruction error increases",
        "When discriminator overfits",
        "When the generator produces limited variety of outputs"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Mode collapse occurs when the generator maps different latent vectors to similar outputs, reducing diversity."
    },
    {
      "id": 37,
      "questionText": "Which generative model is based on sequential factorization of joint probability?",
      "options": [
        "PCA",
        "VAEs",
        "Autoregressive models",
        "GANs"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Autoregressive models predict each variable conditioned on previous ones, effectively factorizing P(x) sequentially."
    },
    {
      "id": 38,
      "questionText": "Which of the following is a key advantage of Normalizing Flows?",
      "options": [
        "Works only for discrete data",
        "No need for latent space regularization",
        "Automatic mode collapse prevention",
        "Exact likelihood computation and invertibility"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Normalizing flows provide invertible mappings from latent to data space, allowing exact likelihood evaluation."
    },
    {
      "id": 39,
      "questionText": "Which metric evaluates both quality and diversity of generated images?",
      "options": [
        "KL divergence only",
        "Mean squared error",
        "Fréchet Inception Distance (FID)",
        "Cross-entropy loss"
      ],
      "correctAnswerIndex": 2,
      "explanation": "FID compares statistics of generated and real images to assess quality and diversity."
    },
    {
      "id": 40,
      "questionText": "In a GAN, what does the generator network learn?",
      "options": [
        "To map latent vectors to realistic samples",
        "To encode samples into latent vectors",
        "To classify images into categories",
        "To minimize KL divergence only"
      ],
      "correctAnswerIndex": 0,
      "explanation": "The generator transforms random noise (latent vectors) into data samples resembling the true distribution."
    },
    {
      "id": 41,
      "questionText": "Which technique can stabilize GAN training?",
      "options": [
        "Maximizing reconstruction error",
        "Wasserstein loss with gradient penalty",
        "Reducing latent vector size to 1",
        "Removing the discriminator"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Wasserstein GAN (WGAN) loss with gradient penalty improves convergence and reduces mode collapse."
    },
    {
      "id": 42,
      "questionText": "Which generative model uses latent variables to represent data probabilistically?",
      "options": [
        "Autoregressive model",
        "Decision Tree",
        "Variational Autoencoder (VAE)",
        "GAN"
      ],
      "correctAnswerIndex": 2,
      "explanation": "VAE learns a probabilistic latent space with parameters (mean and variance) to generate samples."
    },
    {
      "id": 43,
      "questionText": "Which generative model is particularly suitable for text generation?",
      "options": [
        "DCGAN",
        "GMM",
        "Convolutional Autoencoder",
        "RNN-based or Transformer-based models"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Sequential models like RNNs and Transformers capture temporal dependencies in text."
    },
    {
      "id": 44,
      "questionText": "What is the main difference between explicit and implicit generative models?",
      "options": [
        "Implicit models cannot generate samples",
        "Implicit models compute exact likelihood; explicit models approximate it",
        "Explicit models estimate data likelihood; implicit models do not",
        "Explicit models always use GANs; implicit models use VAEs"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Explicit models model the probability distribution (e.g., VAE, Normalizing Flows), whereas implicit models (GANs) learn to sample without computing likelihood."
    },
    {
      "id": 45,
      "questionText": "Which model is most suitable for generating high-resolution images?",
      "options": [
        "Progressive GAN or StyleGAN",
        "Vanilla Autoencoder",
        "Gaussian Mixture Model",
        "RNN"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Progressive GANs and StyleGANs can synthesize high-resolution images by progressively increasing image size during training."
    },
    {
      "id": 46,
      "questionText": "Which of the following is an autoregressive generative model?",
      "options": [
        "K-Means",
        "PixelRNN or PixelCNN",
        "GAN",
        "VAE"
      ],
      "correctAnswerIndex": 1,
      "explanation": "PixelRNN/CNN model images pixel by pixel, conditioning each on previous pixels."
    },
    {
      "id": 47,
      "questionText": "Which of the following is a limitation of VAEs?",
      "options": [
        "Cannot encode data",
        "Generated samples may be blurry",
        "Cannot model probability distributions",
        "Require adversarial loss"
      ],
      "correctAnswerIndex": 1,
      "explanation": "VAEs optimize a trade-off between reconstruction and regularization; this can result in less sharp images compared to GANs."
    },
    {
      "id": 48,
      "questionText": "Which type of generative model is most suitable for density estimation?",
      "options": [
        "Normalizing Flows",
        "GANs",
        "RNN for sequence generation",
        "Vanilla Autoencoders"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Normalizing flows allow exact likelihood computation, making them ideal for density estimation."
    },
    {
      "id": 49,
      "questionText": "Which technique improves diversity of generated samples in GANs?",
      "options": [
        "Minibatch discrimination",
        "Removing the discriminator",
        "Increasing KL divergence only",
        "Reducing latent space size"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Minibatch discrimination introduces dependencies between samples to prevent mode collapse."
    },
    {
      "id": 50,
      "questionText": "Which loss is used in Wasserstein GANs (WGAN)?",
      "options": [
        "Mean squared error",
        "Cross-entropy loss",
        "Earth-Mover (Wasserstein) distance",
        "KL divergence only"
      ],
      "correctAnswerIndex": 2,
      "explanation": "WGAN minimizes the Wasserstein distance between real and generated distributions for better training stability."
    },
    {
      "id": 51,
      "questionText": "Which model learns a mapping from a simple distribution to a complex distribution using invertible functions?",
      "options": [
        "Normalizing Flows",
        "Autoregressive model",
        "GAN",
        "VAE"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Normalizing flows use invertible transformations to map simple distributions (like Gaussian) to complex target distributions."
    },
    {
      "id": 52,
      "questionText": "Which approach allows VAEs to generate smooth interpolations between samples?",
      "options": [
        "Sequential sampling without regularization",
        "Random noise addition",
        "Regularized latent space with Gaussian prior",
        "Discriminator feedback"
      ],
      "correctAnswerIndex": 2,
      "explanation": "A regularized latent space ensures nearby points correspond to similar outputs, enabling smooth interpolation."
    },
    {
      "id": 53,
      "questionText": "Which generative model can perform style transfer effectively?",
      "options": [
        "RNN",
        "GANs (e.g., CycleGAN)",
        "Normalizing Flows",
        "Vanilla Autoencoders"
      ],
      "correctAnswerIndex": 1,
      "explanation": "CycleGAN and other GAN variants can transfer style between domains without paired data."
    },
    {
      "id": 54,
      "questionText": "Which metric is used to compare distributions of generated and real data?",
      "options": [
        "MSE",
        "KL divergence or JS divergence",
        "Accuracy",
        "F1-score"
      ],
      "correctAnswerIndex": 1,
      "explanation": "KL and JS divergence measure how similar the generated distribution is to the true distribution."
    },
    {
      "id": 55,
      "questionText": "Which technique improves training of deep GANs for image synthesis?",
      "options": [
        "Removing convolutional layers",
        "Progressive growing of generator and discriminator",
        "Reducing latent space dimension to 1",
        "Only using MSE loss"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Progressively increasing image resolution during training stabilizes GANs and produces high-quality images."
    },
    {
      "id": 56,
      "questionText": "Which generative model is suitable for multi-modal outputs?",
      "options": [
        "Linear regression",
        "Mixture density networks or VAEs with flexible priors",
        "K-Means",
        "Decision tree"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Flexible priors or mixture models allow generating diverse outputs representing multiple modes in the data."
    },
    {
      "id": 57,
      "questionText": "Which of the following can be used to improve latent space disentanglement in VAEs?",
      "options": [
        "Using only adversarial loss",
        "Increasing discriminator size",
        "Removing the encoder",
        "β-VAE with adjustable KL weight"
      ],
      "correctAnswerIndex": 3,
      "explanation": "β-VAE introduces a weight on KL divergence to encourage disentangled latent representations."
    },
    {
      "id": 58,
      "questionText": "Which GAN variant is designed to reduce mode collapse?",
      "options": [
        "VAE",
        "Vanilla GAN",
        "Autoregressive GAN",
        "Unrolled GAN"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Unrolled GAN simulates discriminator updates ahead of time to prevent mode collapse."
    },
    {
      "id": 59,
      "questionText": "Which generative model is best for audio waveform synthesis?",
      "options": [
        "Vanilla Autoencoder",
        "WaveNet (autoregressive model)",
        "GMM",
        "DCGAN"
      ],
      "correctAnswerIndex": 1,
      "explanation": "WaveNet uses autoregressive convolutions to generate realistic audio waveforms."
    },
    {
      "id": 60,
      "questionText": "Which model is best for text-to-image generation?",
      "options": [
        "PixelCNN",
        "RNN only",
        "Conditional GANs or Diffusion Models",
        "Standard VAE"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Conditional GANs and diffusion-based models can generate images conditioned on text descriptions."
    },
    {
      "id": 61,
      "questionText": "Which of the following is a major challenge in generative modeling?",
      "options": [
        "Reducing reconstruction only",
        "Maximizing classification accuracy",
        "Balancing diversity and quality of generated samples",
        "Minimizing clustering error"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Generative models must produce realistic and diverse samples, which is often challenging to balance."
    },
    {
      "id": 62,
      "questionText": "Which of the following models can model conditional distributions directly?",
      "options": [
        "Vanilla Autoencoder",
        "Conditional VAE or cGAN",
        "PCA",
        "Unsupervised GAN without labels"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Conditional generative models can generate samples based on input conditions like labels or attributes."
    },
    {
      "id": 63,
      "questionText": "Which generative model is capable of exact likelihood evaluation?",
      "options": [
        "RNN language model",
        "GANs",
        "Vanilla Autoencoders",
        "Normalizing Flows"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Invertible transformations in Normalizing Flows allow computing the exact probability of generated samples."
    },
    {
      "id": 64,
      "questionText": "Which technique improves GAN convergence?",
      "options": [
        "Reducing latent dimension to 1",
        "Removing batch normalization",
        "Using only fully connected layers",
        "Spectral normalization of discriminator weights"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Spectral normalization stabilizes discriminator updates and prevents gradient explosion."
    },
    {
      "id": 65,
      "questionText": "Which generative model is suitable for semi-supervised learning?",
      "options": [
        "Vanilla Autoencoder",
        "RNN autoregressive model",
        "Normalizing Flow",
        "GANs with auxiliary classifier (AC-GAN)"
      ],
      "correctAnswerIndex": 3,
      "explanation": "AC-GAN incorporates labels in training, enabling semi-supervised learning by generating labeled data."
    },
    {
      "id": 66,
      "questionText": "Which generative model can combine multiple modalities (e.g., text and image)?",
      "options": [
        "PixelCNN",
        "Multimodal VAEs or GANs",
        "Standard Autoencoder",
        "RNN language model"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Multimodal generative models can generate data conditioned on multiple input types."
    },
    {
      "id": 67,
      "questionText": "Which GAN variant improves gradient flow and reduces training instability?",
      "options": [
        "Vanilla GAN without batch normalization",
        "Conditional GAN without discriminator",
        "Wasserstein GAN with gradient penalty",
        "VAE with KL divergence only"
      ],
      "correctAnswerIndex": 2,
      "explanation": "WGAN-GP ensures smoother gradient updates, improving training stability."
    },
    {
      "id": 68,
      "questionText": "Which evaluation metric measures similarity of feature distributions between real and generated images?",
      "options": [
        "Accuracy",
        "KL divergence only",
        "MSE",
        "Fréchet Inception Distance (FID)"
      ],
      "correctAnswerIndex": 3,
      "explanation": "FID computes the distance between feature distributions of real and generated images, assessing both quality and diversity."
    },
    {
      "id": 69,
      "questionText": "Which model is most suitable for density estimation in high-dimensional continuous data?",
      "options": [
        "Standard Autoencoders",
        "GANs",
        "Normalizing Flows",
        "PixelCNN"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Normalizing flows can handle high-dimensional continuous data with exact likelihood computation."
    },
    {
      "id": 70,
      "questionText": "Which technique can improve VAE image sharpness?",
      "options": [
        "Removing decoder",
        "Using fully connected layers only",
        "Reducing KL divergence weight to zero",
        "Combining VAE with GAN (VAE-GAN)"
      ],
      "correctAnswerIndex": 3,
      "explanation": "VAE-GAN combines reconstruction with adversarial loss, producing sharper and more realistic images."
    },
    {
      "id": 71,
      "questionText": "You are training a GAN for high-resolution image generation, but the generator produces blurry outputs. What is the most likely cause?",
      "options": [
        "Training data is too small for a VAE",
        "Mode collapse in the discriminator",
        "Latent space regularization is too strong",
        "The model architecture or loss function is not suitable for high-resolution outputs"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Blurry outputs often result from inadequate generator architecture or loss function for high-resolution images. Solutions include using DCGAN, Progressive GAN, or VAE-GAN architectures."
    },
    {
      "id": 72,
      "questionText": "During VAE training, the KL divergence term dominates the reconstruction loss. What effect does this have?",
      "options": [
        "Causes mode collapse in the generator",
        "Reduces latent space smoothness",
        "The model may produce outputs similar to the prior but poorly reconstruct inputs",
        "Improves image sharpness"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Excessive KL weight forces latent variables to match the prior, reducing reconstruction fidelity."
    },
    {
      "id": 73,
      "questionText": "You are using a conditional GAN to generate labeled images. The generator only produces images of a single class. What is happening?",
      "options": [
        "Underfitting of VAE",
        "Overfitting of discriminator",
        "Latent space regularization",
        "Mode collapse"
      ],
      "correctAnswerIndex": 3,
      "explanation": "The generator collapses to producing limited outputs, ignoring class conditioning, which is classic mode collapse."
    },
    {
      "id": 74,
      "questionText": "You want to generate diverse text sequences. Which generative model is most appropriate?",
      "options": [
        "Gaussian Mixture Model",
        "Transformer-based autoregressive model",
        "DCGAN",
        "Vanilla Autoencoder"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Transformers model sequence dependencies well and can generate diverse, coherent text sequences."
    },
    {
      "id": 75,
      "questionText": "You need exact likelihood evaluation for high-dimensional continuous data. Which model should you choose?",
      "options": [
        "RNN autoregressive model",
        "GAN",
        "Normalizing Flows",
        "VAE"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Normalizing flows provide invertible mappings allowing exact likelihood computation, suitable for density estimation."
    },
    {
      "id": 76,
      "questionText": "You want to combine VAE reconstruction with realistic image quality. Which approach is best?",
      "options": [
        "PixelCNN",
        "DCGAN only",
        "VAE-GAN",
        "Vanilla VAE"
      ],
      "correctAnswerIndex": 2,
      "explanation": "VAE-GAN combines reconstruction loss with adversarial loss to generate sharp images while maintaining latent structure."
    },
    {
      "id": 77,
      "questionText": "While training a GAN, gradients vanish and the generator fails to improve. Which technique helps?",
      "options": [
        "Use only MSE loss",
        "Increase KL divergence",
        "Remove the discriminator",
        "Use Wasserstein loss with gradient penalty"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Wasserstein GAN with gradient penalty stabilizes training and prevents vanishing gradients."
    },
    {
      "id": 78,
      "questionText": "You are generating multimodal data (images + text). Which generative approach is suitable?",
      "options": [
        "Normalizing Flows for text only",
        "Multimodal VAE or GAN",
        "PixelRNN only",
        "Standard Autoencoder"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Multimodal generative models can handle multiple types of inputs and generate data conditioned on both modalities."
    },
    {
      "id": 79,
      "questionText": "Your GAN produces high-quality images but only from a limited subset of the data distribution. What is this issue called?",
      "options": [
        "Underfitting",
        "Mode collapse",
        "Overfitting",
        "Latent space regularization"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Mode collapse occurs when the generator ignores parts of the data distribution and produces limited variety."
    },
    {
      "id": 80,
      "questionText": "Which evaluation metric can detect mode collapse in image generation?",
      "options": [
        "Fréchet Inception Distance (FID)",
        "Accuracy",
        "MSE",
        "Cross-entropy"
      ],
      "correctAnswerIndex": 0,
      "explanation": "FID measures distributional similarity; poor FID often indicates lack of diversity or mode collapse."
    },
    {
      "id": 81,
      "questionText": "Which approach encourages disentangled latent representations in VAEs?",
      "options": [
        "PixelCNN",
        "Standard GAN",
        "β-VAE",
        "Autoregressive model"
      ],
      "correctAnswerIndex": 2,
      "explanation": "β-VAE adds weight to the KL divergence term, encouraging independent latent factors."
    },
    {
      "id": 82,
      "questionText": "You are training a text-to-image model. Which generative architecture is suitable?",
      "options": [
        "Autoregressive flow model",
        "PixelRNN only",
        "Conditional GAN or diffusion-based model",
        "VAE only"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Conditional GANs and diffusion models can generate images conditioned on text input."
    },
    {
      "id": 83,
      "questionText": "In a VAE, if latent space dimension is too small, what is likely to happen?",
      "options": [
        "Mode collapse",
        "Poor reconstruction quality due to information bottleneck",
        "Gradient explosion in discriminator",
        "Overfitting on test set"
      ],
      "correctAnswerIndex": 1,
      "explanation": "A small latent dimension limits information storage, reducing reconstruction fidelity."
    },
    {
      "id": 84,
      "questionText": "Which GAN variant allows semi-supervised learning?",
      "options": [
        "PixelCNN",
        "Normalizing Flow",
        "Standard VAE",
        "AC-GAN (Auxiliary Classifier GAN)"
      ],
      "correctAnswerIndex": 3,
      "explanation": "AC-GAN uses an auxiliary classifier in the discriminator to incorporate labeled data for semi-supervised learning."
    },
    {
      "id": 85,
      "questionText": "Which method helps prevent mode collapse by making discriminator aware of multiple samples?",
      "options": [
        "KL divergence scaling",
        "Gradient clipping",
        "Latent space regularization",
        "Minibatch discrimination"
      ],
      "correctAnswerIndex": 3,
      "explanation": "Minibatch discrimination introduces dependencies among samples, encouraging generator diversity."
    },
    {
      "id": 86,
      "questionText": "You are training a GAN on limited data, but it overfits. Which technique can help?",
      "options": [
        "Increase latent space dimension",
        "Data augmentation and regularization",
        "Remove the discriminator",
        "Reduce batch size to 1"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Data augmentation expands the dataset, helping the generator and discriminator generalize better."
    },
    {
      "id": 87,
      "questionText": "Which generative model is best for continuous sequence prediction (e.g., speech waveforms)?",
      "options": [
        "PixelCNN",
        "DCGAN",
        "VAE only",
        "WaveNet (autoregressive model)"
      ],
      "correctAnswerIndex": 3,
      "explanation": "WaveNet uses autoregressive convolutions suitable for generating continuous sequences like audio."
    },
    {
      "id": 88,
      "questionText": "Which model can generate new images while maintaining semantic content from a reference image?",
      "options": [
        "PixelCNN",
        "Conditional GAN (e.g., Pix2Pix or CycleGAN)",
        "VAE without conditioning",
        "Vanilla Autoencoder"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Conditional GANs can generate images conditioned on a reference, preserving structure while changing style."
    },
    {
      "id": 89,
      "questionText": "You need to evaluate generated text quality. Which metric is suitable?",
      "options": [
        "BLEU or ROUGE score",
        "MSE",
        "KL divergence only",
        "FID"
      ],
      "correctAnswerIndex": 0,
      "explanation": "BLEU and ROUGE compare generated text against reference text for content quality and fluency."
    },
    {
      "id": 90,
      "questionText": "Which approach can generate realistic images from random noise efficiently?",
      "options": [
        "VAE without adversarial loss",
        "PixelCNN only",
        "GAN with convolutional generator",
        "Autoregressive RNN"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Convolutional GANs transform random latent vectors into high-quality images efficiently."
    },
    {
      "id": 91,
      "questionText": "Which challenge is common in conditional generative models?",
      "options": [
        "Reconstruction error is zero",
        "Generator ignoring conditioning labels (mode collapse)",
        "Gradient explosion in decoder",
        "Overfitting latent space only"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Conditional models may fail to produce diverse outputs for all conditions, leading to mode collapse."
    },
    {
      "id": 92,
      "questionText": "Which technique allows GANs to handle high-resolution images more effectively?",
      "options": [
        "VAE reconstruction only",
        "Progressive growing of generator and discriminator",
        "Reducing latent space dimension to 1",
        "Removing convolutional layers"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Progressively increasing image resolution during training stabilizes GANs and enables high-resolution synthesis."
    },
    {
      "id": 93,
      "questionText": "You want to interpolate between two generated faces smoothly. Which model property is critical?",
      "options": [
        "Regularized latent space (e.g., in VAE)",
        "Autoregressive pixel modeling",
        "Mode collapse prevention only",
        "Large discriminator"
      ],
      "correctAnswerIndex": 0,
      "explanation": "A smooth latent space ensures that interpolating between points generates meaningful intermediate outputs."
    },
    {
      "id": 94,
      "questionText": "Which generative model is suitable for generating tabular data with mixed categorical and continuous features?",
      "options": [
        "WaveNet",
        "CTGAN or GMM-based models",
        "PixelCNN",
        "VAE for images only"
      ],
      "correctAnswerIndex": 1,
      "explanation": "CTGANs can handle tabular data and model mixed feature types effectively."
    },
    {
      "id": 95,
      "questionText": "Which technique improves GAN training stability and reduces oscillations?",
      "options": [
        "Using fully connected layers only",
        "Reducing latent dimension to 1",
        "Using Wasserstein loss with gradient penalty",
        "Only reconstruction loss"
      ],
      "correctAnswerIndex": 2,
      "explanation": "WGAN-GP provides smoother gradients, improving convergence and stability in training GANs."
    },
    {
      "id": 96,
      "questionText": "Which generative model allows controlled attribute manipulation (e.g., changing hair color in images)?",
      "options": [
        "Normalizing Flows only",
        "PixelCNN",
        "Conditional GANs or StyleGAN",
        "Vanilla Autoencoder"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Conditional GANs and StyleGAN allow latent space manipulations to change attributes while keeping other content fixed."
    },
    {
      "id": 97,
      "questionText": "You observe that GAN training oscillates and fails to converge. Which step is recommended?",
      "options": [
        "Use gradient penalty, spectral normalization, or learning rate tuning",
        "Remove the generator entirely",
        "Use only MSE loss",
        "Increase latent dimension to 10,000"
      ],
      "correctAnswerIndex": 0,
      "explanation": "Techniques like gradient penalty and spectral normalization stabilize GAN training and reduce oscillations."
    },
    {
      "id": 98,
      "questionText": "Which generative model is most appropriate for music generation?",
      "options": [
        "DCGAN only",
        "Standard VAE without temporal modeling",
        "RNN-based or Transformer-based models",
        "PixelCNN"
      ],
      "correctAnswerIndex": 2,
      "explanation": "Sequential models like RNNs or Transformers can capture temporal dependencies for music synthesis."
    },
    {
      "id": 99,
      "questionText": "You need a generative model that can produce multiple diverse outputs for a single input. Which approach is suitable?",
      "options": [
        "PixelCNN",
        "Conditional VAE or multimodal GAN",
        "Vanilla GAN only",
        "Standard Autoencoder"
      ],
      "correctAnswerIndex": 1,
      "explanation": "Conditional VAEs or multimodal GANs allow sampling diverse outputs for the same input condition."
    },
    {
      "id": 100,
      "questionText": "Which approach allows a VAE to generate sharper images without sacrificing latent space structure?",
      "options": [
        "Use only MSE loss",
        "Remove KL divergence",
        "Combine with adversarial loss (VAE-GAN)",
        "Reduce latent dimension to 1"
      ],
      "correctAnswerIndex": 2,
      "explanation": "VAE-GAN leverages adversarial loss to improve image sharpness while retaining smooth latent representations."
    }
  ]
}