Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,24 +1,23 @@
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from pydantic import BaseModel
|
| 3 |
-
from
|
| 4 |
-
import torch
|
| 5 |
import os
|
| 6 |
import shutil
|
| 7 |
-
import json
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
|
| 10 |
app = FastAPI(title="GPT-OSS-20B API")
|
| 11 |
|
| 12 |
-
# Set environment variables
|
| 13 |
os.environ["HF_HOME"] = "/app/cache/huggingface"
|
| 14 |
os.environ["HUGGINGFACE_HUB_CACHE"] = "/app/cache/huggingface/hub"
|
| 15 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 16 |
|
| 17 |
# Model ID and local directory
|
| 18 |
-
MODEL_ID = "
|
| 19 |
MODEL_DIR = "/app/gpt-oss-20b"
|
|
|
|
| 20 |
|
| 21 |
-
# Clear cache directory
|
| 22 |
cache_dir = os.environ["HF_HOME"]
|
| 23 |
if os.path.exists(cache_dir):
|
| 24 |
print(f"Clearing cache directory: {cache_dir}")
|
|
@@ -29,68 +28,35 @@ if os.path.exists(cache_dir):
|
|
| 29 |
else:
|
| 30 |
os.remove(item_path) if os.path.exists(item_path) else None
|
| 31 |
|
| 32 |
-
# Create
|
| 33 |
os.makedirs(cache_dir, exist_ok=True)
|
| 34 |
os.makedirs(MODEL_DIR, exist_ok=True)
|
| 35 |
|
| 36 |
-
# Download model
|
| 37 |
-
print("Downloading model
|
| 38 |
try:
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
cache_dir=cache_dir
|
| 45 |
-
)
|
| 46 |
-
print("Model files downloaded successfully.")
|
| 47 |
-
except Exception as e:
|
| 48 |
-
raise RuntimeError(f"Failed to download model files: {str(e)}")
|
| 49 |
-
|
| 50 |
-
# Fix config.json if model_type is missing
|
| 51 |
-
config_path = os.path.join(MODEL_DIR, "original/config.json")
|
| 52 |
-
try:
|
| 53 |
-
with open(config_path, "r") as f:
|
| 54 |
-
config = json.load(f)
|
| 55 |
-
if "model_type" not in config or config["model_type"] != "gpt_oss":
|
| 56 |
-
print("Fixing config.json: setting model_type to 'gpt_oss'")
|
| 57 |
-
config["model_type"] = "gpt_oss"
|
| 58 |
-
with open(config_path, "w") as f:
|
| 59 |
-
json.dump(config, f, indent=2)
|
| 60 |
-
except Exception as e:
|
| 61 |
-
print(f"Warning: Failed to check or fix config.json: {str(e)}")
|
| 62 |
-
|
| 63 |
-
# Load tokenizer
|
| 64 |
-
print("Loading tokenizer...")
|
| 65 |
-
try:
|
| 66 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 67 |
-
MODEL_ID, # Load directly from Hub
|
| 68 |
-
cache_dir=cache_dir,
|
| 69 |
-
trust_remote_code=True
|
| 70 |
)
|
|
|
|
| 71 |
except Exception as e:
|
| 72 |
-
raise RuntimeError(f"Failed to
|
| 73 |
|
| 74 |
-
# Load model
|
| 75 |
-
print("Loading model
|
| 76 |
try:
|
| 77 |
model = AutoModelForCausalLM.from_pretrained(
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
torch_dtype="auto", # Automatic precision
|
| 82 |
-
offload_folder="/app/offload", # Offload weights to disk
|
| 83 |
-
max_memory={0: "14GB", "cpu": "15GB"}, # Adjusted memory constraints
|
| 84 |
-
trust_remote_code=True
|
| 85 |
)
|
| 86 |
-
print(
|
| 87 |
-
print(f"Model dtype: {model.dtype}")
|
| 88 |
except Exception as e:
|
| 89 |
raise RuntimeError(f"Failed to load model: {str(e)}")
|
| 90 |
|
| 91 |
-
# Enable gradient checkpointing to reduce memory usage
|
| 92 |
-
model.gradient_checkpointing_enable()
|
| 93 |
-
|
| 94 |
class ChatRequest(BaseModel):
|
| 95 |
message: str
|
| 96 |
max_tokens: int = 256
|
|
@@ -99,38 +65,16 @@ class ChatRequest(BaseModel):
|
|
| 99 |
@app.post("/chat")
|
| 100 |
async def chat_endpoint(request: ChatRequest):
|
| 101 |
try:
|
| 102 |
-
# Prepare input
|
| 103 |
-
messages = [{"role": "user", "content": request.message}]
|
| 104 |
-
inputs = tokenizer.apply_chat_template(
|
| 105 |
-
messages,
|
| 106 |
-
add_generation_prompt=True,
|
| 107 |
-
return_tensors="pt",
|
| 108 |
-
return_dict=True
|
| 109 |
-
).to("cpu")
|
| 110 |
-
|
| 111 |
# Generate response
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
temperature=request.temperature,
|
| 117 |
-
do_sample=True,
|
| 118 |
-
pad_token_id=tokenizer.eos_token_id,
|
| 119 |
-
repetition_penalty=1.1
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
-
# Decode response
|
| 123 |
-
response = tokenizer.decode(
|
| 124 |
-
generated[0][inputs["input_ids"].shape[-1]:],
|
| 125 |
-
skip_special_tokens=True
|
| 126 |
)
|
| 127 |
return {"response": response}
|
| 128 |
except Exception as e:
|
| 129 |
raise HTTPException(status_code=500, detail=str(e))
|
| 130 |
|
| 131 |
-
# Clear cache regularly to manage memory
|
| 132 |
-
torch.cuda.empty_cache()
|
| 133 |
-
|
| 134 |
if __name__ == "__main__":
|
| 135 |
import uvicorn
|
| 136 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from pydantic import BaseModel
|
| 3 |
+
from ctransformers import AutoModelForCausalLM
|
|
|
|
| 4 |
import os
|
| 5 |
import shutil
|
|
|
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
|
| 8 |
app = FastAPI(title="GPT-OSS-20B API")
|
| 9 |
|
| 10 |
+
# Set environment variables
|
| 11 |
os.environ["HF_HOME"] = "/app/cache/huggingface"
|
| 12 |
os.environ["HUGGINGFACE_HUB_CACHE"] = "/app/cache/huggingface/hub"
|
| 13 |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 14 |
|
| 15 |
# Model ID and local directory
|
| 16 |
+
MODEL_ID = "unsloth/gpt-oss-20b-GGUF"
|
| 17 |
MODEL_DIR = "/app/gpt-oss-20b"
|
| 18 |
+
MODEL_FILE = "gpt-oss-20b.Q4_K_M.gguf" # Adjust based on actual filename
|
| 19 |
|
| 20 |
+
# Clear cache directory
|
| 21 |
cache_dir = os.environ["HF_HOME"]
|
| 22 |
if os.path.exists(cache_dir):
|
| 23 |
print(f"Clearing cache directory: {cache_dir}")
|
|
|
|
| 28 |
else:
|
| 29 |
os.remove(item_path) if os.path.exists(item_path) else None
|
| 30 |
|
| 31 |
+
# Create directories
|
| 32 |
os.makedirs(cache_dir, exist_ok=True)
|
| 33 |
os.makedirs(MODEL_DIR, exist_ok=True)
|
| 34 |
|
| 35 |
+
# Download model file
|
| 36 |
+
print("Downloading model file...")
|
| 37 |
try:
|
| 38 |
+
hf_hub_download(
|
| 39 |
+
repo_id=MODEL_ID,
|
| 40 |
+
filename=MODEL_FILE,
|
| 41 |
+
local_dir=MODEL_DIR,
|
| 42 |
+
cache_dir=cache_dir
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
)
|
| 44 |
+
print("Model file downloaded successfully.")
|
| 45 |
except Exception as e:
|
| 46 |
+
raise RuntimeError(f"Failed to download model: {str(e)}")
|
| 47 |
|
| 48 |
+
# Load model
|
| 49 |
+
print("Loading model...")
|
| 50 |
try:
|
| 51 |
model = AutoModelForCausalLM.from_pretrained(
|
| 52 |
+
MODEL_DIR,
|
| 53 |
+
model_type="gguf",
|
| 54 |
+
model_file=MODEL_FILE
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
)
|
| 56 |
+
print("Model loaded successfully.")
|
|
|
|
| 57 |
except Exception as e:
|
| 58 |
raise RuntimeError(f"Failed to load model: {str(e)}")
|
| 59 |
|
|
|
|
|
|
|
|
|
|
| 60 |
class ChatRequest(BaseModel):
|
| 61 |
message: str
|
| 62 |
max_tokens: int = 256
|
|
|
|
| 65 |
@app.post("/chat")
|
| 66 |
async def chat_endpoint(request: ChatRequest):
|
| 67 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
# Generate response
|
| 69 |
+
response = model(
|
| 70 |
+
request.message,
|
| 71 |
+
max_new_tokens=request.max_tokens,
|
| 72 |
+
temperature=request.temperature
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
)
|
| 74 |
return {"response": response}
|
| 75 |
except Exception as e:
|
| 76 |
raise HTTPException(status_code=500, detail=str(e))
|
| 77 |
|
|
|
|
|
|
|
|
|
|
| 78 |
if __name__ == "__main__":
|
| 79 |
import uvicorn
|
| 80 |
uvicorn.run(app, host="0.0.0.0", port=8000)
|