Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							Β·
						
						8d783eb
	
0
								Parent(s):
							
							
Duplicate from lunarring/latentblending
Browse filesCo-authored-by: Johannes Stelzer <[email protected]>
This view is limited to 50 files because it contains too many changes. Β 
							See raw diff
- .gitattributes +34 -0
- Dockerfile +0 -0
- README.md +13 -0
- configs/v1-inference.yaml +70 -0
- configs/v2-inference-v.yaml +68 -0
- configs/v2-inference.yaml +67 -0
- configs/v2-inpainting-inference.yaml +158 -0
- configs/v2-midas-inference.yaml +74 -0
- configs/x4-upscaling.yaml +76 -0
- gradio_ui.py +500 -0
- latent_blending.py +884 -0
- ldm/__pycache__/util.cpython-310.pyc +0 -0
- ldm/__pycache__/util.cpython-38.pyc +0 -0
- ldm/__pycache__/util.cpython-39.pyc +0 -0
- ldm/data/__init__.py +0 -0
- ldm/data/util.py +24 -0
- ldm/ldm +1 -0
- ldm/models/__pycache__/autoencoder.cpython-310.pyc +0 -0
- ldm/models/__pycache__/autoencoder.cpython-38.pyc +0 -0
- ldm/models/__pycache__/autoencoder.cpython-39.pyc +0 -0
- ldm/models/autoencoder.py +219 -0
- ldm/models/diffusion/__init__.py +0 -0
- ldm/models/diffusion/__pycache__/__init__.cpython-310.pyc +0 -0
- ldm/models/diffusion/__pycache__/__init__.cpython-38.pyc +0 -0
- ldm/models/diffusion/__pycache__/__init__.cpython-39.pyc +0 -0
- ldm/models/diffusion/__pycache__/ddim.cpython-310.pyc +0 -0
- ldm/models/diffusion/__pycache__/ddim.cpython-38.pyc +0 -0
- ldm/models/diffusion/__pycache__/ddim.cpython-39.pyc +0 -0
- ldm/models/diffusion/__pycache__/ddpm.cpython-310.pyc +0 -0
- ldm/models/diffusion/__pycache__/ddpm.cpython-38.pyc +0 -0
- ldm/models/diffusion/__pycache__/ddpm.cpython-39.pyc +0 -0
- ldm/models/diffusion/__pycache__/plms.cpython-39.pyc +0 -0
- ldm/models/diffusion/__pycache__/sampling_util.cpython-39.pyc +0 -0
- ldm/models/diffusion/ddim.py +336 -0
- ldm/models/diffusion/ddpm.py +1795 -0
- ldm/models/diffusion/dpm_solver/__init__.py +1 -0
- ldm/models/diffusion/dpm_solver/__pycache__/__init__.cpython-39.pyc +0 -0
- ldm/models/diffusion/dpm_solver/__pycache__/dpm_solver.cpython-39.pyc +0 -0
- ldm/models/diffusion/dpm_solver/__pycache__/sampler.cpython-39.pyc +0 -0
- ldm/models/diffusion/dpm_solver/dpm_solver.py +1154 -0
- ldm/models/diffusion/dpm_solver/sampler.py +87 -0
- ldm/models/diffusion/plms.py +244 -0
- ldm/models/diffusion/sampling_util.py +22 -0
- ldm/modules/__pycache__/attention.cpython-310.pyc +0 -0
- ldm/modules/__pycache__/attention.cpython-38.pyc +0 -0
- ldm/modules/__pycache__/attention.cpython-39.pyc +0 -0
- ldm/modules/__pycache__/ema.cpython-310.pyc +0 -0
- ldm/modules/__pycache__/ema.cpython-38.pyc +0 -0
- ldm/modules/__pycache__/ema.cpython-39.pyc +0 -0
- ldm/modules/attention.py +341 -0
    	
        .gitattributes
    ADDED
    
    | @@ -0,0 +1,34 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            *.7z filter=lfs diff=lfs merge=lfs -text
         | 
| 2 | 
            +
            *.arrow filter=lfs diff=lfs merge=lfs -text
         | 
| 3 | 
            +
            *.bin filter=lfs diff=lfs merge=lfs -text
         | 
| 4 | 
            +
            *.bz2 filter=lfs diff=lfs merge=lfs -text
         | 
| 5 | 
            +
            *.ckpt filter=lfs diff=lfs merge=lfs -text
         | 
| 6 | 
            +
            *.ftz filter=lfs diff=lfs merge=lfs -text
         | 
| 7 | 
            +
            *.gz filter=lfs diff=lfs merge=lfs -text
         | 
| 8 | 
            +
            *.h5 filter=lfs diff=lfs merge=lfs -text
         | 
| 9 | 
            +
            *.joblib filter=lfs diff=lfs merge=lfs -text
         | 
| 10 | 
            +
            *.lfs.* filter=lfs diff=lfs merge=lfs -text
         | 
| 11 | 
            +
            *.mlmodel filter=lfs diff=lfs merge=lfs -text
         | 
| 12 | 
            +
            *.model filter=lfs diff=lfs merge=lfs -text
         | 
| 13 | 
            +
            *.msgpack filter=lfs diff=lfs merge=lfs -text
         | 
| 14 | 
            +
            *.npy filter=lfs diff=lfs merge=lfs -text
         | 
| 15 | 
            +
            *.npz filter=lfs diff=lfs merge=lfs -text
         | 
| 16 | 
            +
            *.onnx filter=lfs diff=lfs merge=lfs -text
         | 
| 17 | 
            +
            *.ot filter=lfs diff=lfs merge=lfs -text
         | 
| 18 | 
            +
            *.parquet filter=lfs diff=lfs merge=lfs -text
         | 
| 19 | 
            +
            *.pb filter=lfs diff=lfs merge=lfs -text
         | 
| 20 | 
            +
            *.pickle filter=lfs diff=lfs merge=lfs -text
         | 
| 21 | 
            +
            *.pkl filter=lfs diff=lfs merge=lfs -text
         | 
| 22 | 
            +
            *.pt filter=lfs diff=lfs merge=lfs -text
         | 
| 23 | 
            +
            *.pth filter=lfs diff=lfs merge=lfs -text
         | 
| 24 | 
            +
            *.rar filter=lfs diff=lfs merge=lfs -text
         | 
| 25 | 
            +
            *.safetensors filter=lfs diff=lfs merge=lfs -text
         | 
| 26 | 
            +
            saved_model/**/* filter=lfs diff=lfs merge=lfs -text
         | 
| 27 | 
            +
            *.tar.* filter=lfs diff=lfs merge=lfs -text
         | 
| 28 | 
            +
            *.tflite filter=lfs diff=lfs merge=lfs -text
         | 
| 29 | 
            +
            *.tgz filter=lfs diff=lfs merge=lfs -text
         | 
| 30 | 
            +
            *.wasm filter=lfs diff=lfs merge=lfs -text
         | 
| 31 | 
            +
            *.xz filter=lfs diff=lfs merge=lfs -text
         | 
| 32 | 
            +
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 33 | 
            +
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
            +
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
    	
        Dockerfile
    ADDED
    
    | 
            File without changes
         | 
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,13 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            title: Latent Blending
         | 
| 3 | 
            +
            emoji: π« 
         | 
| 4 | 
            +
            colorFrom: green
         | 
| 5 | 
            +
            colorTo: indigo
         | 
| 6 | 
            +
            sdk: gradio
         | 
| 7 | 
            +
            sdk_version: 3.19.1
         | 
| 8 | 
            +
            app_file: gradio_ui.py
         | 
| 9 | 
            +
            pinned: false
         | 
| 10 | 
            +
            duplicated_from: lunarring/latentblending
         | 
| 11 | 
            +
            ---
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
         | 
    	
        configs/v1-inference.yaml
    ADDED
    
    | @@ -0,0 +1,70 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            model:
         | 
| 2 | 
            +
              base_learning_rate: 1.0e-04
         | 
| 3 | 
            +
              target: ldm.models.diffusion.ddpm.LatentDiffusion
         | 
| 4 | 
            +
              params:
         | 
| 5 | 
            +
                linear_start: 0.00085
         | 
| 6 | 
            +
                linear_end: 0.0120
         | 
| 7 | 
            +
                num_timesteps_cond: 1
         | 
| 8 | 
            +
                log_every_t: 200
         | 
| 9 | 
            +
                timesteps: 1000
         | 
| 10 | 
            +
                first_stage_key: "jpg"
         | 
| 11 | 
            +
                cond_stage_key: "txt"
         | 
| 12 | 
            +
                image_size: 64
         | 
| 13 | 
            +
                channels: 4
         | 
| 14 | 
            +
                cond_stage_trainable: false   # Note: different from the one we trained before
         | 
| 15 | 
            +
                conditioning_key: crossattn
         | 
| 16 | 
            +
                monitor: val/loss_simple_ema
         | 
| 17 | 
            +
                scale_factor: 0.18215
         | 
| 18 | 
            +
                use_ema: False
         | 
| 19 | 
            +
             | 
| 20 | 
            +
                scheduler_config: # 10000 warmup steps
         | 
| 21 | 
            +
                  target: ldm.lr_scheduler.LambdaLinearScheduler
         | 
| 22 | 
            +
                  params:
         | 
| 23 | 
            +
                    warm_up_steps: [ 10000 ]
         | 
| 24 | 
            +
                    cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
         | 
| 25 | 
            +
                    f_start: [ 1.e-6 ]
         | 
| 26 | 
            +
                    f_max: [ 1. ]
         | 
| 27 | 
            +
                    f_min: [ 1. ]
         | 
| 28 | 
            +
             | 
| 29 | 
            +
                unet_config:
         | 
| 30 | 
            +
                  target: ldm.modules.diffusionmodules.openaimodel.UNetModel
         | 
| 31 | 
            +
                  params:
         | 
| 32 | 
            +
                    image_size: 32 # unused
         | 
| 33 | 
            +
                    in_channels: 4
         | 
| 34 | 
            +
                    out_channels: 4
         | 
| 35 | 
            +
                    model_channels: 320
         | 
| 36 | 
            +
                    attention_resolutions: [ 4, 2, 1 ]
         | 
| 37 | 
            +
                    num_res_blocks: 2
         | 
| 38 | 
            +
                    channel_mult: [ 1, 2, 4, 4 ]
         | 
| 39 | 
            +
                    num_heads: 8
         | 
| 40 | 
            +
                    use_spatial_transformer: True
         | 
| 41 | 
            +
                    transformer_depth: 1
         | 
| 42 | 
            +
                    context_dim: 768
         | 
| 43 | 
            +
                    use_checkpoint: True
         | 
| 44 | 
            +
                    legacy: False
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                first_stage_config:
         | 
| 47 | 
            +
                  target: ldm.models.autoencoder.AutoencoderKL
         | 
| 48 | 
            +
                  params:
         | 
| 49 | 
            +
                    embed_dim: 4
         | 
| 50 | 
            +
                    monitor: val/rec_loss
         | 
| 51 | 
            +
                    ddconfig:
         | 
| 52 | 
            +
                      double_z: true
         | 
| 53 | 
            +
                      z_channels: 4
         | 
| 54 | 
            +
                      resolution: 256
         | 
| 55 | 
            +
                      in_channels: 3
         | 
| 56 | 
            +
                      out_ch: 3
         | 
| 57 | 
            +
                      ch: 128
         | 
| 58 | 
            +
                      ch_mult:
         | 
| 59 | 
            +
                      - 1
         | 
| 60 | 
            +
                      - 2
         | 
| 61 | 
            +
                      - 4
         | 
| 62 | 
            +
                      - 4
         | 
| 63 | 
            +
                      num_res_blocks: 2
         | 
| 64 | 
            +
                      attn_resolutions: []
         | 
| 65 | 
            +
                      dropout: 0.0
         | 
| 66 | 
            +
                    lossconfig:
         | 
| 67 | 
            +
                      target: torch.nn.Identity
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                cond_stage_config:
         | 
| 70 | 
            +
                  target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
         | 
    	
        configs/v2-inference-v.yaml
    ADDED
    
    | @@ -0,0 +1,68 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            model:
         | 
| 2 | 
            +
              base_learning_rate: 1.0e-4
         | 
| 3 | 
            +
              target: ldm.models.diffusion.ddpm.LatentDiffusion
         | 
| 4 | 
            +
              params:
         | 
| 5 | 
            +
                parameterization: "v"
         | 
| 6 | 
            +
                linear_start: 0.00085
         | 
| 7 | 
            +
                linear_end: 0.0120
         | 
| 8 | 
            +
                num_timesteps_cond: 1
         | 
| 9 | 
            +
                log_every_t: 200
         | 
| 10 | 
            +
                timesteps: 1000
         | 
| 11 | 
            +
                first_stage_key: "jpg"
         | 
| 12 | 
            +
                cond_stage_key: "txt"
         | 
| 13 | 
            +
                image_size: 64
         | 
| 14 | 
            +
                channels: 4
         | 
| 15 | 
            +
                cond_stage_trainable: false
         | 
| 16 | 
            +
                conditioning_key: crossattn
         | 
| 17 | 
            +
                monitor: val/loss_simple_ema
         | 
| 18 | 
            +
                scale_factor: 0.18215
         | 
| 19 | 
            +
                use_ema: False # we set this to false because this is an inference only config
         | 
| 20 | 
            +
             | 
| 21 | 
            +
                unet_config:
         | 
| 22 | 
            +
                  target: ldm.modules.diffusionmodules.openaimodel.UNetModel
         | 
| 23 | 
            +
                  params:
         | 
| 24 | 
            +
                    use_checkpoint: True
         | 
| 25 | 
            +
                    use_fp16: True
         | 
| 26 | 
            +
                    image_size: 32 # unused
         | 
| 27 | 
            +
                    in_channels: 4
         | 
| 28 | 
            +
                    out_channels: 4
         | 
| 29 | 
            +
                    model_channels: 320
         | 
| 30 | 
            +
                    attention_resolutions: [ 4, 2, 1 ]
         | 
| 31 | 
            +
                    num_res_blocks: 2
         | 
| 32 | 
            +
                    channel_mult: [ 1, 2, 4, 4 ]
         | 
| 33 | 
            +
                    num_head_channels: 64 # need to fix for flash-attn
         | 
| 34 | 
            +
                    use_spatial_transformer: True
         | 
| 35 | 
            +
                    use_linear_in_transformer: True
         | 
| 36 | 
            +
                    transformer_depth: 1
         | 
| 37 | 
            +
                    context_dim: 1024
         | 
| 38 | 
            +
                    legacy: False
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                first_stage_config:
         | 
| 41 | 
            +
                  target: ldm.models.autoencoder.AutoencoderKL
         | 
| 42 | 
            +
                  params:
         | 
| 43 | 
            +
                    embed_dim: 4
         | 
| 44 | 
            +
                    monitor: val/rec_loss
         | 
| 45 | 
            +
                    ddconfig:
         | 
| 46 | 
            +
                      #attn_type: "vanilla-xformers"
         | 
| 47 | 
            +
                      double_z: true
         | 
| 48 | 
            +
                      z_channels: 4
         | 
| 49 | 
            +
                      resolution: 256
         | 
| 50 | 
            +
                      in_channels: 3
         | 
| 51 | 
            +
                      out_ch: 3
         | 
| 52 | 
            +
                      ch: 128
         | 
| 53 | 
            +
                      ch_mult:
         | 
| 54 | 
            +
                      - 1
         | 
| 55 | 
            +
                      - 2
         | 
| 56 | 
            +
                      - 4
         | 
| 57 | 
            +
                      - 4
         | 
| 58 | 
            +
                      num_res_blocks: 2
         | 
| 59 | 
            +
                      attn_resolutions: []
         | 
| 60 | 
            +
                      dropout: 0.0
         | 
| 61 | 
            +
                    lossconfig:
         | 
| 62 | 
            +
                      target: torch.nn.Identity
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                cond_stage_config:
         | 
| 65 | 
            +
                  target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
         | 
| 66 | 
            +
                  params:
         | 
| 67 | 
            +
                    freeze: True
         | 
| 68 | 
            +
                    layer: "penultimate"
         | 
    	
        configs/v2-inference.yaml
    ADDED
    
    | @@ -0,0 +1,67 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            model:
         | 
| 2 | 
            +
              base_learning_rate: 1.0e-4
         | 
| 3 | 
            +
              target: ldm.models.diffusion.ddpm.LatentDiffusion
         | 
| 4 | 
            +
              params:
         | 
| 5 | 
            +
                linear_start: 0.00085
         | 
| 6 | 
            +
                linear_end: 0.0120
         | 
| 7 | 
            +
                num_timesteps_cond: 1
         | 
| 8 | 
            +
                log_every_t: 200
         | 
| 9 | 
            +
                timesteps: 1000
         | 
| 10 | 
            +
                first_stage_key: "jpg"
         | 
| 11 | 
            +
                cond_stage_key: "txt"
         | 
| 12 | 
            +
                image_size: 64
         | 
| 13 | 
            +
                channels: 4
         | 
| 14 | 
            +
                cond_stage_trainable: false
         | 
| 15 | 
            +
                conditioning_key: crossattn
         | 
| 16 | 
            +
                monitor: val/loss_simple_ema
         | 
| 17 | 
            +
                scale_factor: 0.18215
         | 
| 18 | 
            +
                use_ema: False # we set this to false because this is an inference only config
         | 
| 19 | 
            +
             | 
| 20 | 
            +
                unet_config:
         | 
| 21 | 
            +
                  target: ldm.modules.diffusionmodules.openaimodel.UNetModel
         | 
| 22 | 
            +
                  params:
         | 
| 23 | 
            +
                    use_checkpoint: True
         | 
| 24 | 
            +
                    use_fp16: True
         | 
| 25 | 
            +
                    image_size: 32 # unused
         | 
| 26 | 
            +
                    in_channels: 4
         | 
| 27 | 
            +
                    out_channels: 4
         | 
| 28 | 
            +
                    model_channels: 320
         | 
| 29 | 
            +
                    attention_resolutions: [ 4, 2, 1 ]
         | 
| 30 | 
            +
                    num_res_blocks: 2
         | 
| 31 | 
            +
                    channel_mult: [ 1, 2, 4, 4 ]
         | 
| 32 | 
            +
                    num_head_channels: 64 # need to fix for flash-attn
         | 
| 33 | 
            +
                    use_spatial_transformer: True
         | 
| 34 | 
            +
                    use_linear_in_transformer: True
         | 
| 35 | 
            +
                    transformer_depth: 1
         | 
| 36 | 
            +
                    context_dim: 1024
         | 
| 37 | 
            +
                    legacy: False
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                first_stage_config:
         | 
| 40 | 
            +
                  target: ldm.models.autoencoder.AutoencoderKL
         | 
| 41 | 
            +
                  params:
         | 
| 42 | 
            +
                    embed_dim: 4
         | 
| 43 | 
            +
                    monitor: val/rec_loss
         | 
| 44 | 
            +
                    ddconfig:
         | 
| 45 | 
            +
                      #attn_type: "vanilla-xformers"
         | 
| 46 | 
            +
                      double_z: true
         | 
| 47 | 
            +
                      z_channels: 4
         | 
| 48 | 
            +
                      resolution: 256
         | 
| 49 | 
            +
                      in_channels: 3
         | 
| 50 | 
            +
                      out_ch: 3
         | 
| 51 | 
            +
                      ch: 128
         | 
| 52 | 
            +
                      ch_mult:
         | 
| 53 | 
            +
                      - 1
         | 
| 54 | 
            +
                      - 2
         | 
| 55 | 
            +
                      - 4
         | 
| 56 | 
            +
                      - 4
         | 
| 57 | 
            +
                      num_res_blocks: 2
         | 
| 58 | 
            +
                      attn_resolutions: []
         | 
| 59 | 
            +
                      dropout: 0.0
         | 
| 60 | 
            +
                    lossconfig:
         | 
| 61 | 
            +
                      target: torch.nn.Identity
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                cond_stage_config:
         | 
| 64 | 
            +
                  target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
         | 
| 65 | 
            +
                  params:
         | 
| 66 | 
            +
                    freeze: True
         | 
| 67 | 
            +
                    layer: "penultimate"
         | 
    	
        configs/v2-inpainting-inference.yaml
    ADDED
    
    | @@ -0,0 +1,158 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            model:
         | 
| 2 | 
            +
              base_learning_rate: 5.0e-05
         | 
| 3 | 
            +
              target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
         | 
| 4 | 
            +
              params:
         | 
| 5 | 
            +
                linear_start: 0.00085
         | 
| 6 | 
            +
                linear_end: 0.0120
         | 
| 7 | 
            +
                num_timesteps_cond: 1
         | 
| 8 | 
            +
                log_every_t: 200
         | 
| 9 | 
            +
                timesteps: 1000
         | 
| 10 | 
            +
                first_stage_key: "jpg"
         | 
| 11 | 
            +
                cond_stage_key: "txt"
         | 
| 12 | 
            +
                image_size: 64
         | 
| 13 | 
            +
                channels: 4
         | 
| 14 | 
            +
                cond_stage_trainable: false
         | 
| 15 | 
            +
                conditioning_key: hybrid
         | 
| 16 | 
            +
                scale_factor: 0.18215
         | 
| 17 | 
            +
                monitor: val/loss_simple_ema
         | 
| 18 | 
            +
                finetune_keys: null
         | 
| 19 | 
            +
                use_ema: False
         | 
| 20 | 
            +
             | 
| 21 | 
            +
                unet_config:
         | 
| 22 | 
            +
                  target: ldm.modules.diffusionmodules.openaimodel.UNetModel
         | 
| 23 | 
            +
                  params:
         | 
| 24 | 
            +
                    use_checkpoint: True
         | 
| 25 | 
            +
                    image_size: 32 # unused
         | 
| 26 | 
            +
                    in_channels: 9
         | 
| 27 | 
            +
                    out_channels: 4
         | 
| 28 | 
            +
                    model_channels: 320
         | 
| 29 | 
            +
                    attention_resolutions: [ 4, 2, 1 ]
         | 
| 30 | 
            +
                    num_res_blocks: 2
         | 
| 31 | 
            +
                    channel_mult: [ 1, 2, 4, 4 ]
         | 
| 32 | 
            +
                    num_head_channels: 64 # need to fix for flash-attn
         | 
| 33 | 
            +
                    use_spatial_transformer: True
         | 
| 34 | 
            +
                    use_linear_in_transformer: True
         | 
| 35 | 
            +
                    transformer_depth: 1
         | 
| 36 | 
            +
                    context_dim: 1024
         | 
| 37 | 
            +
                    legacy: False
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                first_stage_config:
         | 
| 40 | 
            +
                  target: ldm.models.autoencoder.AutoencoderKL
         | 
| 41 | 
            +
                  params:
         | 
| 42 | 
            +
                    embed_dim: 4
         | 
| 43 | 
            +
                    monitor: val/rec_loss
         | 
| 44 | 
            +
                    ddconfig:
         | 
| 45 | 
            +
                      #attn_type: "vanilla-xformers"
         | 
| 46 | 
            +
                      double_z: true
         | 
| 47 | 
            +
                      z_channels: 4
         | 
| 48 | 
            +
                      resolution: 256
         | 
| 49 | 
            +
                      in_channels: 3
         | 
| 50 | 
            +
                      out_ch: 3
         | 
| 51 | 
            +
                      ch: 128
         | 
| 52 | 
            +
                      ch_mult:
         | 
| 53 | 
            +
                        - 1
         | 
| 54 | 
            +
                        - 2
         | 
| 55 | 
            +
                        - 4
         | 
| 56 | 
            +
                        - 4
         | 
| 57 | 
            +
                      num_res_blocks: 2
         | 
| 58 | 
            +
                      attn_resolutions: [ ]
         | 
| 59 | 
            +
                      dropout: 0.0
         | 
| 60 | 
            +
                    lossconfig:
         | 
| 61 | 
            +
                      target: torch.nn.Identity
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                cond_stage_config:
         | 
| 64 | 
            +
                  target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
         | 
| 65 | 
            +
                  params:
         | 
| 66 | 
            +
                    freeze: True
         | 
| 67 | 
            +
                    layer: "penultimate"
         | 
| 68 | 
            +
             | 
| 69 | 
            +
             | 
| 70 | 
            +
            data:
         | 
| 71 | 
            +
              target: ldm.data.laion.WebDataModuleFromConfig
         | 
| 72 | 
            +
              params:
         | 
| 73 | 
            +
                tar_base: null  # for concat as in LAION-A
         | 
| 74 | 
            +
                p_unsafe_threshold: 0.1
         | 
| 75 | 
            +
                filter_word_list: "data/filters.yaml"
         | 
| 76 | 
            +
                max_pwatermark: 0.45
         | 
| 77 | 
            +
                batch_size: 8
         | 
| 78 | 
            +
                num_workers: 6
         | 
| 79 | 
            +
                multinode: True
         | 
| 80 | 
            +
                min_size: 512
         | 
| 81 | 
            +
                train:
         | 
| 82 | 
            +
                  shards:
         | 
| 83 | 
            +
                    - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-0/{00000..18699}.tar -"
         | 
| 84 | 
            +
                    - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-1/{00000..18699}.tar -"
         | 
| 85 | 
            +
                    - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-2/{00000..18699}.tar -"
         | 
| 86 | 
            +
                    - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-3/{00000..18699}.tar -"
         | 
| 87 | 
            +
                    - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-4/{00000..18699}.tar -"  #{00000-94333}.tar"
         | 
| 88 | 
            +
                  shuffle: 10000
         | 
| 89 | 
            +
                  image_key: jpg
         | 
| 90 | 
            +
                  image_transforms:
         | 
| 91 | 
            +
                  - target: torchvision.transforms.Resize
         | 
| 92 | 
            +
                    params:
         | 
| 93 | 
            +
                      size: 512
         | 
| 94 | 
            +
                      interpolation: 3
         | 
| 95 | 
            +
                  - target: torchvision.transforms.RandomCrop
         | 
| 96 | 
            +
                    params:
         | 
| 97 | 
            +
                      size: 512
         | 
| 98 | 
            +
                  postprocess:
         | 
| 99 | 
            +
                    target: ldm.data.laion.AddMask
         | 
| 100 | 
            +
                    params:
         | 
| 101 | 
            +
                      mode: "512train-large"
         | 
| 102 | 
            +
                      p_drop: 0.25
         | 
| 103 | 
            +
                # NOTE use enough shards to avoid empty validation loops in workers
         | 
| 104 | 
            +
                validation:
         | 
| 105 | 
            +
                  shards:
         | 
| 106 | 
            +
                    - "pipe:aws s3 cp s3://deep-floyd-s3/datasets/laion_cleaned-part5/{93001..94333}.tar - "
         | 
| 107 | 
            +
                  shuffle: 0
         | 
| 108 | 
            +
                  image_key: jpg
         | 
| 109 | 
            +
                  image_transforms:
         | 
| 110 | 
            +
                  - target: torchvision.transforms.Resize
         | 
| 111 | 
            +
                    params:
         | 
| 112 | 
            +
                      size: 512
         | 
| 113 | 
            +
                      interpolation: 3
         | 
| 114 | 
            +
                  - target: torchvision.transforms.CenterCrop
         | 
| 115 | 
            +
                    params:
         | 
| 116 | 
            +
                      size: 512
         | 
| 117 | 
            +
                  postprocess:
         | 
| 118 | 
            +
                    target: ldm.data.laion.AddMask
         | 
| 119 | 
            +
                    params:
         | 
| 120 | 
            +
                      mode: "512train-large"
         | 
| 121 | 
            +
                      p_drop: 0.25
         | 
| 122 | 
            +
             | 
| 123 | 
            +
            lightning:
         | 
| 124 | 
            +
              find_unused_parameters: True
         | 
| 125 | 
            +
              modelcheckpoint:
         | 
| 126 | 
            +
                params:
         | 
| 127 | 
            +
                  every_n_train_steps: 5000
         | 
| 128 | 
            +
             | 
| 129 | 
            +
              callbacks:
         | 
| 130 | 
            +
                metrics_over_trainsteps_checkpoint:
         | 
| 131 | 
            +
                  params:
         | 
| 132 | 
            +
                    every_n_train_steps: 10000
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                image_logger:
         | 
| 135 | 
            +
                  target: main.ImageLogger
         | 
| 136 | 
            +
                  params:
         | 
| 137 | 
            +
                    enable_autocast: False
         | 
| 138 | 
            +
                    disabled: False
         | 
| 139 | 
            +
                    batch_frequency: 1000
         | 
| 140 | 
            +
                    max_images: 4
         | 
| 141 | 
            +
                    increase_log_steps: False
         | 
| 142 | 
            +
                    log_first_step: False
         | 
| 143 | 
            +
                    log_images_kwargs:
         | 
| 144 | 
            +
                      use_ema_scope: False
         | 
| 145 | 
            +
                      inpaint: False
         | 
| 146 | 
            +
                      plot_progressive_rows: False
         | 
| 147 | 
            +
                      plot_diffusion_rows: False
         | 
| 148 | 
            +
                      N: 4
         | 
| 149 | 
            +
                      unconditional_guidance_scale: 5.0
         | 
| 150 | 
            +
                      unconditional_guidance_label: [""]
         | 
| 151 | 
            +
                      ddim_steps: 50  # todo check these out for depth2img,
         | 
| 152 | 
            +
                      ddim_eta: 0.0   # todo check these out for depth2img,
         | 
| 153 | 
            +
             | 
| 154 | 
            +
              trainer:
         | 
| 155 | 
            +
                benchmark: True
         | 
| 156 | 
            +
                val_check_interval: 5000000
         | 
| 157 | 
            +
                num_sanity_val_steps: 0
         | 
| 158 | 
            +
                accumulate_grad_batches: 1
         | 
    	
        configs/v2-midas-inference.yaml
    ADDED
    
    | @@ -0,0 +1,74 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            model:
         | 
| 2 | 
            +
              base_learning_rate: 5.0e-07
         | 
| 3 | 
            +
              target: ldm.models.diffusion.ddpm.LatentDepth2ImageDiffusion
         | 
| 4 | 
            +
              params:
         | 
| 5 | 
            +
                linear_start: 0.00085
         | 
| 6 | 
            +
                linear_end: 0.0120
         | 
| 7 | 
            +
                num_timesteps_cond: 1
         | 
| 8 | 
            +
                log_every_t: 200
         | 
| 9 | 
            +
                timesteps: 1000
         | 
| 10 | 
            +
                first_stage_key: "jpg"
         | 
| 11 | 
            +
                cond_stage_key: "txt"
         | 
| 12 | 
            +
                image_size: 64
         | 
| 13 | 
            +
                channels: 4
         | 
| 14 | 
            +
                cond_stage_trainable: false
         | 
| 15 | 
            +
                conditioning_key: hybrid
         | 
| 16 | 
            +
                scale_factor: 0.18215
         | 
| 17 | 
            +
                monitor: val/loss_simple_ema
         | 
| 18 | 
            +
                finetune_keys: null
         | 
| 19 | 
            +
                use_ema: False
         | 
| 20 | 
            +
             | 
| 21 | 
            +
                depth_stage_config:
         | 
| 22 | 
            +
                  target: ldm.modules.midas.api.MiDaSInference
         | 
| 23 | 
            +
                  params:
         | 
| 24 | 
            +
                    model_type: "dpt_hybrid"
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                unet_config:
         | 
| 27 | 
            +
                  target: ldm.modules.diffusionmodules.openaimodel.UNetModel
         | 
| 28 | 
            +
                  params:
         | 
| 29 | 
            +
                    use_checkpoint: True
         | 
| 30 | 
            +
                    image_size: 32 # unused
         | 
| 31 | 
            +
                    in_channels: 5
         | 
| 32 | 
            +
                    out_channels: 4
         | 
| 33 | 
            +
                    model_channels: 320
         | 
| 34 | 
            +
                    attention_resolutions: [ 4, 2, 1 ]
         | 
| 35 | 
            +
                    num_res_blocks: 2
         | 
| 36 | 
            +
                    channel_mult: [ 1, 2, 4, 4 ]
         | 
| 37 | 
            +
                    num_head_channels: 64 # need to fix for flash-attn
         | 
| 38 | 
            +
                    use_spatial_transformer: True
         | 
| 39 | 
            +
                    use_linear_in_transformer: True
         | 
| 40 | 
            +
                    transformer_depth: 1
         | 
| 41 | 
            +
                    context_dim: 1024
         | 
| 42 | 
            +
                    legacy: False
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                first_stage_config:
         | 
| 45 | 
            +
                  target: ldm.models.autoencoder.AutoencoderKL
         | 
| 46 | 
            +
                  params:
         | 
| 47 | 
            +
                    embed_dim: 4
         | 
| 48 | 
            +
                    monitor: val/rec_loss
         | 
| 49 | 
            +
                    ddconfig:
         | 
| 50 | 
            +
                      #attn_type: "vanilla-xformers"
         | 
| 51 | 
            +
                      double_z: true
         | 
| 52 | 
            +
                      z_channels: 4
         | 
| 53 | 
            +
                      resolution: 256
         | 
| 54 | 
            +
                      in_channels: 3
         | 
| 55 | 
            +
                      out_ch: 3
         | 
| 56 | 
            +
                      ch: 128
         | 
| 57 | 
            +
                      ch_mult:
         | 
| 58 | 
            +
                        - 1
         | 
| 59 | 
            +
                        - 2
         | 
| 60 | 
            +
                        - 4
         | 
| 61 | 
            +
                        - 4
         | 
| 62 | 
            +
                      num_res_blocks: 2
         | 
| 63 | 
            +
                      attn_resolutions: [ ]
         | 
| 64 | 
            +
                      dropout: 0.0
         | 
| 65 | 
            +
                    lossconfig:
         | 
| 66 | 
            +
                      target: torch.nn.Identity
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                cond_stage_config:
         | 
| 69 | 
            +
                  target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
         | 
| 70 | 
            +
                  params:
         | 
| 71 | 
            +
                    freeze: True
         | 
| 72 | 
            +
                    layer: "penultimate"
         | 
| 73 | 
            +
             | 
| 74 | 
            +
             | 
    	
        configs/x4-upscaling.yaml
    ADDED
    
    | @@ -0,0 +1,76 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            model:
         | 
| 2 | 
            +
              base_learning_rate: 1.0e-04
         | 
| 3 | 
            +
              target: ldm.models.diffusion.ddpm.LatentUpscaleDiffusion
         | 
| 4 | 
            +
              params:
         | 
| 5 | 
            +
                parameterization: "v"
         | 
| 6 | 
            +
                low_scale_key: "lr"
         | 
| 7 | 
            +
                linear_start: 0.0001
         | 
| 8 | 
            +
                linear_end: 0.02
         | 
| 9 | 
            +
                num_timesteps_cond: 1
         | 
| 10 | 
            +
                log_every_t: 200
         | 
| 11 | 
            +
                timesteps: 1000
         | 
| 12 | 
            +
                first_stage_key: "jpg"
         | 
| 13 | 
            +
                cond_stage_key: "txt"
         | 
| 14 | 
            +
                image_size: 128
         | 
| 15 | 
            +
                channels: 4
         | 
| 16 | 
            +
                cond_stage_trainable: false
         | 
| 17 | 
            +
                conditioning_key: "hybrid-adm"
         | 
| 18 | 
            +
                monitor: val/loss_simple_ema
         | 
| 19 | 
            +
                scale_factor: 0.08333
         | 
| 20 | 
            +
                use_ema: False
         | 
| 21 | 
            +
             | 
| 22 | 
            +
                low_scale_config:
         | 
| 23 | 
            +
                  target: ldm.modules.diffusionmodules.upscaling.ImageConcatWithNoiseAugmentation
         | 
| 24 | 
            +
                  params:
         | 
| 25 | 
            +
                    noise_schedule_config: # image space
         | 
| 26 | 
            +
                      linear_start: 0.0001
         | 
| 27 | 
            +
                      linear_end: 0.02
         | 
| 28 | 
            +
                    max_noise_level: 350
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                unet_config:
         | 
| 31 | 
            +
                  target: ldm.modules.diffusionmodules.openaimodel.UNetModel
         | 
| 32 | 
            +
                  params:
         | 
| 33 | 
            +
                    use_checkpoint: True
         | 
| 34 | 
            +
                    num_classes: 1000  # timesteps for noise conditioning (here constant, just need one)
         | 
| 35 | 
            +
                    image_size: 128
         | 
| 36 | 
            +
                    in_channels: 7
         | 
| 37 | 
            +
                    out_channels: 4
         | 
| 38 | 
            +
                    model_channels: 256
         | 
| 39 | 
            +
                    attention_resolutions: [ 2,4,8]
         | 
| 40 | 
            +
                    num_res_blocks: 2
         | 
| 41 | 
            +
                    channel_mult: [ 1, 2, 2, 4]
         | 
| 42 | 
            +
                    disable_self_attentions: [True, True, True, False]
         | 
| 43 | 
            +
                    disable_middle_self_attn: False
         | 
| 44 | 
            +
                    num_heads: 8
         | 
| 45 | 
            +
                    use_spatial_transformer: True
         | 
| 46 | 
            +
                    transformer_depth: 1
         | 
| 47 | 
            +
                    context_dim: 1024
         | 
| 48 | 
            +
                    legacy: False
         | 
| 49 | 
            +
                    use_linear_in_transformer: True
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                first_stage_config:
         | 
| 52 | 
            +
                  target: ldm.models.autoencoder.AutoencoderKL
         | 
| 53 | 
            +
                  params:
         | 
| 54 | 
            +
                    embed_dim: 4
         | 
| 55 | 
            +
                    ddconfig:
         | 
| 56 | 
            +
                      # attn_type: "vanilla-xformers" this model needs efficient attention to be feasible on HR data, also the decoder seems to break in half precision (UNet is fine though)
         | 
| 57 | 
            +
                      double_z: True
         | 
| 58 | 
            +
                      z_channels: 4
         | 
| 59 | 
            +
                      resolution: 256
         | 
| 60 | 
            +
                      in_channels: 3
         | 
| 61 | 
            +
                      out_ch: 3
         | 
| 62 | 
            +
                      ch: 128
         | 
| 63 | 
            +
                      ch_mult: [ 1,2,4 ]  # num_down = len(ch_mult)-1
         | 
| 64 | 
            +
                      num_res_blocks: 2
         | 
| 65 | 
            +
                      attn_resolutions: [ ]
         | 
| 66 | 
            +
                      dropout: 0.0
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                    lossconfig:
         | 
| 69 | 
            +
                      target: torch.nn.Identity
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                cond_stage_config:
         | 
| 72 | 
            +
                  target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
         | 
| 73 | 
            +
                  params:
         | 
| 74 | 
            +
                    freeze: True
         | 
| 75 | 
            +
                    layer: "penultimate"
         | 
| 76 | 
            +
             | 
    	
        gradio_ui.py
    ADDED
    
    | @@ -0,0 +1,500 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2022 Lunar Ring. All rights reserved.
         | 
| 2 | 
            +
            # Written by Johannes Stelzer, email [email protected] twitter @j_stelzer
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            import os
         | 
| 17 | 
            +
            import torch
         | 
| 18 | 
            +
            torch.backends.cudnn.benchmark = False
         | 
| 19 | 
            +
            torch.set_grad_enabled(False)
         | 
| 20 | 
            +
            import numpy as np
         | 
| 21 | 
            +
            import warnings
         | 
| 22 | 
            +
            warnings.filterwarnings('ignore')
         | 
| 23 | 
            +
            import warnings
         | 
| 24 | 
            +
            from tqdm.auto import tqdm
         | 
| 25 | 
            +
            from PIL import Image
         | 
| 26 | 
            +
            from movie_util import MovieSaver, concatenate_movies
         | 
| 27 | 
            +
            from latent_blending import LatentBlending
         | 
| 28 | 
            +
            from stable_diffusion_holder import StableDiffusionHolder
         | 
| 29 | 
            +
            import gradio as gr
         | 
| 30 | 
            +
            from dotenv import find_dotenv, load_dotenv
         | 
| 31 | 
            +
            import shutil
         | 
| 32 | 
            +
            import uuid
         | 
| 33 | 
            +
            from utils import get_time, add_frames_linear_interp
         | 
| 34 | 
            +
            from huggingface_hub import hf_hub_download
         | 
| 35 | 
            +
             | 
| 36 | 
            +
             | 
| 37 | 
            +
            class BlendingFrontend():
         | 
| 38 | 
            +
                def __init__(
         | 
| 39 | 
            +
                        self,
         | 
| 40 | 
            +
                        sdh,
         | 
| 41 | 
            +
                        share=False):
         | 
| 42 | 
            +
                    r"""
         | 
| 43 | 
            +
                    Gradio Helper Class to collect UI data and start latent blending.
         | 
| 44 | 
            +
                    Args:
         | 
| 45 | 
            +
                        sdh:
         | 
| 46 | 
            +
                            StableDiffusionHolder
         | 
| 47 | 
            +
                        share: bool
         | 
| 48 | 
            +
                            Set true to get a shareable gradio link (e.g. for running a remote server)
         | 
| 49 | 
            +
                    """
         | 
| 50 | 
            +
                    self.share = share
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                    # UI Defaults
         | 
| 53 | 
            +
                    self.num_inference_steps = 30
         | 
| 54 | 
            +
                    self.depth_strength = 0.25
         | 
| 55 | 
            +
                    self.seed1 = 420
         | 
| 56 | 
            +
                    self.seed2 = 420
         | 
| 57 | 
            +
                    self.prompt1 = ""
         | 
| 58 | 
            +
                    self.prompt2 = ""
         | 
| 59 | 
            +
                    self.negative_prompt = ""
         | 
| 60 | 
            +
                    self.fps = 30
         | 
| 61 | 
            +
                    self.duration_video = 8
         | 
| 62 | 
            +
                    self.t_compute_max_allowed = 10
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                    self.lb = LatentBlending(sdh)
         | 
| 65 | 
            +
                    self.lb.sdh.num_inference_steps = self.num_inference_steps
         | 
| 66 | 
            +
                    self.init_parameters_from_lb()
         | 
| 67 | 
            +
                    self.init_save_dir()
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                    # Vars
         | 
| 70 | 
            +
                    self.list_fp_imgs_current = []
         | 
| 71 | 
            +
                    self.recycle_img1 = False
         | 
| 72 | 
            +
                    self.recycle_img2 = False
         | 
| 73 | 
            +
                    self.list_all_segments = []
         | 
| 74 | 
            +
                    self.dp_session = ""
         | 
| 75 | 
            +
                    self.user_id = None
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                def init_parameters_from_lb(self):
         | 
| 78 | 
            +
                    r"""
         | 
| 79 | 
            +
                    Automatically init parameters from latentblending instance
         | 
| 80 | 
            +
                    """
         | 
| 81 | 
            +
                    self.height = self.lb.sdh.height
         | 
| 82 | 
            +
                    self.width = self.lb.sdh.width
         | 
| 83 | 
            +
                    self.guidance_scale = self.lb.guidance_scale
         | 
| 84 | 
            +
                    self.guidance_scale_mid_damper = self.lb.guidance_scale_mid_damper
         | 
| 85 | 
            +
                    self.mid_compression_scaler = self.lb.mid_compression_scaler
         | 
| 86 | 
            +
                    self.branch1_crossfeed_power = self.lb.branch1_crossfeed_power
         | 
| 87 | 
            +
                    self.branch1_crossfeed_range = self.lb.branch1_crossfeed_range
         | 
| 88 | 
            +
                    self.branch1_crossfeed_decay = self.lb.branch1_crossfeed_decay
         | 
| 89 | 
            +
                    self.parental_crossfeed_power = self.lb.parental_crossfeed_power
         | 
| 90 | 
            +
                    self.parental_crossfeed_range = self.lb.parental_crossfeed_range
         | 
| 91 | 
            +
                    self.parental_crossfeed_power_decay = self.lb.parental_crossfeed_power_decay
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                def init_save_dir(self):
         | 
| 94 | 
            +
                    r"""
         | 
| 95 | 
            +
                    Initializes the directory where stuff is being saved.
         | 
| 96 | 
            +
                    You can specify this directory in a ".env" file in your latentblending root, setting
         | 
| 97 | 
            +
                    DIR_OUT='/path/to/saving'
         | 
| 98 | 
            +
                    """
         | 
| 99 | 
            +
                    load_dotenv(find_dotenv(), verbose=False)
         | 
| 100 | 
            +
                    self.dp_out = os.getenv("DIR_OUT")
         | 
| 101 | 
            +
                    if self.dp_out is None:
         | 
| 102 | 
            +
                        self.dp_out = ""
         | 
| 103 | 
            +
                    self.dp_imgs = os.path.join(self.dp_out, "imgs")
         | 
| 104 | 
            +
                    os.makedirs(self.dp_imgs, exist_ok=True)
         | 
| 105 | 
            +
                    self.dp_movies = os.path.join(self.dp_out, "movies")
         | 
| 106 | 
            +
                    os.makedirs(self.dp_movies, exist_ok=True)
         | 
| 107 | 
            +
                    self.save_empty_image()
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                def save_empty_image(self):
         | 
| 110 | 
            +
                    r"""
         | 
| 111 | 
            +
                    Saves an empty/black dummy image.
         | 
| 112 | 
            +
                    """
         | 
| 113 | 
            +
                    self.fp_img_empty = os.path.join(self.dp_imgs, 'empty.jpg')
         | 
| 114 | 
            +
                    Image.fromarray(np.zeros((self.height, self.width, 3), dtype=np.uint8)).save(self.fp_img_empty, quality=5)
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                def randomize_seed1(self):
         | 
| 117 | 
            +
                    r"""
         | 
| 118 | 
            +
                    Randomizes the first seed
         | 
| 119 | 
            +
                    """
         | 
| 120 | 
            +
                    seed = np.random.randint(0, 10000000)
         | 
| 121 | 
            +
                    self.seed1 = int(seed)
         | 
| 122 | 
            +
                    print(f"randomize_seed1: new seed = {self.seed1}")
         | 
| 123 | 
            +
                    return seed
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                def randomize_seed2(self):
         | 
| 126 | 
            +
                    r"""
         | 
| 127 | 
            +
                    Randomizes the second seed
         | 
| 128 | 
            +
                    """
         | 
| 129 | 
            +
                    seed = np.random.randint(0, 10000000)
         | 
| 130 | 
            +
                    self.seed2 = int(seed)
         | 
| 131 | 
            +
                    print(f"randomize_seed2: new seed = {self.seed2}")
         | 
| 132 | 
            +
                    return seed
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                def setup_lb(self, list_ui_vals):
         | 
| 135 | 
            +
                    r"""
         | 
| 136 | 
            +
                    Sets all parameters from the UI. Since gradio does not support to pass dictionaries,
         | 
| 137 | 
            +
                    we have to instead pass keys (list_ui_keys, global) and values (list_ui_vals)
         | 
| 138 | 
            +
                    """
         | 
| 139 | 
            +
                    # Collect latent blending variables
         | 
| 140 | 
            +
                    self.lb.set_width(list_ui_vals[list_ui_keys.index('width')])
         | 
| 141 | 
            +
                    self.lb.set_height(list_ui_vals[list_ui_keys.index('height')])
         | 
| 142 | 
            +
                    self.lb.set_prompt1(list_ui_vals[list_ui_keys.index('prompt1')])
         | 
| 143 | 
            +
                    self.lb.set_prompt2(list_ui_vals[list_ui_keys.index('prompt2')])
         | 
| 144 | 
            +
                    self.lb.set_negative_prompt(list_ui_vals[list_ui_keys.index('negative_prompt')])
         | 
| 145 | 
            +
                    self.lb.guidance_scale = list_ui_vals[list_ui_keys.index('guidance_scale')]
         | 
| 146 | 
            +
                    self.lb.guidance_scale_mid_damper = list_ui_vals[list_ui_keys.index('guidance_scale_mid_damper')]
         | 
| 147 | 
            +
                    self.t_compute_max_allowed = list_ui_vals[list_ui_keys.index('duration_compute')]
         | 
| 148 | 
            +
                    self.lb.num_inference_steps = list_ui_vals[list_ui_keys.index('num_inference_steps')]
         | 
| 149 | 
            +
                    self.lb.sdh.num_inference_steps = list_ui_vals[list_ui_keys.index('num_inference_steps')]
         | 
| 150 | 
            +
                    self.duration_video = list_ui_vals[list_ui_keys.index('duration_video')]
         | 
| 151 | 
            +
                    self.lb.seed1 = list_ui_vals[list_ui_keys.index('seed1')]
         | 
| 152 | 
            +
                    self.lb.seed2 = list_ui_vals[list_ui_keys.index('seed2')]
         | 
| 153 | 
            +
                    self.lb.branch1_crossfeed_power = list_ui_vals[list_ui_keys.index('branch1_crossfeed_power')]
         | 
| 154 | 
            +
                    self.lb.branch1_crossfeed_range = list_ui_vals[list_ui_keys.index('branch1_crossfeed_range')]
         | 
| 155 | 
            +
                    self.lb.branch1_crossfeed_decay = list_ui_vals[list_ui_keys.index('branch1_crossfeed_decay')]
         | 
| 156 | 
            +
                    self.lb.parental_crossfeed_power = list_ui_vals[list_ui_keys.index('parental_crossfeed_power')]
         | 
| 157 | 
            +
                    self.lb.parental_crossfeed_range = list_ui_vals[list_ui_keys.index('parental_crossfeed_range')]
         | 
| 158 | 
            +
                    self.lb.parental_crossfeed_power_decay = list_ui_vals[list_ui_keys.index('parental_crossfeed_power_decay')]
         | 
| 159 | 
            +
                    self.num_inference_steps = list_ui_vals[list_ui_keys.index('num_inference_steps')]
         | 
| 160 | 
            +
                    self.depth_strength = list_ui_vals[list_ui_keys.index('depth_strength')]
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                    if len(list_ui_vals[list_ui_keys.index('user_id')]) > 1:
         | 
| 163 | 
            +
                        self.user_id = list_ui_vals[list_ui_keys.index('user_id')]
         | 
| 164 | 
            +
                    else:
         | 
| 165 | 
            +
                        # generate new user id
         | 
| 166 | 
            +
                        self.user_id = uuid.uuid4().hex
         | 
| 167 | 
            +
                        print(f"made new user_id: {self.user_id} at {get_time('second')}")
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                def save_latents(self, fp_latents, list_latents):
         | 
| 170 | 
            +
                    r"""
         | 
| 171 | 
            +
                    Saves a latent trajectory on disk, in npy format.
         | 
| 172 | 
            +
                    """
         | 
| 173 | 
            +
                    list_latents_cpu = [l.cpu().numpy() for l in list_latents]
         | 
| 174 | 
            +
                    np.save(fp_latents, list_latents_cpu)
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                def load_latents(self, fp_latents):
         | 
| 177 | 
            +
                    r"""
         | 
| 178 | 
            +
                    Loads a latent trajectory from disk, converts to torch tensor.
         | 
| 179 | 
            +
                    """
         | 
| 180 | 
            +
                    list_latents_cpu = np.load(fp_latents)
         | 
| 181 | 
            +
                    list_latents = [torch.from_numpy(l).to(self.lb.device) for l in list_latents_cpu]
         | 
| 182 | 
            +
                    return list_latents
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                def compute_img1(self, *args):
         | 
| 185 | 
            +
                    r"""
         | 
| 186 | 
            +
                    Computes the first transition image and returns it for display.
         | 
| 187 | 
            +
                    Sets all other transition images and last image to empty (as they are obsolete with this operation)
         | 
| 188 | 
            +
                    """
         | 
| 189 | 
            +
                    list_ui_vals = args
         | 
| 190 | 
            +
                    self.setup_lb(list_ui_vals)
         | 
| 191 | 
            +
                    fp_img1 = os.path.join(self.dp_imgs, f"img1_{self.user_id}")
         | 
| 192 | 
            +
                    img1 = Image.fromarray(self.lb.compute_latents1(return_image=True))
         | 
| 193 | 
            +
                    img1.save(fp_img1 + ".jpg")
         | 
| 194 | 
            +
                    self.save_latents(fp_img1 + ".npy", self.lb.tree_latents[0])
         | 
| 195 | 
            +
                    self.recycle_img1 = True
         | 
| 196 | 
            +
                    self.recycle_img2 = False
         | 
| 197 | 
            +
                    return [fp_img1 + ".jpg", self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.user_id]
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                def compute_img2(self, *args):
         | 
| 200 | 
            +
                    r"""
         | 
| 201 | 
            +
                    Computes the last transition image and returns it for display.
         | 
| 202 | 
            +
                    Sets all other transition images to empty (as they are obsolete with this operation)
         | 
| 203 | 
            +
                    """
         | 
| 204 | 
            +
                    if not os.path.isfile(os.path.join(self.dp_imgs, f"img1_{self.user_id}.jpg")):  # don't do anything
         | 
| 205 | 
            +
                        return [self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, self.user_id]
         | 
| 206 | 
            +
                    list_ui_vals = args
         | 
| 207 | 
            +
                    self.setup_lb(list_ui_vals)
         | 
| 208 | 
            +
             | 
| 209 | 
            +
                    self.lb.tree_latents[0] = self.load_latents(os.path.join(self.dp_imgs, f"img1_{self.user_id}.npy"))
         | 
| 210 | 
            +
                    fp_img2 = os.path.join(self.dp_imgs, f"img2_{self.user_id}")
         | 
| 211 | 
            +
                    img2 = Image.fromarray(self.lb.compute_latents2(return_image=True))
         | 
| 212 | 
            +
                    img2.save(fp_img2 + '.jpg')
         | 
| 213 | 
            +
                    self.save_latents(fp_img2 + ".npy", self.lb.tree_latents[-1])
         | 
| 214 | 
            +
                    self.recycle_img2 = True
         | 
| 215 | 
            +
                    # fixme save seeds. change filenames?
         | 
| 216 | 
            +
                    return [self.fp_img_empty, self.fp_img_empty, self.fp_img_empty, fp_img2 + ".jpg", self.user_id]
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                def compute_transition(self, *args):
         | 
| 219 | 
            +
                    r"""
         | 
| 220 | 
            +
                    Computes transition images and movie.
         | 
| 221 | 
            +
                    """
         | 
| 222 | 
            +
                    list_ui_vals = args
         | 
| 223 | 
            +
                    self.setup_lb(list_ui_vals)
         | 
| 224 | 
            +
                    print("STARTING TRANSITION...")
         | 
| 225 | 
            +
                    fixed_seeds = [self.seed1, self.seed2]
         | 
| 226 | 
            +
                    # Inject loaded latents (other user interference)
         | 
| 227 | 
            +
                    self.lb.tree_latents[0] = self.load_latents(os.path.join(self.dp_imgs, f"img1_{self.user_id}.npy"))
         | 
| 228 | 
            +
                    self.lb.tree_latents[-1] = self.load_latents(os.path.join(self.dp_imgs, f"img2_{self.user_id}.npy"))
         | 
| 229 | 
            +
                    imgs_transition = self.lb.run_transition(
         | 
| 230 | 
            +
                        recycle_img1=self.recycle_img1,
         | 
| 231 | 
            +
                        recycle_img2=self.recycle_img2,
         | 
| 232 | 
            +
                        num_inference_steps=self.num_inference_steps,
         | 
| 233 | 
            +
                        depth_strength=self.depth_strength,
         | 
| 234 | 
            +
                        t_compute_max_allowed=self.t_compute_max_allowed,
         | 
| 235 | 
            +
                        fixed_seeds=fixed_seeds)
         | 
| 236 | 
            +
                    print(f"Latent Blending pass finished ({get_time('second')}). Resulted in {len(imgs_transition)} images")
         | 
| 237 | 
            +
             | 
| 238 | 
            +
                    # Subselect three preview images
         | 
| 239 | 
            +
                    idx_img_prev = np.round(np.linspace(0, len(imgs_transition) - 1, 5)[1:-1]).astype(np.int32)
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                    list_imgs_preview = []
         | 
| 242 | 
            +
                    for j in idx_img_prev:
         | 
| 243 | 
            +
                        list_imgs_preview.append(Image.fromarray(imgs_transition[j]))
         | 
| 244 | 
            +
             | 
| 245 | 
            +
                    # Save the preview imgs as jpgs on disk so we are not sending umcompressed data around
         | 
| 246 | 
            +
                    current_timestamp = get_time('second')
         | 
| 247 | 
            +
                    self.list_fp_imgs_current = []
         | 
| 248 | 
            +
                    for i in range(len(list_imgs_preview)):
         | 
| 249 | 
            +
                        fp_img = os.path.join(self.dp_imgs, f"img_preview_{i}_{current_timestamp}.jpg")
         | 
| 250 | 
            +
                        list_imgs_preview[i].save(fp_img)
         | 
| 251 | 
            +
                        self.list_fp_imgs_current.append(fp_img)
         | 
| 252 | 
            +
                    # Insert cheap frames for the movie
         | 
| 253 | 
            +
                    imgs_transition_ext = add_frames_linear_interp(imgs_transition, self.duration_video, self.fps)
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                    # Save as movie
         | 
| 256 | 
            +
                    self.fp_movie = self.get_fp_video_last()
         | 
| 257 | 
            +
                    if os.path.isfile(self.fp_movie):
         | 
| 258 | 
            +
                        os.remove(self.fp_movie)
         | 
| 259 | 
            +
                    ms = MovieSaver(self.fp_movie, fps=self.fps)
         | 
| 260 | 
            +
                    for img in tqdm(imgs_transition_ext):
         | 
| 261 | 
            +
                        ms.write_frame(img)
         | 
| 262 | 
            +
                    ms.finalize()
         | 
| 263 | 
            +
                    print("DONE SAVING MOVIE! SENDING BACK...")
         | 
| 264 | 
            +
             | 
| 265 | 
            +
                    # Assemble Output, updating the preview images and le movie
         | 
| 266 | 
            +
                    list_return = self.list_fp_imgs_current + [self.fp_movie]
         | 
| 267 | 
            +
                    return list_return
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                def stack_forward(self, prompt2, seed2):
         | 
| 270 | 
            +
                    r"""
         | 
| 271 | 
            +
                    Allows to generate multi-segment movies. Sets last image -> first image with all
         | 
| 272 | 
            +
                    relevant parameters.
         | 
| 273 | 
            +
                    """
         | 
| 274 | 
            +
                    # Save preview images, prompts and seeds into dictionary for stacking
         | 
| 275 | 
            +
                    if len(self.list_all_segments) == 0:
         | 
| 276 | 
            +
                        timestamp_session = get_time('second')
         | 
| 277 | 
            +
                        self.dp_session = os.path.join(self.dp_out, f"session_{timestamp_session}")
         | 
| 278 | 
            +
                        os.makedirs(self.dp_session)
         | 
| 279 | 
            +
             | 
| 280 | 
            +
                    idx_segment = len(self.list_all_segments)
         | 
| 281 | 
            +
                    dp_segment = os.path.join(self.dp_session, f"segment_{str(idx_segment).zfill(3)}")
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                    self.list_all_segments.append(dp_segment)
         | 
| 284 | 
            +
                    self.lb.write_imgs_transition(dp_segment)
         | 
| 285 | 
            +
             | 
| 286 | 
            +
                    fp_movie_last = self.get_fp_video_last()
         | 
| 287 | 
            +
                    fp_movie_next = self.get_fp_video_next()
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                    shutil.copyfile(fp_movie_last, fp_movie_next)
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                    self.lb.tree_latents[0] = self.load_latents(os.path.join(self.dp_imgs, f"img1_{self.user_id}.npy"))
         | 
| 292 | 
            +
                    self.lb.tree_latents[-1] = self.load_latents(os.path.join(self.dp_imgs, f"img2_{self.user_id}.npy"))
         | 
| 293 | 
            +
                    self.lb.swap_forward()
         | 
| 294 | 
            +
             | 
| 295 | 
            +
                    shutil.copyfile(os.path.join(self.dp_imgs, f"img2_{self.user_id}.npy"), os.path.join(self.dp_imgs, f"img1_{self.user_id}.npy"))
         | 
| 296 | 
            +
                    fp_multi = self.multi_concat()
         | 
| 297 | 
            +
                    list_out = [fp_multi]
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                    list_out.extend([os.path.join(self.dp_imgs, f"img2_{self.user_id}.jpg")])
         | 
| 300 | 
            +
                    list_out.extend([self.fp_img_empty] * 4)
         | 
| 301 | 
            +
                    list_out.append(gr.update(interactive=False, value=prompt2))
         | 
| 302 | 
            +
                    list_out.append(gr.update(interactive=False, value=seed2))
         | 
| 303 | 
            +
                    list_out.append("")
         | 
| 304 | 
            +
                    list_out.append(np.random.randint(0, 10000000))
         | 
| 305 | 
            +
                    print(f"stack_forward: fp_multi {fp_multi}")
         | 
| 306 | 
            +
                    return list_out
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                def multi_concat(self):
         | 
| 309 | 
            +
                    r"""
         | 
| 310 | 
            +
                    Concatentates all stacked segments into one long movie.
         | 
| 311 | 
            +
                    """
         | 
| 312 | 
            +
                    list_fp_movies = self.get_fp_video_all()
         | 
| 313 | 
            +
                    # Concatenate movies and save
         | 
| 314 | 
            +
                    fp_final = os.path.join(self.dp_session, f"concat_{self.user_id}.mp4")
         | 
| 315 | 
            +
                    concatenate_movies(fp_final, list_fp_movies)
         | 
| 316 | 
            +
                    return fp_final
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                def get_fp_video_all(self):
         | 
| 319 | 
            +
                    r"""
         | 
| 320 | 
            +
                    Collects all stacked movie segments.
         | 
| 321 | 
            +
                    """
         | 
| 322 | 
            +
                    list_all = os.listdir(self.dp_movies)
         | 
| 323 | 
            +
                    str_beg = f"movie_{self.user_id}_"
         | 
| 324 | 
            +
                    list_user = [l for l in list_all if str_beg in l]
         | 
| 325 | 
            +
                    list_user.sort()
         | 
| 326 | 
            +
                    list_user = [os.path.join(self.dp_movies, l) for l in list_user]
         | 
| 327 | 
            +
                    return list_user
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                def get_fp_video_next(self):
         | 
| 330 | 
            +
                    r"""
         | 
| 331 | 
            +
                    Gets the filepath of the next movie segment.
         | 
| 332 | 
            +
                    """
         | 
| 333 | 
            +
                    list_videos = self.get_fp_video_all()
         | 
| 334 | 
            +
                    if len(list_videos) == 0:
         | 
| 335 | 
            +
                        idx_next = 0
         | 
| 336 | 
            +
                    else:
         | 
| 337 | 
            +
                        idx_next = len(list_videos)
         | 
| 338 | 
            +
                    fp_video_next = os.path.join(self.dp_movies, f"movie_{self.user_id}_{str(idx_next).zfill(3)}.mp4")
         | 
| 339 | 
            +
                    return fp_video_next
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                def get_fp_video_last(self):
         | 
| 342 | 
            +
                    r"""
         | 
| 343 | 
            +
                    Gets the current video that was saved.
         | 
| 344 | 
            +
                    """
         | 
| 345 | 
            +
                    fp_video_last = os.path.join(self.dp_movies, f"last_{self.user_id}.mp4")
         | 
| 346 | 
            +
                    return fp_video_last
         | 
| 347 | 
            +
             | 
| 348 | 
            +
             | 
| 349 | 
            +
            if __name__ == "__main__":
         | 
| 350 | 
            +
                fp_ckpt = hf_hub_download(repo_id="stabilityai/stable-diffusion-2-1-base", filename="v2-1_512-ema-pruned.ckpt")
         | 
| 351 | 
            +
                # fp_ckpt = hf_hub_download(repo_id="stabilityai/stable-diffusion-2-1", filename="v2-1_768-ema-pruned.ckpt")
         | 
| 352 | 
            +
                bf = BlendingFrontend(StableDiffusionHolder(fp_ckpt))
         | 
| 353 | 
            +
                # self = BlendingFrontend(None)
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                with gr.Blocks() as demo:
         | 
| 356 | 
            +
                    gr.HTML("""<h1>Latent Blending</h1>
         | 
| 357 | 
            +
            <p>Create butter-smooth transitions between prompts, powered by stable diffusion</p>
         | 
| 358 | 
            +
            <p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
         | 
| 359 | 
            +
            <br/>
         | 
| 360 | 
            +
            <a href="https://huggingface.co/spaces/lunarring/latentblending?duplicate=true">
         | 
| 361 | 
            +
            <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
         | 
| 362 | 
            +
            </p>""")
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                    with gr.Row():
         | 
| 365 | 
            +
                        prompt1 = gr.Textbox(label="prompt 1")
         | 
| 366 | 
            +
                        prompt2 = gr.Textbox(label="prompt 2")
         | 
| 367 | 
            +
             | 
| 368 | 
            +
                    with gr.Row():
         | 
| 369 | 
            +
                        duration_compute = gr.Slider(10, 25, bf.t_compute_max_allowed, step=1, label='waiting time', interactive=True)
         | 
| 370 | 
            +
                        duration_video = gr.Slider(1, 100, bf.duration_video, step=0.1, label='video duration', interactive=True)
         | 
| 371 | 
            +
                        height = gr.Slider(256, 1024, bf.height, step=128, label='height', interactive=True)
         | 
| 372 | 
            +
                        width = gr.Slider(256, 1024, bf.width, step=128, label='width', interactive=True)
         | 
| 373 | 
            +
             | 
| 374 | 
            +
                    with gr.Accordion("Advanced Settings (click to expand)", open=False):
         | 
| 375 | 
            +
             | 
| 376 | 
            +
                        with gr.Accordion("Diffusion settings", open=True):
         | 
| 377 | 
            +
                            with gr.Row():
         | 
| 378 | 
            +
                                num_inference_steps = gr.Slider(5, 100, bf.num_inference_steps, step=1, label='num_inference_steps', interactive=True)
         | 
| 379 | 
            +
                                guidance_scale = gr.Slider(1, 25, bf.guidance_scale, step=0.1, label='guidance_scale', interactive=True)
         | 
| 380 | 
            +
                                negative_prompt = gr.Textbox(label="negative prompt")
         | 
| 381 | 
            +
             | 
| 382 | 
            +
                        with gr.Accordion("Seed control: adjust seeds for first and last images", open=True):
         | 
| 383 | 
            +
                            with gr.Row():
         | 
| 384 | 
            +
                                b_newseed1 = gr.Button("randomize seed 1", variant='secondary')
         | 
| 385 | 
            +
                                seed1 = gr.Number(bf.seed1, label="seed 1", interactive=True)
         | 
| 386 | 
            +
                                seed2 = gr.Number(bf.seed2, label="seed 2", interactive=True)
         | 
| 387 | 
            +
                                b_newseed2 = gr.Button("randomize seed 2", variant='secondary')
         | 
| 388 | 
            +
             | 
| 389 | 
            +
                        with gr.Accordion("Last image crossfeeding.", open=True):
         | 
| 390 | 
            +
                            with gr.Row():
         | 
| 391 | 
            +
                                branch1_crossfeed_power = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_power, step=0.01, label='branch1 crossfeed power', interactive=True)
         | 
| 392 | 
            +
                                branch1_crossfeed_range = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_range, step=0.01, label='branch1 crossfeed range', interactive=True)
         | 
| 393 | 
            +
                                branch1_crossfeed_decay = gr.Slider(0.0, 1.0, bf.branch1_crossfeed_decay, step=0.01, label='branch1 crossfeed decay', interactive=True)
         | 
| 394 | 
            +
             | 
| 395 | 
            +
                        with gr.Accordion("Transition settings", open=True):
         | 
| 396 | 
            +
                            with gr.Row():
         | 
| 397 | 
            +
                                parental_crossfeed_power = gr.Slider(0.0, 1.0, bf.parental_crossfeed_power, step=0.01, label='parental crossfeed power', interactive=True)
         | 
| 398 | 
            +
                                parental_crossfeed_range = gr.Slider(0.0, 1.0, bf.parental_crossfeed_range, step=0.01, label='parental crossfeed range', interactive=True)
         | 
| 399 | 
            +
                                parental_crossfeed_power_decay = gr.Slider(0.0, 1.0, bf.parental_crossfeed_power_decay, step=0.01, label='parental crossfeed decay', interactive=True)
         | 
| 400 | 
            +
                            with gr.Row():
         | 
| 401 | 
            +
                                depth_strength = gr.Slider(0.01, 0.99, bf.depth_strength, step=0.01, label='depth_strength', interactive=True)
         | 
| 402 | 
            +
                                guidance_scale_mid_damper = gr.Slider(0.01, 2.0, bf.guidance_scale_mid_damper, step=0.01, label='guidance_scale_mid_damper', interactive=True)
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                    with gr.Row():
         | 
| 405 | 
            +
                        b_compute1 = gr.Button('step1: compute first image', variant='primary')
         | 
| 406 | 
            +
                        b_compute2 = gr.Button('step2: compute last image', variant='primary')
         | 
| 407 | 
            +
                        b_compute_transition = gr.Button('step3: compute transition', variant='primary')
         | 
| 408 | 
            +
             | 
| 409 | 
            +
                    with gr.Row():
         | 
| 410 | 
            +
                        img1 = gr.Image(label="1/5")
         | 
| 411 | 
            +
                        img2 = gr.Image(label="2/5", show_progress=False)
         | 
| 412 | 
            +
                        img3 = gr.Image(label="3/5", show_progress=False)
         | 
| 413 | 
            +
                        img4 = gr.Image(label="4/5", show_progress=False)
         | 
| 414 | 
            +
                        img5 = gr.Image(label="5/5")
         | 
| 415 | 
            +
             | 
| 416 | 
            +
                    with gr.Row():
         | 
| 417 | 
            +
                        vid_single = gr.Video(label="current single trans")
         | 
| 418 | 
            +
                        vid_multi = gr.Video(label="concatented multi trans")
         | 
| 419 | 
            +
             | 
| 420 | 
            +
                    with gr.Row():
         | 
| 421 | 
            +
                        b_stackforward = gr.Button('append last movie segment (left) to multi movie (right)', variant='primary')
         | 
| 422 | 
            +
             | 
| 423 | 
            +
                    with gr.Row():
         | 
| 424 | 
            +
                        gr.Markdown(
         | 
| 425 | 
            +
                            """
         | 
| 426 | 
            +
                            # Parameters
         | 
| 427 | 
            +
                            ## Main
         | 
| 428 | 
            +
                            - waiting time: set your waiting time for the transition. high values = better quality
         | 
| 429 | 
            +
                            - video duration: seconds per segment
         | 
| 430 | 
            +
                            - height/width: in pixels
         | 
| 431 | 
            +
             | 
| 432 | 
            +
                            ## Diffusion settings
         | 
| 433 | 
            +
                            - num_inference_steps: number of diffusion steps
         | 
| 434 | 
            +
                            - guidance_scale: latent blending seems to prefer lower values here
         | 
| 435 | 
            +
                            - negative prompt: enter negative prompt here, applied for all images
         | 
| 436 | 
            +
             | 
| 437 | 
            +
                            ## Last image crossfeeding
         | 
| 438 | 
            +
                            - branch1_crossfeed_power: Controls the level of cross-feeding between the first and last image branch. For preserving structures.
         | 
| 439 | 
            +
                            - branch1_crossfeed_range: Sets the duration of active crossfeed during development. High values enforce strong structural similarity.
         | 
| 440 | 
            +
                            - branch1_crossfeed_decay: Sets decay for branch1_crossfeed_power. Lower values make the decay stronger across the range.
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                            ## Transition settings
         | 
| 443 | 
            +
                            - parental_crossfeed_power: Similar to branch1_crossfeed_power, however applied for the images withinin the transition.
         | 
| 444 | 
            +
                            - parental_crossfeed_range: Similar to branch1_crossfeed_range, however applied for the images withinin the transition.
         | 
| 445 | 
            +
                            - parental_crossfeed_power_decay: Similar to branch1_crossfeed_decay, however applied for the images withinin the transition.
         | 
| 446 | 
            +
                            - depth_strength: Determines when the blending process will begin in terms of diffusion steps. Low values more inventive but can cause motion.
         | 
| 447 | 
            +
                            - guidance_scale_mid_damper: Decreases the guidance scale in the middle of a transition.
         | 
| 448 | 
            +
                            """)
         | 
| 449 | 
            +
             | 
| 450 | 
            +
                    with gr.Row():
         | 
| 451 | 
            +
                        user_id = gr.Textbox(label="user id", interactive=False)
         | 
| 452 | 
            +
             | 
| 453 | 
            +
                    # Collect all UI elemts in list to easily pass as inputs in gradio
         | 
| 454 | 
            +
                    dict_ui_elem = {}
         | 
| 455 | 
            +
                    dict_ui_elem["prompt1"] = prompt1
         | 
| 456 | 
            +
                    dict_ui_elem["negative_prompt"] = negative_prompt
         | 
| 457 | 
            +
                    dict_ui_elem["prompt2"] = prompt2
         | 
| 458 | 
            +
             | 
| 459 | 
            +
                    dict_ui_elem["duration_compute"] = duration_compute
         | 
| 460 | 
            +
                    dict_ui_elem["duration_video"] = duration_video
         | 
| 461 | 
            +
                    dict_ui_elem["height"] = height
         | 
| 462 | 
            +
                    dict_ui_elem["width"] = width
         | 
| 463 | 
            +
             | 
| 464 | 
            +
                    dict_ui_elem["depth_strength"] = depth_strength
         | 
| 465 | 
            +
                    dict_ui_elem["branch1_crossfeed_power"] = branch1_crossfeed_power
         | 
| 466 | 
            +
                    dict_ui_elem["branch1_crossfeed_range"] = branch1_crossfeed_range
         | 
| 467 | 
            +
                    dict_ui_elem["branch1_crossfeed_decay"] = branch1_crossfeed_decay
         | 
| 468 | 
            +
             | 
| 469 | 
            +
                    dict_ui_elem["num_inference_steps"] = num_inference_steps
         | 
| 470 | 
            +
                    dict_ui_elem["guidance_scale"] = guidance_scale
         | 
| 471 | 
            +
                    dict_ui_elem["guidance_scale_mid_damper"] = guidance_scale_mid_damper
         | 
| 472 | 
            +
                    dict_ui_elem["seed1"] = seed1
         | 
| 473 | 
            +
                    dict_ui_elem["seed2"] = seed2
         | 
| 474 | 
            +
             | 
| 475 | 
            +
                    dict_ui_elem["parental_crossfeed_range"] = parental_crossfeed_range
         | 
| 476 | 
            +
                    dict_ui_elem["parental_crossfeed_power"] = parental_crossfeed_power
         | 
| 477 | 
            +
                    dict_ui_elem["parental_crossfeed_power_decay"] = parental_crossfeed_power_decay
         | 
| 478 | 
            +
                    dict_ui_elem["user_id"] = user_id
         | 
| 479 | 
            +
             | 
| 480 | 
            +
                    # Convert to list, as gradio doesn't seem to accept dicts
         | 
| 481 | 
            +
                    list_ui_vals = []
         | 
| 482 | 
            +
                    list_ui_keys = []
         | 
| 483 | 
            +
                    for k in dict_ui_elem.keys():
         | 
| 484 | 
            +
                        list_ui_vals.append(dict_ui_elem[k])
         | 
| 485 | 
            +
                        list_ui_keys.append(k)
         | 
| 486 | 
            +
                    bf.list_ui_keys = list_ui_keys
         | 
| 487 | 
            +
             | 
| 488 | 
            +
                    b_newseed1.click(bf.randomize_seed1, outputs=seed1)
         | 
| 489 | 
            +
                    b_newseed2.click(bf.randomize_seed2, outputs=seed2)
         | 
| 490 | 
            +
                    b_compute1.click(bf.compute_img1, inputs=list_ui_vals, outputs=[img1, img2, img3, img4, img5, user_id])
         | 
| 491 | 
            +
                    b_compute2.click(bf.compute_img2, inputs=list_ui_vals, outputs=[img2, img3, img4, img5, user_id])
         | 
| 492 | 
            +
                    b_compute_transition.click(bf.compute_transition,
         | 
| 493 | 
            +
                                               inputs=list_ui_vals,
         | 
| 494 | 
            +
                                               outputs=[img2, img3, img4, vid_single])
         | 
| 495 | 
            +
             | 
| 496 | 
            +
                    b_stackforward.click(bf.stack_forward,
         | 
| 497 | 
            +
                                         inputs=[prompt2, seed2],
         | 
| 498 | 
            +
                                         outputs=[vid_multi, img1, img2, img3, img4, img5, prompt1, seed1, prompt2])
         | 
| 499 | 
            +
             | 
| 500 | 
            +
                demo.launch(share=bf.share, inbrowser=True, inline=False)
         | 
    	
        latent_blending.py
    ADDED
    
    | @@ -0,0 +1,884 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2022 Lunar Ring. All rights reserved.
         | 
| 2 | 
            +
            # Written by Johannes Stelzer, email [email protected] twitter @j_stelzer
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 5 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 6 | 
            +
            # You may obtain a copy of the License at
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 11 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 12 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 13 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 14 | 
            +
            # limitations under the License.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            import os
         | 
| 17 | 
            +
            import torch
         | 
| 18 | 
            +
            torch.backends.cudnn.benchmark = False
         | 
| 19 | 
            +
            torch.set_grad_enabled(False)
         | 
| 20 | 
            +
            import numpy as np
         | 
| 21 | 
            +
            import warnings
         | 
| 22 | 
            +
            warnings.filterwarnings('ignore')
         | 
| 23 | 
            +
            import time
         | 
| 24 | 
            +
            import warnings
         | 
| 25 | 
            +
            from tqdm.auto import tqdm
         | 
| 26 | 
            +
            from PIL import Image
         | 
| 27 | 
            +
            from movie_util import MovieSaver
         | 
| 28 | 
            +
            from typing import List, Optional
         | 
| 29 | 
            +
            from ldm.models.diffusion.ddpm import LatentUpscaleDiffusion, LatentInpaintDiffusion
         | 
| 30 | 
            +
            import lpips
         | 
| 31 | 
            +
            from utils import interpolate_spherical, interpolate_linear, add_frames_linear_interp, yml_load, yml_save
         | 
| 32 | 
            +
             | 
| 33 | 
            +
             | 
| 34 | 
            +
            class LatentBlending():
         | 
| 35 | 
            +
                def __init__(
         | 
| 36 | 
            +
                        self,
         | 
| 37 | 
            +
                        sdh: None,
         | 
| 38 | 
            +
                        guidance_scale: float = 4,
         | 
| 39 | 
            +
                        guidance_scale_mid_damper: float = 0.5,
         | 
| 40 | 
            +
                        mid_compression_scaler: float = 1.2):
         | 
| 41 | 
            +
                    r"""
         | 
| 42 | 
            +
                    Initializes the latent blending class.
         | 
| 43 | 
            +
                    Args:
         | 
| 44 | 
            +
                        guidance_scale: float
         | 
| 45 | 
            +
                            Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
         | 
| 46 | 
            +
                            `guidance_scale` is defined as `w` of equation 2. of [Imagen
         | 
| 47 | 
            +
                            Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
         | 
| 48 | 
            +
                            1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
         | 
| 49 | 
            +
                            usually at the expense of lower image quality.
         | 
| 50 | 
            +
                        guidance_scale_mid_damper: float = 0.5
         | 
| 51 | 
            +
                            Reduces the guidance scale towards the middle of the transition.
         | 
| 52 | 
            +
                            A value of 0.5 would decrease the guidance_scale towards the middle linearly by 0.5.
         | 
| 53 | 
            +
                        mid_compression_scaler: float = 2.0
         | 
| 54 | 
            +
                            Increases the sampling density in the middle (where most changes happen). Higher value
         | 
| 55 | 
            +
                            imply more values in the middle. However the inflection point can occur outside the middle,
         | 
| 56 | 
            +
                            thus high values can give rough transitions. Values around 2 should be fine.
         | 
| 57 | 
            +
                    """
         | 
| 58 | 
            +
                    assert guidance_scale_mid_damper > 0 \
         | 
| 59 | 
            +
                        and guidance_scale_mid_damper <= 1.0, \
         | 
| 60 | 
            +
                        f"guidance_scale_mid_damper neees to be in interval (0,1], you provided {guidance_scale_mid_damper}"
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                    self.sdh = sdh
         | 
| 63 | 
            +
                    self.device = self.sdh.device
         | 
| 64 | 
            +
                    self.width = self.sdh.width
         | 
| 65 | 
            +
                    self.height = self.sdh.height
         | 
| 66 | 
            +
                    self.guidance_scale_mid_damper = guidance_scale_mid_damper
         | 
| 67 | 
            +
                    self.mid_compression_scaler = mid_compression_scaler
         | 
| 68 | 
            +
                    self.seed1 = 0
         | 
| 69 | 
            +
                    self.seed2 = 0
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                    # Initialize vars
         | 
| 72 | 
            +
                    self.prompt1 = ""
         | 
| 73 | 
            +
                    self.prompt2 = ""
         | 
| 74 | 
            +
                    self.negative_prompt = ""
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                    self.tree_latents = [None, None]
         | 
| 77 | 
            +
                    self.tree_fracts = None
         | 
| 78 | 
            +
                    self.idx_injection = []
         | 
| 79 | 
            +
                    self.tree_status = None
         | 
| 80 | 
            +
                    self.tree_final_imgs = []
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                    self.list_nmb_branches_prev = []
         | 
| 83 | 
            +
                    self.list_injection_idx_prev = []
         | 
| 84 | 
            +
                    self.text_embedding1 = None
         | 
| 85 | 
            +
                    self.text_embedding2 = None
         | 
| 86 | 
            +
                    self.image1_lowres = None
         | 
| 87 | 
            +
                    self.image2_lowres = None
         | 
| 88 | 
            +
                    self.negative_prompt = None
         | 
| 89 | 
            +
                    self.num_inference_steps = self.sdh.num_inference_steps
         | 
| 90 | 
            +
                    self.noise_level_upscaling = 20
         | 
| 91 | 
            +
                    self.list_injection_idx = None
         | 
| 92 | 
            +
                    self.list_nmb_branches = None
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                    # Mixing parameters
         | 
| 95 | 
            +
                    self.branch1_crossfeed_power = 0.1
         | 
| 96 | 
            +
                    self.branch1_crossfeed_range = 0.6
         | 
| 97 | 
            +
                    self.branch1_crossfeed_decay = 0.8
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                    self.parental_crossfeed_power = 0.1
         | 
| 100 | 
            +
                    self.parental_crossfeed_range = 0.8
         | 
| 101 | 
            +
                    self.parental_crossfeed_power_decay = 0.8
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                    self.set_guidance_scale(guidance_scale)
         | 
| 104 | 
            +
                    self.init_mode()
         | 
| 105 | 
            +
                    self.multi_transition_img_first = None
         | 
| 106 | 
            +
                    self.multi_transition_img_last = None
         | 
| 107 | 
            +
                    self.dt_per_diff = 0
         | 
| 108 | 
            +
                    self.spatial_mask = None
         | 
| 109 | 
            +
                    self.lpips = lpips.LPIPS(net='alex').cuda(self.device)
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                def init_mode(self):
         | 
| 112 | 
            +
                    r"""
         | 
| 113 | 
            +
                    Sets the operational mode. Currently supported are standard, inpainting and x4 upscaling.
         | 
| 114 | 
            +
                    """
         | 
| 115 | 
            +
                    if isinstance(self.sdh.model, LatentUpscaleDiffusion):
         | 
| 116 | 
            +
                        self.mode = 'upscale'
         | 
| 117 | 
            +
                    elif isinstance(self.sdh.model, LatentInpaintDiffusion):
         | 
| 118 | 
            +
                        self.sdh.image_source = None
         | 
| 119 | 
            +
                        self.sdh.mask_image = None
         | 
| 120 | 
            +
                        self.mode = 'inpaint'
         | 
| 121 | 
            +
                    else:
         | 
| 122 | 
            +
                        self.mode = 'standard'
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                def set_guidance_scale(self, guidance_scale):
         | 
| 125 | 
            +
                    r"""
         | 
| 126 | 
            +
                    sets the guidance scale.
         | 
| 127 | 
            +
                    """
         | 
| 128 | 
            +
                    self.guidance_scale_base = guidance_scale
         | 
| 129 | 
            +
                    self.guidance_scale = guidance_scale
         | 
| 130 | 
            +
                    self.sdh.guidance_scale = guidance_scale
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                def set_negative_prompt(self, negative_prompt):
         | 
| 133 | 
            +
                    r"""Set the negative prompt. Currenty only one negative prompt is supported
         | 
| 134 | 
            +
                    """
         | 
| 135 | 
            +
                    self.negative_prompt = negative_prompt
         | 
| 136 | 
            +
                    self.sdh.set_negative_prompt(negative_prompt)
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                def set_guidance_mid_dampening(self, fract_mixing):
         | 
| 139 | 
            +
                    r"""
         | 
| 140 | 
            +
                    Tunes the guidance scale down as a linear function of fract_mixing,
         | 
| 141 | 
            +
                    towards 0.5 the minimum will be reached.
         | 
| 142 | 
            +
                    """
         | 
| 143 | 
            +
                    mid_factor = 1 - np.abs(fract_mixing - 0.5) / 0.5
         | 
| 144 | 
            +
                    max_guidance_reduction = self.guidance_scale_base * (1 - self.guidance_scale_mid_damper) - 1
         | 
| 145 | 
            +
                    guidance_scale_effective = self.guidance_scale_base - max_guidance_reduction * mid_factor
         | 
| 146 | 
            +
                    self.guidance_scale = guidance_scale_effective
         | 
| 147 | 
            +
                    self.sdh.guidance_scale = guidance_scale_effective
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                def set_branch1_crossfeed(self, crossfeed_power, crossfeed_range, crossfeed_decay):
         | 
| 150 | 
            +
                    r"""
         | 
| 151 | 
            +
                    Sets the crossfeed parameters for the first branch to the last branch.
         | 
| 152 | 
            +
                    Args:
         | 
| 153 | 
            +
                        crossfeed_power: float [0,1]
         | 
| 154 | 
            +
                            Controls the level of cross-feeding between the first and last image branch.
         | 
| 155 | 
            +
                        crossfeed_range: float [0,1]
         | 
| 156 | 
            +
                            Sets the duration of active crossfeed during development.
         | 
| 157 | 
            +
                        crossfeed_decay: float [0,1]
         | 
| 158 | 
            +
                            Sets decay for branch1_crossfeed_power. Lower values make the decay stronger across the range.
         | 
| 159 | 
            +
                    """
         | 
| 160 | 
            +
                    self.branch1_crossfeed_power = np.clip(crossfeed_power, 0, 1)
         | 
| 161 | 
            +
                    self.branch1_crossfeed_range = np.clip(crossfeed_range, 0, 1)
         | 
| 162 | 
            +
                    self.branch1_crossfeed_decay = np.clip(crossfeed_decay, 0, 1)
         | 
| 163 | 
            +
             | 
| 164 | 
            +
                def set_parental_crossfeed(self, crossfeed_power, crossfeed_range, crossfeed_decay):
         | 
| 165 | 
            +
                    r"""
         | 
| 166 | 
            +
                    Sets the crossfeed parameters for all transition images (within the first and last branch).
         | 
| 167 | 
            +
                    Args:
         | 
| 168 | 
            +
                        crossfeed_power: float [0,1]
         | 
| 169 | 
            +
                            Controls the level of cross-feeding from the parental branches
         | 
| 170 | 
            +
                        crossfeed_range: float [0,1]
         | 
| 171 | 
            +
                            Sets the duration of active crossfeed during development.
         | 
| 172 | 
            +
                        crossfeed_decay: float [0,1]
         | 
| 173 | 
            +
                            Sets decay for branch1_crossfeed_power. Lower values make the decay stronger across the range.
         | 
| 174 | 
            +
                    """
         | 
| 175 | 
            +
                    self.parental_crossfeed_power = np.clip(crossfeed_power, 0, 1)
         | 
| 176 | 
            +
                    self.parental_crossfeed_range = np.clip(crossfeed_range, 0, 1)
         | 
| 177 | 
            +
                    self.parental_crossfeed_power_decay = np.clip(crossfeed_decay, 0, 1)
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                def set_prompt1(self, prompt: str):
         | 
| 180 | 
            +
                    r"""
         | 
| 181 | 
            +
                    Sets the first prompt (for the first keyframe) including text embeddings.
         | 
| 182 | 
            +
                    Args:
         | 
| 183 | 
            +
                        prompt: str
         | 
| 184 | 
            +
                            ABC trending on artstation painted by Greg Rutkowski
         | 
| 185 | 
            +
                    """
         | 
| 186 | 
            +
                    prompt = prompt.replace("_", " ")
         | 
| 187 | 
            +
                    self.prompt1 = prompt
         | 
| 188 | 
            +
                    self.text_embedding1 = self.get_text_embeddings(self.prompt1)
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                def set_prompt2(self, prompt: str):
         | 
| 191 | 
            +
                    r"""
         | 
| 192 | 
            +
                    Sets the second prompt (for the second keyframe) including text embeddings.
         | 
| 193 | 
            +
                    Args:
         | 
| 194 | 
            +
                        prompt: str
         | 
| 195 | 
            +
                            XYZ trending on artstation painted by Greg Rutkowski
         | 
| 196 | 
            +
                    """
         | 
| 197 | 
            +
                    prompt = prompt.replace("_", " ")
         | 
| 198 | 
            +
                    self.prompt2 = prompt
         | 
| 199 | 
            +
                    self.text_embedding2 = self.get_text_embeddings(self.prompt2)
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                def set_image1(self, image: Image):
         | 
| 202 | 
            +
                    r"""
         | 
| 203 | 
            +
                    Sets the first image (keyframe), relevant for the upscaling model transitions.
         | 
| 204 | 
            +
                    Args:
         | 
| 205 | 
            +
                        image: Image
         | 
| 206 | 
            +
                    """
         | 
| 207 | 
            +
                    self.image1_lowres = image
         | 
| 208 | 
            +
             | 
| 209 | 
            +
                def set_image2(self, image: Image):
         | 
| 210 | 
            +
                    r"""
         | 
| 211 | 
            +
                    Sets the second image (keyframe), relevant for the upscaling model transitions.
         | 
| 212 | 
            +
                    Args:
         | 
| 213 | 
            +
                        image: Image
         | 
| 214 | 
            +
                    """
         | 
| 215 | 
            +
                    self.image2_lowres = image
         | 
| 216 | 
            +
             | 
| 217 | 
            +
                def run_transition(
         | 
| 218 | 
            +
                        self,
         | 
| 219 | 
            +
                        recycle_img1: Optional[bool] = False,
         | 
| 220 | 
            +
                        recycle_img2: Optional[bool] = False,
         | 
| 221 | 
            +
                        num_inference_steps: Optional[int] = 30,
         | 
| 222 | 
            +
                        depth_strength: Optional[float] = 0.3,
         | 
| 223 | 
            +
                        t_compute_max_allowed: Optional[float] = None,
         | 
| 224 | 
            +
                        nmb_max_branches: Optional[int] = None,
         | 
| 225 | 
            +
                        fixed_seeds: Optional[List[int]] = None):
         | 
| 226 | 
            +
                    r"""
         | 
| 227 | 
            +
                    Function for computing transitions.
         | 
| 228 | 
            +
                    Returns a list of transition images using spherical latent blending.
         | 
| 229 | 
            +
                    Args:
         | 
| 230 | 
            +
                        recycle_img1: Optional[bool]:
         | 
| 231 | 
            +
                            Don't recompute the latents for the first keyframe (purely prompt1). Saves compute.
         | 
| 232 | 
            +
                        recycle_img2: Optional[bool]:
         | 
| 233 | 
            +
                            Don't recompute the latents for the second keyframe (purely prompt2). Saves compute.
         | 
| 234 | 
            +
                        num_inference_steps:
         | 
| 235 | 
            +
                            Number of diffusion steps. Higher values will take more compute time.
         | 
| 236 | 
            +
                        depth_strength:
         | 
| 237 | 
            +
                            Determines how deep the first injection will happen.
         | 
| 238 | 
            +
                            Deeper injections will cause (unwanted) formation of new structures,
         | 
| 239 | 
            +
                            more shallow values will go into alpha-blendy land.
         | 
| 240 | 
            +
                        t_compute_max_allowed:
         | 
| 241 | 
            +
                            Either provide t_compute_max_allowed or nmb_max_branches.
         | 
| 242 | 
            +
                            The maximum time allowed for computation. Higher values give better results but take longer.
         | 
| 243 | 
            +
                        nmb_max_branches: int
         | 
| 244 | 
            +
                            Either provide t_compute_max_allowed or nmb_max_branches. The maximum number of branches to be computed. Higher values give better
         | 
| 245 | 
            +
                            results. Use this if you want to have controllable results independent
         | 
| 246 | 
            +
                            of your computer.
         | 
| 247 | 
            +
                        fixed_seeds: Optional[List[int)]:
         | 
| 248 | 
            +
                            You can supply two seeds that are used for the first and second keyframe (prompt1 and prompt2).
         | 
| 249 | 
            +
                            Otherwise random seeds will be taken.
         | 
| 250 | 
            +
                    """
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                    # Sanity checks first
         | 
| 253 | 
            +
                    assert self.text_embedding1 is not None, 'Set the first text embedding with .set_prompt1(...) before'
         | 
| 254 | 
            +
                    assert self.text_embedding2 is not None, 'Set the second text embedding with .set_prompt2(...) before'
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                    # Random seeds
         | 
| 257 | 
            +
                    if fixed_seeds is not None:
         | 
| 258 | 
            +
                        if fixed_seeds == 'randomize':
         | 
| 259 | 
            +
                            fixed_seeds = list(np.random.randint(0, 1000000, 2).astype(np.int32))
         | 
| 260 | 
            +
                        else:
         | 
| 261 | 
            +
                            assert len(fixed_seeds) == 2, "Supply a list with len = 2"
         | 
| 262 | 
            +
             | 
| 263 | 
            +
                        self.seed1 = fixed_seeds[0]
         | 
| 264 | 
            +
                        self.seed2 = fixed_seeds[1]
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                    # Ensure correct num_inference_steps in holder
         | 
| 267 | 
            +
                    self.num_inference_steps = num_inference_steps
         | 
| 268 | 
            +
                    self.sdh.num_inference_steps = num_inference_steps
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                    # Compute / Recycle first image
         | 
| 271 | 
            +
                    if not recycle_img1 or len(self.tree_latents[0]) != self.num_inference_steps:
         | 
| 272 | 
            +
                        list_latents1 = self.compute_latents1()
         | 
| 273 | 
            +
                    else:
         | 
| 274 | 
            +
                        list_latents1 = self.tree_latents[0]
         | 
| 275 | 
            +
             | 
| 276 | 
            +
                    # Compute / Recycle first image
         | 
| 277 | 
            +
                    if not recycle_img2 or len(self.tree_latents[-1]) != self.num_inference_steps:
         | 
| 278 | 
            +
                        list_latents2 = self.compute_latents2()
         | 
| 279 | 
            +
                    else:
         | 
| 280 | 
            +
                        list_latents2 = self.tree_latents[-1]
         | 
| 281 | 
            +
             | 
| 282 | 
            +
                    # Reset the tree, injecting the edge latents1/2 we just generated/recycled
         | 
| 283 | 
            +
                    self.tree_latents = [list_latents1, list_latents2]
         | 
| 284 | 
            +
                    self.tree_fracts = [0.0, 1.0]
         | 
| 285 | 
            +
                    self.tree_final_imgs = [self.sdh.latent2image((self.tree_latents[0][-1])), self.sdh.latent2image((self.tree_latents[-1][-1]))]
         | 
| 286 | 
            +
                    self.tree_idx_injection = [0, 0]
         | 
| 287 | 
            +
             | 
| 288 | 
            +
                    # Hard-fix. Apply spatial mask only for list_latents2 but not for transition. WIP...
         | 
| 289 | 
            +
                    self.spatial_mask = None
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                    # Set up branching scheme (dependent on provided compute time)
         | 
| 292 | 
            +
                    list_idx_injection, list_nmb_stems = self.get_time_based_branching(depth_strength, t_compute_max_allowed, nmb_max_branches)
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                    # Run iteratively, starting with the longest trajectory.
         | 
| 295 | 
            +
                    # Always inserting new branches where they are needed most according to image similarity
         | 
| 296 | 
            +
                    for s_idx in tqdm(range(len(list_idx_injection))):
         | 
| 297 | 
            +
                        nmb_stems = list_nmb_stems[s_idx]
         | 
| 298 | 
            +
                        idx_injection = list_idx_injection[s_idx]
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                        for i in range(nmb_stems):
         | 
| 301 | 
            +
                            fract_mixing, b_parent1, b_parent2 = self.get_mixing_parameters(idx_injection)
         | 
| 302 | 
            +
                            self.set_guidance_mid_dampening(fract_mixing)
         | 
| 303 | 
            +
                            list_latents = self.compute_latents_mix(fract_mixing, b_parent1, b_parent2, idx_injection)
         | 
| 304 | 
            +
                            self.insert_into_tree(fract_mixing, idx_injection, list_latents)
         | 
| 305 | 
            +
                            # print(f"fract_mixing: {fract_mixing} idx_injection {idx_injection}")
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                    return self.tree_final_imgs
         | 
| 308 | 
            +
             | 
| 309 | 
            +
                def compute_latents1(self, return_image=False):
         | 
| 310 | 
            +
                    r"""
         | 
| 311 | 
            +
                    Runs a diffusion trajectory for the first image
         | 
| 312 | 
            +
                    Args:
         | 
| 313 | 
            +
                        return_image: bool
         | 
| 314 | 
            +
                            whether to return an image or the list of latents
         | 
| 315 | 
            +
                    """
         | 
| 316 | 
            +
                    print("starting compute_latents1")
         | 
| 317 | 
            +
                    list_conditionings = self.get_mixed_conditioning(0)
         | 
| 318 | 
            +
                    t0 = time.time()
         | 
| 319 | 
            +
                    latents_start = self.get_noise(self.seed1)
         | 
| 320 | 
            +
                    list_latents1 = self.run_diffusion(
         | 
| 321 | 
            +
                        list_conditionings,
         | 
| 322 | 
            +
                        latents_start=latents_start,
         | 
| 323 | 
            +
                        idx_start=0)
         | 
| 324 | 
            +
                    t1 = time.time()
         | 
| 325 | 
            +
                    self.dt_per_diff = (t1 - t0) / self.num_inference_steps
         | 
| 326 | 
            +
                    self.tree_latents[0] = list_latents1
         | 
| 327 | 
            +
                    if return_image:
         | 
| 328 | 
            +
                        return self.sdh.latent2image(list_latents1[-1])
         | 
| 329 | 
            +
                    else:
         | 
| 330 | 
            +
                        return list_latents1
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                def compute_latents2(self, return_image=False):
         | 
| 333 | 
            +
                    r"""
         | 
| 334 | 
            +
                    Runs a diffusion trajectory for the last image, which may be affected by the first image's trajectory.
         | 
| 335 | 
            +
                    Args:
         | 
| 336 | 
            +
                        return_image: bool
         | 
| 337 | 
            +
                            whether to return an image or the list of latents
         | 
| 338 | 
            +
                    """
         | 
| 339 | 
            +
                    print("starting compute_latents2")
         | 
| 340 | 
            +
                    list_conditionings = self.get_mixed_conditioning(1)
         | 
| 341 | 
            +
                    latents_start = self.get_noise(self.seed2)
         | 
| 342 | 
            +
                    # Influence from branch1
         | 
| 343 | 
            +
                    if self.branch1_crossfeed_power > 0.0:
         | 
| 344 | 
            +
                        # Set up the mixing_coeffs
         | 
| 345 | 
            +
                        idx_mixing_stop = int(round(self.num_inference_steps * self.branch1_crossfeed_range))
         | 
| 346 | 
            +
                        mixing_coeffs = list(np.linspace(self.branch1_crossfeed_power, self.branch1_crossfeed_power * self.branch1_crossfeed_decay, idx_mixing_stop))
         | 
| 347 | 
            +
                        mixing_coeffs.extend((self.num_inference_steps - idx_mixing_stop) * [0])
         | 
| 348 | 
            +
                        list_latents_mixing = self.tree_latents[0]
         | 
| 349 | 
            +
                        list_latents2 = self.run_diffusion(
         | 
| 350 | 
            +
                            list_conditionings,
         | 
| 351 | 
            +
                            latents_start=latents_start,
         | 
| 352 | 
            +
                            idx_start=0,
         | 
| 353 | 
            +
                            list_latents_mixing=list_latents_mixing,
         | 
| 354 | 
            +
                            mixing_coeffs=mixing_coeffs)
         | 
| 355 | 
            +
                    else:
         | 
| 356 | 
            +
                        list_latents2 = self.run_diffusion(list_conditionings, latents_start)
         | 
| 357 | 
            +
                    self.tree_latents[-1] = list_latents2
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                    if return_image:
         | 
| 360 | 
            +
                        return self.sdh.latent2image(list_latents2[-1])
         | 
| 361 | 
            +
                    else:
         | 
| 362 | 
            +
                        return list_latents2
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                def compute_latents_mix(self, fract_mixing, b_parent1, b_parent2, idx_injection):
         | 
| 365 | 
            +
                    r"""
         | 
| 366 | 
            +
                    Runs a diffusion trajectory, using the latents from the respective parents
         | 
| 367 | 
            +
                    Args:
         | 
| 368 | 
            +
                        fract_mixing: float
         | 
| 369 | 
            +
                            the fraction along the transition axis [0, 1]
         | 
| 370 | 
            +
                        b_parent1: int
         | 
| 371 | 
            +
                            index of parent1 to be used
         | 
| 372 | 
            +
                        b_parent2: int
         | 
| 373 | 
            +
                            index of parent2 to be used
         | 
| 374 | 
            +
                        idx_injection: int
         | 
| 375 | 
            +
                            the index in terms of diffusion steps, where the next insertion will start.
         | 
| 376 | 
            +
                    """
         | 
| 377 | 
            +
                    list_conditionings = self.get_mixed_conditioning(fract_mixing)
         | 
| 378 | 
            +
                    fract_mixing_parental = (fract_mixing - self.tree_fracts[b_parent1]) / (self.tree_fracts[b_parent2] - self.tree_fracts[b_parent1])
         | 
| 379 | 
            +
                    # idx_reversed = self.num_inference_steps - idx_injection
         | 
| 380 | 
            +
             | 
| 381 | 
            +
                    list_latents_parental_mix = []
         | 
| 382 | 
            +
                    for i in range(self.num_inference_steps):
         | 
| 383 | 
            +
                        latents_p1 = self.tree_latents[b_parent1][i]
         | 
| 384 | 
            +
                        latents_p2 = self.tree_latents[b_parent2][i]
         | 
| 385 | 
            +
                        if latents_p1 is None or latents_p2 is None:
         | 
| 386 | 
            +
                            latents_parental = None
         | 
| 387 | 
            +
                        else:
         | 
| 388 | 
            +
                            latents_parental = interpolate_spherical(latents_p1, latents_p2, fract_mixing_parental)
         | 
| 389 | 
            +
                        list_latents_parental_mix.append(latents_parental)
         | 
| 390 | 
            +
             | 
| 391 | 
            +
                    idx_mixing_stop = int(round(self.num_inference_steps * self.parental_crossfeed_range))
         | 
| 392 | 
            +
                    mixing_coeffs = idx_injection * [self.parental_crossfeed_power]
         | 
| 393 | 
            +
                    nmb_mixing = idx_mixing_stop - idx_injection
         | 
| 394 | 
            +
                    if nmb_mixing > 0:
         | 
| 395 | 
            +
                        mixing_coeffs.extend(list(np.linspace(self.parental_crossfeed_power, self.parental_crossfeed_power * self.parental_crossfeed_power_decay, nmb_mixing)))
         | 
| 396 | 
            +
                    mixing_coeffs.extend((self.num_inference_steps - len(mixing_coeffs)) * [0])
         | 
| 397 | 
            +
                    latents_start = list_latents_parental_mix[idx_injection - 1]
         | 
| 398 | 
            +
                    list_latents = self.run_diffusion(
         | 
| 399 | 
            +
                        list_conditionings,
         | 
| 400 | 
            +
                        latents_start=latents_start,
         | 
| 401 | 
            +
                        idx_start=idx_injection,
         | 
| 402 | 
            +
                        list_latents_mixing=list_latents_parental_mix,
         | 
| 403 | 
            +
                        mixing_coeffs=mixing_coeffs)
         | 
| 404 | 
            +
                    return list_latents
         | 
| 405 | 
            +
             | 
| 406 | 
            +
                def get_time_based_branching(self, depth_strength, t_compute_max_allowed=None, nmb_max_branches=None):
         | 
| 407 | 
            +
                    r"""
         | 
| 408 | 
            +
                    Sets up the branching scheme dependent on the time that is granted for compute.
         | 
| 409 | 
            +
                    The scheme uses an estimation derived from the first image's computation speed.
         | 
| 410 | 
            +
                    Either provide t_compute_max_allowed or nmb_max_branches
         | 
| 411 | 
            +
                    Args:
         | 
| 412 | 
            +
                        depth_strength:
         | 
| 413 | 
            +
                            Determines how deep the first injection will happen.
         | 
| 414 | 
            +
                            Deeper injections will cause (unwanted) formation of new structures,
         | 
| 415 | 
            +
                            more shallow values will go into alpha-blendy land.
         | 
| 416 | 
            +
                        t_compute_max_allowed: float
         | 
| 417 | 
            +
                            The maximum time allowed for computation. Higher values give better results
         | 
| 418 | 
            +
                            but take longer. Use this if you want to fix your waiting time for the results.
         | 
| 419 | 
            +
                        nmb_max_branches: int
         | 
| 420 | 
            +
                            The maximum number of branches to be computed. Higher values give better
         | 
| 421 | 
            +
                            results. Use this if you want to have controllable results independent
         | 
| 422 | 
            +
                            of your computer.
         | 
| 423 | 
            +
                    """
         | 
| 424 | 
            +
                    idx_injection_base = int(round(self.num_inference_steps * depth_strength))
         | 
| 425 | 
            +
                    list_idx_injection = np.arange(idx_injection_base, self.num_inference_steps - 1, 3)
         | 
| 426 | 
            +
                    list_nmb_stems = np.ones(len(list_idx_injection), dtype=np.int32)
         | 
| 427 | 
            +
                    t_compute = 0
         | 
| 428 | 
            +
             | 
| 429 | 
            +
                    if nmb_max_branches is None:
         | 
| 430 | 
            +
                        assert t_compute_max_allowed is not None, "Either specify t_compute_max_allowed or nmb_max_branches"
         | 
| 431 | 
            +
                        stop_criterion = "t_compute_max_allowed"
         | 
| 432 | 
            +
                    elif t_compute_max_allowed is None:
         | 
| 433 | 
            +
                        assert nmb_max_branches is not None, "Either specify t_compute_max_allowed or nmb_max_branches"
         | 
| 434 | 
            +
                        stop_criterion = "nmb_max_branches"
         | 
| 435 | 
            +
                        nmb_max_branches -= 2  # Discounting the outer frames
         | 
| 436 | 
            +
                    else:
         | 
| 437 | 
            +
                        raise ValueError("Either specify t_compute_max_allowed or nmb_max_branches")
         | 
| 438 | 
            +
                    stop_criterion_reached = False
         | 
| 439 | 
            +
                    is_first_iteration = True
         | 
| 440 | 
            +
                    while not stop_criterion_reached:
         | 
| 441 | 
            +
                        list_compute_steps = self.num_inference_steps - list_idx_injection
         | 
| 442 | 
            +
                        list_compute_steps *= list_nmb_stems
         | 
| 443 | 
            +
                        t_compute = np.sum(list_compute_steps) * self.dt_per_diff + 0.15 * np.sum(list_nmb_stems)
         | 
| 444 | 
            +
                        increase_done = False
         | 
| 445 | 
            +
                        for s_idx in range(len(list_nmb_stems) - 1):
         | 
| 446 | 
            +
                            if list_nmb_stems[s_idx + 1] / list_nmb_stems[s_idx] >= 2:
         | 
| 447 | 
            +
                                list_nmb_stems[s_idx] += 1
         | 
| 448 | 
            +
                                increase_done = True
         | 
| 449 | 
            +
                                break
         | 
| 450 | 
            +
                        if not increase_done:
         | 
| 451 | 
            +
                            list_nmb_stems[-1] += 1
         | 
| 452 | 
            +
             | 
| 453 | 
            +
                        if stop_criterion == "t_compute_max_allowed" and t_compute > t_compute_max_allowed:
         | 
| 454 | 
            +
                            stop_criterion_reached = True
         | 
| 455 | 
            +
                        elif stop_criterion == "nmb_max_branches" and np.sum(list_nmb_stems) >= nmb_max_branches:
         | 
| 456 | 
            +
                            stop_criterion_reached = True
         | 
| 457 | 
            +
                            if is_first_iteration:
         | 
| 458 | 
            +
                                # Need to undersample.
         | 
| 459 | 
            +
                                list_idx_injection = np.linspace(list_idx_injection[0], list_idx_injection[-1], nmb_max_branches).astype(np.int32)
         | 
| 460 | 
            +
                                list_nmb_stems = np.ones(len(list_idx_injection), dtype=np.int32)
         | 
| 461 | 
            +
                        else:
         | 
| 462 | 
            +
                            is_first_iteration = False
         | 
| 463 | 
            +
             | 
| 464 | 
            +
                        # print(f"t_compute {t_compute} list_nmb_stems {list_nmb_stems}")
         | 
| 465 | 
            +
                    return list_idx_injection, list_nmb_stems
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                def get_mixing_parameters(self, idx_injection):
         | 
| 468 | 
            +
                    r"""
         | 
| 469 | 
            +
                    Computes which parental latents should be mixed together to achieve a smooth blend.
         | 
| 470 | 
            +
                    As metric, we are using lpips image similarity. The insertion takes place
         | 
| 471 | 
            +
                    where the metric is maximal.
         | 
| 472 | 
            +
                    Args:
         | 
| 473 | 
            +
                        idx_injection: int
         | 
| 474 | 
            +
                            the index in terms of diffusion steps, where the next insertion will start.
         | 
| 475 | 
            +
                    """
         | 
| 476 | 
            +
                    # get_lpips_similarity
         | 
| 477 | 
            +
                    similarities = []
         | 
| 478 | 
            +
                    for i in range(len(self.tree_final_imgs) - 1):
         | 
| 479 | 
            +
                        similarities.append(self.get_lpips_similarity(self.tree_final_imgs[i], self.tree_final_imgs[i + 1]))
         | 
| 480 | 
            +
                    b_closest1 = np.argmax(similarities)
         | 
| 481 | 
            +
                    b_closest2 = b_closest1 + 1
         | 
| 482 | 
            +
                    fract_closest1 = self.tree_fracts[b_closest1]
         | 
| 483 | 
            +
                    fract_closest2 = self.tree_fracts[b_closest2]
         | 
| 484 | 
            +
             | 
| 485 | 
            +
                    # Ensure that the parents are indeed older!
         | 
| 486 | 
            +
                    b_parent1 = b_closest1
         | 
| 487 | 
            +
                    while True:
         | 
| 488 | 
            +
                        if self.tree_idx_injection[b_parent1] < idx_injection:
         | 
| 489 | 
            +
                            break
         | 
| 490 | 
            +
                        else:
         | 
| 491 | 
            +
                            b_parent1 -= 1
         | 
| 492 | 
            +
                    b_parent2 = b_closest2
         | 
| 493 | 
            +
                    while True:
         | 
| 494 | 
            +
                        if self.tree_idx_injection[b_parent2] < idx_injection:
         | 
| 495 | 
            +
                            break
         | 
| 496 | 
            +
                        else:
         | 
| 497 | 
            +
                            b_parent2 += 1
         | 
| 498 | 
            +
                    fract_mixing = (fract_closest1 + fract_closest2) / 2
         | 
| 499 | 
            +
                    return fract_mixing, b_parent1, b_parent2
         | 
| 500 | 
            +
             | 
| 501 | 
            +
                def insert_into_tree(self, fract_mixing, idx_injection, list_latents):
         | 
| 502 | 
            +
                    r"""
         | 
| 503 | 
            +
                    Inserts all necessary parameters into the trajectory tree.
         | 
| 504 | 
            +
                    Args:
         | 
| 505 | 
            +
                        fract_mixing: float
         | 
| 506 | 
            +
                            the fraction along the transition axis [0, 1]
         | 
| 507 | 
            +
                        idx_injection: int
         | 
| 508 | 
            +
                            the index in terms of diffusion steps, where the next insertion will start.
         | 
| 509 | 
            +
                        list_latents: list
         | 
| 510 | 
            +
                            list of the latents to be inserted
         | 
| 511 | 
            +
                    """
         | 
| 512 | 
            +
                    b_parent1, b_parent2 = self.get_closest_idx(fract_mixing)
         | 
| 513 | 
            +
                    self.tree_latents.insert(b_parent1 + 1, list_latents)
         | 
| 514 | 
            +
                    self.tree_final_imgs.insert(b_parent1 + 1, self.sdh.latent2image(list_latents[-1]))
         | 
| 515 | 
            +
                    self.tree_fracts.insert(b_parent1 + 1, fract_mixing)
         | 
| 516 | 
            +
                    self.tree_idx_injection.insert(b_parent1 + 1, idx_injection)
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                def get_spatial_mask_template(self):
         | 
| 519 | 
            +
                    r"""
         | 
| 520 | 
            +
                    Experimental helper function to get a spatial mask template.
         | 
| 521 | 
            +
                    """
         | 
| 522 | 
            +
                    shape_latents = [self.sdh.C, self.sdh.height // self.sdh.f, self.sdh.width // self.sdh.f]
         | 
| 523 | 
            +
                    C, H, W = shape_latents
         | 
| 524 | 
            +
                    return np.ones((H, W))
         | 
| 525 | 
            +
             | 
| 526 | 
            +
                def set_spatial_mask(self, img_mask):
         | 
| 527 | 
            +
                    r"""
         | 
| 528 | 
            +
                    Experimental helper function to set a spatial mask.
         | 
| 529 | 
            +
                    The mask forces latents to be overwritten.
         | 
| 530 | 
            +
                    Args:
         | 
| 531 | 
            +
                        img_mask:
         | 
| 532 | 
            +
                            mask image [0,1]. You can get a template using get_spatial_mask_template
         | 
| 533 | 
            +
                    """
         | 
| 534 | 
            +
                    shape_latents = [self.sdh.C, self.sdh.height // self.sdh.f, self.sdh.width // self.sdh.f]
         | 
| 535 | 
            +
                    C, H, W = shape_latents
         | 
| 536 | 
            +
                    img_mask = np.asarray(img_mask)
         | 
| 537 | 
            +
                    assert len(img_mask.shape) == 2, "Currently, only 2D images are supported as mask"
         | 
| 538 | 
            +
                    img_mask = np.clip(img_mask, 0, 1)
         | 
| 539 | 
            +
                    assert img_mask.shape[0] == H, f"Your mask needs to be of dimension {H} x {W}"
         | 
| 540 | 
            +
                    assert img_mask.shape[1] == W, f"Your mask needs to be of dimension {H} x {W}"
         | 
| 541 | 
            +
                    spatial_mask = torch.from_numpy(img_mask).to(device=self.device)
         | 
| 542 | 
            +
                    spatial_mask = torch.unsqueeze(spatial_mask, 0)
         | 
| 543 | 
            +
                    spatial_mask = spatial_mask.repeat((C, 1, 1))
         | 
| 544 | 
            +
                    spatial_mask = torch.unsqueeze(spatial_mask, 0)
         | 
| 545 | 
            +
                    self.spatial_mask = spatial_mask
         | 
| 546 | 
            +
             | 
| 547 | 
            +
                def get_noise(self, seed):
         | 
| 548 | 
            +
                    r"""
         | 
| 549 | 
            +
                    Helper function to get noise given seed.
         | 
| 550 | 
            +
                    Args:
         | 
| 551 | 
            +
                        seed: int
         | 
| 552 | 
            +
                    """
         | 
| 553 | 
            +
                    generator = torch.Generator(device=self.sdh.device).manual_seed(int(seed))
         | 
| 554 | 
            +
                    if self.mode == 'standard':
         | 
| 555 | 
            +
                        shape_latents = [self.sdh.C, self.sdh.height // self.sdh.f, self.sdh.width // self.sdh.f]
         | 
| 556 | 
            +
                        C, H, W = shape_latents
         | 
| 557 | 
            +
                    elif self.mode == 'upscale':
         | 
| 558 | 
            +
                        w = self.image1_lowres.size[0]
         | 
| 559 | 
            +
                        h = self.image1_lowres.size[1]
         | 
| 560 | 
            +
                        shape_latents = [self.sdh.model.channels, h, w]
         | 
| 561 | 
            +
                        C, H, W = shape_latents
         | 
| 562 | 
            +
                    return torch.randn((1, C, H, W), generator=generator, device=self.sdh.device)
         | 
| 563 | 
            +
             | 
| 564 | 
            +
                @torch.no_grad()
         | 
| 565 | 
            +
                def run_diffusion(
         | 
| 566 | 
            +
                        self,
         | 
| 567 | 
            +
                        list_conditionings,
         | 
| 568 | 
            +
                        latents_start: torch.FloatTensor = None,
         | 
| 569 | 
            +
                        idx_start: int = 0,
         | 
| 570 | 
            +
                        list_latents_mixing=None,
         | 
| 571 | 
            +
                        mixing_coeffs=0.0,
         | 
| 572 | 
            +
                        return_image: Optional[bool] = False):
         | 
| 573 | 
            +
                    r"""
         | 
| 574 | 
            +
                    Wrapper function for diffusion runners.
         | 
| 575 | 
            +
                    Depending on the mode, the correct one will be executed.
         | 
| 576 | 
            +
             | 
| 577 | 
            +
                    Args:
         | 
| 578 | 
            +
                        list_conditionings: list
         | 
| 579 | 
            +
                            List of all conditionings for the diffusion model.
         | 
| 580 | 
            +
                        latents_start: torch.FloatTensor
         | 
| 581 | 
            +
                            Latents that are used for injection
         | 
| 582 | 
            +
                        idx_start: int
         | 
| 583 | 
            +
                            Index of the diffusion process start and where the latents_for_injection are injected
         | 
| 584 | 
            +
                        list_latents_mixing: torch.FloatTensor
         | 
| 585 | 
            +
                            List of latents (latent trajectories) that are used for mixing
         | 
| 586 | 
            +
                        mixing_coeffs: float or list
         | 
| 587 | 
            +
                            Coefficients, how strong each element of list_latents_mixing will be mixed in.
         | 
| 588 | 
            +
                        return_image: Optional[bool]
         | 
| 589 | 
            +
                            Optionally return image directly
         | 
| 590 | 
            +
                    """
         | 
| 591 | 
            +
             | 
| 592 | 
            +
                    # Ensure correct num_inference_steps in Holder
         | 
| 593 | 
            +
                    self.sdh.num_inference_steps = self.num_inference_steps
         | 
| 594 | 
            +
                    assert type(list_conditionings) is list, "list_conditionings need to be a list"
         | 
| 595 | 
            +
             | 
| 596 | 
            +
                    if self.mode == 'standard':
         | 
| 597 | 
            +
                        text_embeddings = list_conditionings[0]
         | 
| 598 | 
            +
                        return self.sdh.run_diffusion_standard(
         | 
| 599 | 
            +
                            text_embeddings=text_embeddings,
         | 
| 600 | 
            +
                            latents_start=latents_start,
         | 
| 601 | 
            +
                            idx_start=idx_start,
         | 
| 602 | 
            +
                            list_latents_mixing=list_latents_mixing,
         | 
| 603 | 
            +
                            mixing_coeffs=mixing_coeffs,
         | 
| 604 | 
            +
                            spatial_mask=self.spatial_mask,
         | 
| 605 | 
            +
                            return_image=return_image)
         | 
| 606 | 
            +
             | 
| 607 | 
            +
                    elif self.mode == 'upscale':
         | 
| 608 | 
            +
                        cond = list_conditionings[0]
         | 
| 609 | 
            +
                        uc_full = list_conditionings[1]
         | 
| 610 | 
            +
                        return self.sdh.run_diffusion_upscaling(
         | 
| 611 | 
            +
                            cond,
         | 
| 612 | 
            +
                            uc_full,
         | 
| 613 | 
            +
                            latents_start=latents_start,
         | 
| 614 | 
            +
                            idx_start=idx_start,
         | 
| 615 | 
            +
                            list_latents_mixing=list_latents_mixing,
         | 
| 616 | 
            +
                            mixing_coeffs=mixing_coeffs,
         | 
| 617 | 
            +
                            return_image=return_image)
         | 
| 618 | 
            +
             | 
| 619 | 
            +
                def run_upscaling(
         | 
| 620 | 
            +
                        self,
         | 
| 621 | 
            +
                        dp_img: str,
         | 
| 622 | 
            +
                        depth_strength: float = 0.65,
         | 
| 623 | 
            +
                        num_inference_steps: int = 100,
         | 
| 624 | 
            +
                        nmb_max_branches_highres: int = 5,
         | 
| 625 | 
            +
                        nmb_max_branches_lowres: int = 6,
         | 
| 626 | 
            +
                        duration_single_segment=3,
         | 
| 627 | 
            +
                        fps=24,
         | 
| 628 | 
            +
                        fixed_seeds: Optional[List[int]] = None):
         | 
| 629 | 
            +
                    r"""
         | 
| 630 | 
            +
                    Runs upscaling with the x4 model. Requires that you run a transition before with a low-res model and save the results using write_imgs_transition.
         | 
| 631 | 
            +
             | 
| 632 | 
            +
                    Args:
         | 
| 633 | 
            +
                        dp_img: str
         | 
| 634 | 
            +
                            Path to the low-res transition path (as saved in write_imgs_transition)
         | 
| 635 | 
            +
                        depth_strength:
         | 
| 636 | 
            +
                            Determines how deep the first injection will happen.
         | 
| 637 | 
            +
                            Deeper injections will cause (unwanted) formation of new structures,
         | 
| 638 | 
            +
                            more shallow values will go into alpha-blendy land.
         | 
| 639 | 
            +
                        num_inference_steps:
         | 
| 640 | 
            +
                            Number of diffusion steps. Higher values will take more compute time.
         | 
| 641 | 
            +
                        nmb_max_branches_highres: int
         | 
| 642 | 
            +
                            Number of final branches of the upscaling transition pass. Note this is the number
         | 
| 643 | 
            +
                            of branches between each pair of low-res images.
         | 
| 644 | 
            +
                        nmb_max_branches_lowres: int
         | 
| 645 | 
            +
                            Number of input low-res images, subsampling all transition images written in the low-res pass.
         | 
| 646 | 
            +
                            Setting this number lower (e.g. 6) will decrease the compute time but not affect the results too much.
         | 
| 647 | 
            +
                        duration_single_segment: float
         | 
| 648 | 
            +
                            The duration of each high-res movie segment. You will have nmb_max_branches_lowres-1 segments in total.
         | 
| 649 | 
            +
                        fps: float
         | 
| 650 | 
            +
                            frames per second of movie
         | 
| 651 | 
            +
                        fixed_seeds: Optional[List[int)]:
         | 
| 652 | 
            +
                            You can supply two seeds that are used for the first and second keyframe (prompt1 and prompt2).
         | 
| 653 | 
            +
                            Otherwise random seeds will be taken.
         | 
| 654 | 
            +
                    """
         | 
| 655 | 
            +
                    fp_yml = os.path.join(dp_img, "lowres.yaml")
         | 
| 656 | 
            +
                    fp_movie = os.path.join(dp_img, "movie_highres.mp4")
         | 
| 657 | 
            +
                    ms = MovieSaver(fp_movie, fps=fps)
         | 
| 658 | 
            +
                    assert os.path.isfile(fp_yml), "lowres.yaml does not exist. did you forget run_upscaling_step1?"
         | 
| 659 | 
            +
                    dict_stuff = yml_load(fp_yml)
         | 
| 660 | 
            +
             | 
| 661 | 
            +
                    # load lowres images
         | 
| 662 | 
            +
                    nmb_images_lowres = dict_stuff['nmb_images']
         | 
| 663 | 
            +
                    prompt1 = dict_stuff['prompt1']
         | 
| 664 | 
            +
                    prompt2 = dict_stuff['prompt2']
         | 
| 665 | 
            +
                    idx_img_lowres = np.round(np.linspace(0, nmb_images_lowres - 1, nmb_max_branches_lowres)).astype(np.int32)
         | 
| 666 | 
            +
                    imgs_lowres = []
         | 
| 667 | 
            +
                    for i in idx_img_lowres:
         | 
| 668 | 
            +
                        fp_img_lowres = os.path.join(dp_img, f"lowres_img_{str(i).zfill(4)}.jpg")
         | 
| 669 | 
            +
                        assert os.path.isfile(fp_img_lowres), f"{fp_img_lowres} does not exist. did you forget run_upscaling_step1?"
         | 
| 670 | 
            +
                        imgs_lowres.append(Image.open(fp_img_lowres))
         | 
| 671 | 
            +
             | 
| 672 | 
            +
                    # set up upscaling
         | 
| 673 | 
            +
                    text_embeddingA = self.sdh.get_text_embedding(prompt1)
         | 
| 674 | 
            +
                    text_embeddingB = self.sdh.get_text_embedding(prompt2)
         | 
| 675 | 
            +
                    list_fract_mixing = np.linspace(0, 1, nmb_max_branches_lowres - 1)
         | 
| 676 | 
            +
                    for i in range(nmb_max_branches_lowres - 1):
         | 
| 677 | 
            +
                        print(f"Starting movie segment {i+1}/{nmb_max_branches_lowres-1}")
         | 
| 678 | 
            +
                        self.text_embedding1 = interpolate_linear(text_embeddingA, text_embeddingB, list_fract_mixing[i])
         | 
| 679 | 
            +
                        self.text_embedding2 = interpolate_linear(text_embeddingA, text_embeddingB, 1 - list_fract_mixing[i])
         | 
| 680 | 
            +
                        if i == 0:
         | 
| 681 | 
            +
                            recycle_img1 = False
         | 
| 682 | 
            +
                        else:
         | 
| 683 | 
            +
                            self.swap_forward()
         | 
| 684 | 
            +
                            recycle_img1 = True
         | 
| 685 | 
            +
             | 
| 686 | 
            +
                        self.set_image1(imgs_lowres[i])
         | 
| 687 | 
            +
                        self.set_image2(imgs_lowres[i + 1])
         | 
| 688 | 
            +
             | 
| 689 | 
            +
                        list_imgs = self.run_transition(
         | 
| 690 | 
            +
                            recycle_img1=recycle_img1,
         | 
| 691 | 
            +
                            recycle_img2=False,
         | 
| 692 | 
            +
                            num_inference_steps=num_inference_steps,
         | 
| 693 | 
            +
                            depth_strength=depth_strength,
         | 
| 694 | 
            +
                            nmb_max_branches=nmb_max_branches_highres)
         | 
| 695 | 
            +
                        list_imgs_interp = add_frames_linear_interp(list_imgs, fps, duration_single_segment)
         | 
| 696 | 
            +
             | 
| 697 | 
            +
                        # Save movie frame
         | 
| 698 | 
            +
                        for img in list_imgs_interp:
         | 
| 699 | 
            +
                            ms.write_frame(img)
         | 
| 700 | 
            +
                    ms.finalize()
         | 
| 701 | 
            +
             | 
| 702 | 
            +
                @torch.no_grad()
         | 
| 703 | 
            +
                def get_mixed_conditioning(self, fract_mixing):
         | 
| 704 | 
            +
                    if self.mode == 'standard':
         | 
| 705 | 
            +
                        text_embeddings_mix = interpolate_linear(self.text_embedding1, self.text_embedding2, fract_mixing)
         | 
| 706 | 
            +
                        list_conditionings = [text_embeddings_mix]
         | 
| 707 | 
            +
                    elif self.mode == 'inpaint':
         | 
| 708 | 
            +
                        text_embeddings_mix = interpolate_linear(self.text_embedding1, self.text_embedding2, fract_mixing)
         | 
| 709 | 
            +
                        list_conditionings = [text_embeddings_mix]
         | 
| 710 | 
            +
                    elif self.mode == 'upscale':
         | 
| 711 | 
            +
                        text_embeddings_mix = interpolate_linear(self.text_embedding1, self.text_embedding2, fract_mixing)
         | 
| 712 | 
            +
                        cond, uc_full = self.sdh.get_cond_upscaling(self.image1_lowres, text_embeddings_mix, self.noise_level_upscaling)
         | 
| 713 | 
            +
                        condB, uc_fullB = self.sdh.get_cond_upscaling(self.image2_lowres, text_embeddings_mix, self.noise_level_upscaling)
         | 
| 714 | 
            +
                        cond['c_concat'][0] = interpolate_spherical(cond['c_concat'][0], condB['c_concat'][0], fract_mixing)
         | 
| 715 | 
            +
                        uc_full['c_concat'][0] = interpolate_spherical(uc_full['c_concat'][0], uc_fullB['c_concat'][0], fract_mixing)
         | 
| 716 | 
            +
                        list_conditionings = [cond, uc_full]
         | 
| 717 | 
            +
                    else:
         | 
| 718 | 
            +
                        raise ValueError(f"mix_conditioning: unknown mode {self.mode}")
         | 
| 719 | 
            +
                    return list_conditionings
         | 
| 720 | 
            +
             | 
| 721 | 
            +
                @torch.no_grad()
         | 
| 722 | 
            +
                def get_text_embeddings(
         | 
| 723 | 
            +
                        self,
         | 
| 724 | 
            +
                        prompt: str):
         | 
| 725 | 
            +
                    r"""
         | 
| 726 | 
            +
                    Computes the text embeddings provided a string with a prompts.
         | 
| 727 | 
            +
                    Adapted from stable diffusion repo
         | 
| 728 | 
            +
                    Args:
         | 
| 729 | 
            +
                        prompt: str
         | 
| 730 | 
            +
                            ABC trending on artstation painted by Old Greg.
         | 
| 731 | 
            +
                    """
         | 
| 732 | 
            +
                    return self.sdh.get_text_embedding(prompt)
         | 
| 733 | 
            +
             | 
| 734 | 
            +
                def write_imgs_transition(self, dp_img):
         | 
| 735 | 
            +
                    r"""
         | 
| 736 | 
            +
                    Writes the transition images into the folder dp_img.
         | 
| 737 | 
            +
                    Requires run_transition to be completed.
         | 
| 738 | 
            +
                    Args:
         | 
| 739 | 
            +
                        dp_img: str
         | 
| 740 | 
            +
                            Directory, into which the transition images, yaml file and latents are written.
         | 
| 741 | 
            +
                    """
         | 
| 742 | 
            +
                    imgs_transition = self.tree_final_imgs
         | 
| 743 | 
            +
                    os.makedirs(dp_img, exist_ok=True)
         | 
| 744 | 
            +
                    for i, img in enumerate(imgs_transition):
         | 
| 745 | 
            +
                        img_leaf = Image.fromarray(img)
         | 
| 746 | 
            +
                        img_leaf.save(os.path.join(dp_img, f"lowres_img_{str(i).zfill(4)}.jpg"))
         | 
| 747 | 
            +
                    fp_yml = os.path.join(dp_img, "lowres.yaml")
         | 
| 748 | 
            +
                    self.save_statedict(fp_yml)
         | 
| 749 | 
            +
             | 
| 750 | 
            +
                def write_movie_transition(self, fp_movie, duration_transition, fps=30):
         | 
| 751 | 
            +
                    r"""
         | 
| 752 | 
            +
                    Writes the transition movie to fp_movie, using the given duration and fps..
         | 
| 753 | 
            +
                    The missing frames are linearly interpolated.
         | 
| 754 | 
            +
                    Args:
         | 
| 755 | 
            +
                        fp_movie: str
         | 
| 756 | 
            +
                            file pointer to the final movie.
         | 
| 757 | 
            +
                        duration_transition: float
         | 
| 758 | 
            +
                            duration of the movie in seonds
         | 
| 759 | 
            +
                        fps: int
         | 
| 760 | 
            +
                            fps of the movie
         | 
| 761 | 
            +
                    """
         | 
| 762 | 
            +
             | 
| 763 | 
            +
                    # Let's get more cheap frames via linear interpolation (duration_transition*fps frames)
         | 
| 764 | 
            +
                    imgs_transition_ext = add_frames_linear_interp(self.tree_final_imgs, duration_transition, fps)
         | 
| 765 | 
            +
             | 
| 766 | 
            +
                    # Save as MP4
         | 
| 767 | 
            +
                    if os.path.isfile(fp_movie):
         | 
| 768 | 
            +
                        os.remove(fp_movie)
         | 
| 769 | 
            +
                    ms = MovieSaver(fp_movie, fps=fps, shape_hw=[self.sdh.height, self.sdh.width])
         | 
| 770 | 
            +
                    for img in tqdm(imgs_transition_ext):
         | 
| 771 | 
            +
                        ms.write_frame(img)
         | 
| 772 | 
            +
                    ms.finalize()
         | 
| 773 | 
            +
             | 
| 774 | 
            +
                def save_statedict(self, fp_yml):
         | 
| 775 | 
            +
                    # Dump everything relevant into yaml
         | 
| 776 | 
            +
                    imgs_transition = self.tree_final_imgs
         | 
| 777 | 
            +
                    state_dict = self.get_state_dict()
         | 
| 778 | 
            +
                    state_dict['nmb_images'] = len(imgs_transition)
         | 
| 779 | 
            +
                    yml_save(fp_yml, state_dict)
         | 
| 780 | 
            +
             | 
| 781 | 
            +
                def get_state_dict(self):
         | 
| 782 | 
            +
                    state_dict = {}
         | 
| 783 | 
            +
                    grab_vars = ['prompt1', 'prompt2', 'seed1', 'seed2', 'height', 'width',
         | 
| 784 | 
            +
                                 'num_inference_steps', 'depth_strength', 'guidance_scale',
         | 
| 785 | 
            +
                                 'guidance_scale_mid_damper', 'mid_compression_scaler', 'negative_prompt',
         | 
| 786 | 
            +
                                 'branch1_crossfeed_power', 'branch1_crossfeed_range', 'branch1_crossfeed_decay'
         | 
| 787 | 
            +
                                 'parental_crossfeed_power', 'parental_crossfeed_range', 'parental_crossfeed_power_decay']
         | 
| 788 | 
            +
                    for v in grab_vars:
         | 
| 789 | 
            +
                        if hasattr(self, v):
         | 
| 790 | 
            +
                            if v == 'seed1' or v == 'seed2':
         | 
| 791 | 
            +
                                state_dict[v] = int(getattr(self, v))
         | 
| 792 | 
            +
                            elif v == 'guidance_scale':
         | 
| 793 | 
            +
                                state_dict[v] = float(getattr(self, v))
         | 
| 794 | 
            +
             | 
| 795 | 
            +
                            else:
         | 
| 796 | 
            +
                                try:
         | 
| 797 | 
            +
                                    state_dict[v] = getattr(self, v)
         | 
| 798 | 
            +
                                except Exception:
         | 
| 799 | 
            +
                                    pass
         | 
| 800 | 
            +
                    return state_dict
         | 
| 801 | 
            +
             | 
| 802 | 
            +
                def randomize_seed(self):
         | 
| 803 | 
            +
                    r"""
         | 
| 804 | 
            +
                    Set a random seed for a fresh start.
         | 
| 805 | 
            +
                    """
         | 
| 806 | 
            +
                    seed = np.random.randint(999999999)
         | 
| 807 | 
            +
                    self.set_seed(seed)
         | 
| 808 | 
            +
             | 
| 809 | 
            +
                def set_seed(self, seed: int):
         | 
| 810 | 
            +
                    r"""
         | 
| 811 | 
            +
                    Set a the seed for a fresh start.
         | 
| 812 | 
            +
                    """
         | 
| 813 | 
            +
                    self.seed = seed
         | 
| 814 | 
            +
                    self.sdh.seed = seed
         | 
| 815 | 
            +
             | 
| 816 | 
            +
                def set_width(self, width):
         | 
| 817 | 
            +
                    r"""
         | 
| 818 | 
            +
                    Set the width of the resulting image.
         | 
| 819 | 
            +
                    """
         | 
| 820 | 
            +
                    assert np.mod(width, 64) == 0, "set_width: value needs to be divisible by 64"
         | 
| 821 | 
            +
                    self.width = width
         | 
| 822 | 
            +
                    self.sdh.width = width
         | 
| 823 | 
            +
             | 
| 824 | 
            +
                def set_height(self, height):
         | 
| 825 | 
            +
                    r"""
         | 
| 826 | 
            +
                    Set the height of the resulting image.
         | 
| 827 | 
            +
                    """
         | 
| 828 | 
            +
                    assert np.mod(height, 64) == 0, "set_height: value needs to be divisible by 64"
         | 
| 829 | 
            +
                    self.height = height
         | 
| 830 | 
            +
                    self.sdh.height = height
         | 
| 831 | 
            +
             | 
| 832 | 
            +
                def swap_forward(self):
         | 
| 833 | 
            +
                    r"""
         | 
| 834 | 
            +
                    Moves over keyframe two -> keyframe one. Useful for making a sequence of transitions
         | 
| 835 | 
            +
                    as in run_multi_transition()
         | 
| 836 | 
            +
                    """
         | 
| 837 | 
            +
                    # Move over all latents
         | 
| 838 | 
            +
                    self.tree_latents[0] = self.tree_latents[-1]
         | 
| 839 | 
            +
                    # Move over prompts and text embeddings
         | 
| 840 | 
            +
                    self.prompt1 = self.prompt2
         | 
| 841 | 
            +
                    self.text_embedding1 = self.text_embedding2
         | 
| 842 | 
            +
                    # Final cleanup for extra sanity
         | 
| 843 | 
            +
                    self.tree_final_imgs = []
         | 
| 844 | 
            +
             | 
| 845 | 
            +
                def get_lpips_similarity(self, imgA, imgB):
         | 
| 846 | 
            +
                    r"""
         | 
| 847 | 
            +
                    Computes the image similarity between two images imgA and imgB.
         | 
| 848 | 
            +
                    Used to determine the optimal point of insertion to create smooth transitions.
         | 
| 849 | 
            +
                    High values indicate low similarity.
         | 
| 850 | 
            +
                    """
         | 
| 851 | 
            +
                    tensorA = torch.from_numpy(imgA).float().cuda(self.device)
         | 
| 852 | 
            +
                    tensorA = 2 * tensorA / 255.0 - 1
         | 
| 853 | 
            +
                    tensorA = tensorA.permute([2, 0, 1]).unsqueeze(0)
         | 
| 854 | 
            +
                    tensorB = torch.from_numpy(imgB).float().cuda(self.device)
         | 
| 855 | 
            +
                    tensorB = 2 * tensorB / 255.0 - 1
         | 
| 856 | 
            +
                    tensorB = tensorB.permute([2, 0, 1]).unsqueeze(0)
         | 
| 857 | 
            +
                    lploss = self.lpips(tensorA, tensorB)
         | 
| 858 | 
            +
                    lploss = float(lploss[0][0][0][0])
         | 
| 859 | 
            +
                    return lploss
         | 
| 860 | 
            +
             | 
| 861 | 
            +
                # Auxiliary functions
         | 
| 862 | 
            +
                def get_closest_idx(
         | 
| 863 | 
            +
                        self,
         | 
| 864 | 
            +
                        fract_mixing: float):
         | 
| 865 | 
            +
                    r"""
         | 
| 866 | 
            +
                    Helper function to retrieve the parents for any given mixing.
         | 
| 867 | 
            +
                    Example: fract_mixing = 0.4 and self.tree_fracts = [0, 0.3, 0.6, 1.0]
         | 
| 868 | 
            +
                    Will return the two closest values here, i.e. [1, 2]
         | 
| 869 | 
            +
                    """
         | 
| 870 | 
            +
             | 
| 871 | 
            +
                    pdist = fract_mixing - np.asarray(self.tree_fracts)
         | 
| 872 | 
            +
                    pdist_pos = pdist.copy()
         | 
| 873 | 
            +
                    pdist_pos[pdist_pos < 0] = np.inf
         | 
| 874 | 
            +
                    b_parent1 = np.argmin(pdist_pos)
         | 
| 875 | 
            +
                    pdist_neg = -pdist.copy()
         | 
| 876 | 
            +
                    pdist_neg[pdist_neg <= 0] = np.inf
         | 
| 877 | 
            +
                    b_parent2 = np.argmin(pdist_neg)
         | 
| 878 | 
            +
             | 
| 879 | 
            +
                    if b_parent1 > b_parent2:
         | 
| 880 | 
            +
                        tmp = b_parent2
         | 
| 881 | 
            +
                        b_parent2 = b_parent1
         | 
| 882 | 
            +
                        b_parent1 = tmp
         | 
| 883 | 
            +
             | 
| 884 | 
            +
                    return b_parent1, b_parent2
         | 
    	
        ldm/__pycache__/util.cpython-310.pyc
    ADDED
    
    | Binary file (6.18 kB). View file | 
|  | 
    	
        ldm/__pycache__/util.cpython-38.pyc
    ADDED
    
    | Binary file (6.15 kB). View file | 
|  | 
    	
        ldm/__pycache__/util.cpython-39.pyc
    ADDED
    
    | Binary file (6.16 kB). View file | 
|  | 
    	
        ldm/data/__init__.py
    ADDED
    
    | 
            File without changes
         | 
    	
        ldm/data/util.py
    ADDED
    
    | @@ -0,0 +1,24 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            from ldm.modules.midas.api import load_midas_transform
         | 
| 4 | 
            +
             | 
| 5 | 
            +
             | 
| 6 | 
            +
            class AddMiDaS(object):
         | 
| 7 | 
            +
                def __init__(self, model_type):
         | 
| 8 | 
            +
                    super().__init__()
         | 
| 9 | 
            +
                    self.transform = load_midas_transform(model_type)
         | 
| 10 | 
            +
             | 
| 11 | 
            +
                def pt2np(self, x):
         | 
| 12 | 
            +
                    x = ((x + 1.0) * .5).detach().cpu().numpy()
         | 
| 13 | 
            +
                    return x
         | 
| 14 | 
            +
             | 
| 15 | 
            +
                def np2pt(self, x):
         | 
| 16 | 
            +
                    x = torch.from_numpy(x) * 2 - 1.
         | 
| 17 | 
            +
                    return x
         | 
| 18 | 
            +
             | 
| 19 | 
            +
                def __call__(self, sample):
         | 
| 20 | 
            +
                    # sample['jpg'] is tensor hwc in [-1, 1] at this point
         | 
| 21 | 
            +
                    x = self.pt2np(sample['jpg'])
         | 
| 22 | 
            +
                    x = self.transform({"image": x})["image"]
         | 
| 23 | 
            +
                    sample['midas_in'] = x
         | 
| 24 | 
            +
                    return sample
         | 
    	
        ldm/ldm
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            ldm
         | 
    	
        ldm/models/__pycache__/autoencoder.cpython-310.pyc
    ADDED
    
    | Binary file (7.72 kB). View file | 
|  | 
    	
        ldm/models/__pycache__/autoencoder.cpython-38.pyc
    ADDED
    
    | Binary file (7.61 kB). View file | 
|  | 
    	
        ldm/models/__pycache__/autoencoder.cpython-39.pyc
    ADDED
    
    | Binary file (7.68 kB). View file | 
|  | 
    	
        ldm/models/autoencoder.py
    ADDED
    
    | @@ -0,0 +1,219 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            import pytorch_lightning as pl
         | 
| 3 | 
            +
            import torch.nn.functional as F
         | 
| 4 | 
            +
            from contextlib import contextmanager
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            from ldm.modules.diffusionmodules.model import Encoder, Decoder
         | 
| 7 | 
            +
            from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from ldm.util import instantiate_from_config
         | 
| 10 | 
            +
            from ldm.modules.ema import LitEma
         | 
| 11 | 
            +
             | 
| 12 | 
            +
             | 
| 13 | 
            +
            class AutoencoderKL(pl.LightningModule):
         | 
| 14 | 
            +
                def __init__(self,
         | 
| 15 | 
            +
                             ddconfig,
         | 
| 16 | 
            +
                             lossconfig,
         | 
| 17 | 
            +
                             embed_dim,
         | 
| 18 | 
            +
                             ckpt_path=None,
         | 
| 19 | 
            +
                             ignore_keys=[],
         | 
| 20 | 
            +
                             image_key="image",
         | 
| 21 | 
            +
                             colorize_nlabels=None,
         | 
| 22 | 
            +
                             monitor=None,
         | 
| 23 | 
            +
                             ema_decay=None,
         | 
| 24 | 
            +
                             learn_logvar=False
         | 
| 25 | 
            +
                             ):
         | 
| 26 | 
            +
                    super().__init__()
         | 
| 27 | 
            +
                    self.learn_logvar = learn_logvar
         | 
| 28 | 
            +
                    self.image_key = image_key
         | 
| 29 | 
            +
                    self.encoder = Encoder(**ddconfig)
         | 
| 30 | 
            +
                    self.decoder = Decoder(**ddconfig)
         | 
| 31 | 
            +
                    self.loss = instantiate_from_config(lossconfig)
         | 
| 32 | 
            +
                    assert ddconfig["double_z"]
         | 
| 33 | 
            +
                    self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
         | 
| 34 | 
            +
                    self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
         | 
| 35 | 
            +
                    self.embed_dim = embed_dim
         | 
| 36 | 
            +
                    if colorize_nlabels is not None:
         | 
| 37 | 
            +
                        assert type(colorize_nlabels)==int
         | 
| 38 | 
            +
                        self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
         | 
| 39 | 
            +
                    if monitor is not None:
         | 
| 40 | 
            +
                        self.monitor = monitor
         | 
| 41 | 
            +
             | 
| 42 | 
            +
                    self.use_ema = ema_decay is not None
         | 
| 43 | 
            +
                    if self.use_ema:
         | 
| 44 | 
            +
                        self.ema_decay = ema_decay
         | 
| 45 | 
            +
                        assert 0. < ema_decay < 1.
         | 
| 46 | 
            +
                        self.model_ema = LitEma(self, decay=ema_decay)
         | 
| 47 | 
            +
                        print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                    if ckpt_path is not None:
         | 
| 50 | 
            +
                        self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                def init_from_ckpt(self, path, ignore_keys=list()):
         | 
| 53 | 
            +
                    sd = torch.load(path, map_location="cpu")["state_dict"]
         | 
| 54 | 
            +
                    keys = list(sd.keys())
         | 
| 55 | 
            +
                    for k in keys:
         | 
| 56 | 
            +
                        for ik in ignore_keys:
         | 
| 57 | 
            +
                            if k.startswith(ik):
         | 
| 58 | 
            +
                                print("Deleting key {} from state_dict.".format(k))
         | 
| 59 | 
            +
                                del sd[k]
         | 
| 60 | 
            +
                    self.load_state_dict(sd, strict=False)
         | 
| 61 | 
            +
                    print(f"Restored from {path}")
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                @contextmanager
         | 
| 64 | 
            +
                def ema_scope(self, context=None):
         | 
| 65 | 
            +
                    if self.use_ema:
         | 
| 66 | 
            +
                        self.model_ema.store(self.parameters())
         | 
| 67 | 
            +
                        self.model_ema.copy_to(self)
         | 
| 68 | 
            +
                        if context is not None:
         | 
| 69 | 
            +
                            print(f"{context}: Switched to EMA weights")
         | 
| 70 | 
            +
                    try:
         | 
| 71 | 
            +
                        yield None
         | 
| 72 | 
            +
                    finally:
         | 
| 73 | 
            +
                        if self.use_ema:
         | 
| 74 | 
            +
                            self.model_ema.restore(self.parameters())
         | 
| 75 | 
            +
                            if context is not None:
         | 
| 76 | 
            +
                                print(f"{context}: Restored training weights")
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                def on_train_batch_end(self, *args, **kwargs):
         | 
| 79 | 
            +
                    if self.use_ema:
         | 
| 80 | 
            +
                        self.model_ema(self)
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                def encode(self, x):
         | 
| 83 | 
            +
                    h = self.encoder(x)
         | 
| 84 | 
            +
                    moments = self.quant_conv(h)
         | 
| 85 | 
            +
                    posterior = DiagonalGaussianDistribution(moments)
         | 
| 86 | 
            +
                    return posterior
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                def decode(self, z):
         | 
| 89 | 
            +
                    z = self.post_quant_conv(z)
         | 
| 90 | 
            +
                    dec = self.decoder(z)
         | 
| 91 | 
            +
                    return dec
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                def forward(self, input, sample_posterior=True):
         | 
| 94 | 
            +
                    posterior = self.encode(input)
         | 
| 95 | 
            +
                    if sample_posterior:
         | 
| 96 | 
            +
                        z = posterior.sample()
         | 
| 97 | 
            +
                    else:
         | 
| 98 | 
            +
                        z = posterior.mode()
         | 
| 99 | 
            +
                    dec = self.decode(z)
         | 
| 100 | 
            +
                    return dec, posterior
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                def get_input(self, batch, k):
         | 
| 103 | 
            +
                    x = batch[k]
         | 
| 104 | 
            +
                    if len(x.shape) == 3:
         | 
| 105 | 
            +
                        x = x[..., None]
         | 
| 106 | 
            +
                    x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
         | 
| 107 | 
            +
                    return x
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                def training_step(self, batch, batch_idx, optimizer_idx):
         | 
| 110 | 
            +
                    inputs = self.get_input(batch, self.image_key)
         | 
| 111 | 
            +
                    reconstructions, posterior = self(inputs)
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                    if optimizer_idx == 0:
         | 
| 114 | 
            +
                        # train encoder+decoder+logvar
         | 
| 115 | 
            +
                        aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
         | 
| 116 | 
            +
                                                        last_layer=self.get_last_layer(), split="train")
         | 
| 117 | 
            +
                        self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
         | 
| 118 | 
            +
                        self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
         | 
| 119 | 
            +
                        return aeloss
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                    if optimizer_idx == 1:
         | 
| 122 | 
            +
                        # train the discriminator
         | 
| 123 | 
            +
                        discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
         | 
| 124 | 
            +
                                                            last_layer=self.get_last_layer(), split="train")
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                        self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
         | 
| 127 | 
            +
                        self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
         | 
| 128 | 
            +
                        return discloss
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                def validation_step(self, batch, batch_idx):
         | 
| 131 | 
            +
                    log_dict = self._validation_step(batch, batch_idx)
         | 
| 132 | 
            +
                    with self.ema_scope():
         | 
| 133 | 
            +
                        log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
         | 
| 134 | 
            +
                    return log_dict
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                def _validation_step(self, batch, batch_idx, postfix=""):
         | 
| 137 | 
            +
                    inputs = self.get_input(batch, self.image_key)
         | 
| 138 | 
            +
                    reconstructions, posterior = self(inputs)
         | 
| 139 | 
            +
                    aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
         | 
| 140 | 
            +
                                                    last_layer=self.get_last_layer(), split="val"+postfix)
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                    discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
         | 
| 143 | 
            +
                                                        last_layer=self.get_last_layer(), split="val"+postfix)
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                    self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
         | 
| 146 | 
            +
                    self.log_dict(log_dict_ae)
         | 
| 147 | 
            +
                    self.log_dict(log_dict_disc)
         | 
| 148 | 
            +
                    return self.log_dict
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                def configure_optimizers(self):
         | 
| 151 | 
            +
                    lr = self.learning_rate
         | 
| 152 | 
            +
                    ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list(
         | 
| 153 | 
            +
                        self.quant_conv.parameters()) + list(self.post_quant_conv.parameters())
         | 
| 154 | 
            +
                    if self.learn_logvar:
         | 
| 155 | 
            +
                        print(f"{self.__class__.__name__}: Learning logvar")
         | 
| 156 | 
            +
                        ae_params_list.append(self.loss.logvar)
         | 
| 157 | 
            +
                    opt_ae = torch.optim.Adam(ae_params_list,
         | 
| 158 | 
            +
                                              lr=lr, betas=(0.5, 0.9))
         | 
| 159 | 
            +
                    opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
         | 
| 160 | 
            +
                                                lr=lr, betas=(0.5, 0.9))
         | 
| 161 | 
            +
                    return [opt_ae, opt_disc], []
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                def get_last_layer(self):
         | 
| 164 | 
            +
                    return self.decoder.conv_out.weight
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                @torch.no_grad()
         | 
| 167 | 
            +
                def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
         | 
| 168 | 
            +
                    log = dict()
         | 
| 169 | 
            +
                    x = self.get_input(batch, self.image_key)
         | 
| 170 | 
            +
                    x = x.to(self.device)
         | 
| 171 | 
            +
                    if not only_inputs:
         | 
| 172 | 
            +
                        xrec, posterior = self(x)
         | 
| 173 | 
            +
                        if x.shape[1] > 3:
         | 
| 174 | 
            +
                            # colorize with random projection
         | 
| 175 | 
            +
                            assert xrec.shape[1] > 3
         | 
| 176 | 
            +
                            x = self.to_rgb(x)
         | 
| 177 | 
            +
                            xrec = self.to_rgb(xrec)
         | 
| 178 | 
            +
                        log["samples"] = self.decode(torch.randn_like(posterior.sample()))
         | 
| 179 | 
            +
                        log["reconstructions"] = xrec
         | 
| 180 | 
            +
                        if log_ema or self.use_ema:
         | 
| 181 | 
            +
                            with self.ema_scope():
         | 
| 182 | 
            +
                                xrec_ema, posterior_ema = self(x)
         | 
| 183 | 
            +
                                if x.shape[1] > 3:
         | 
| 184 | 
            +
                                    # colorize with random projection
         | 
| 185 | 
            +
                                    assert xrec_ema.shape[1] > 3
         | 
| 186 | 
            +
                                    xrec_ema = self.to_rgb(xrec_ema)
         | 
| 187 | 
            +
                                log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample()))
         | 
| 188 | 
            +
                                log["reconstructions_ema"] = xrec_ema
         | 
| 189 | 
            +
                    log["inputs"] = x
         | 
| 190 | 
            +
                    return log
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                def to_rgb(self, x):
         | 
| 193 | 
            +
                    assert self.image_key == "segmentation"
         | 
| 194 | 
            +
                    if not hasattr(self, "colorize"):
         | 
| 195 | 
            +
                        self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
         | 
| 196 | 
            +
                    x = F.conv2d(x, weight=self.colorize)
         | 
| 197 | 
            +
                    x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
         | 
| 198 | 
            +
                    return x
         | 
| 199 | 
            +
             | 
| 200 | 
            +
             | 
| 201 | 
            +
            class IdentityFirstStage(torch.nn.Module):
         | 
| 202 | 
            +
                def __init__(self, *args, vq_interface=False, **kwargs):
         | 
| 203 | 
            +
                    self.vq_interface = vq_interface
         | 
| 204 | 
            +
                    super().__init__()
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                def encode(self, x, *args, **kwargs):
         | 
| 207 | 
            +
                    return x
         | 
| 208 | 
            +
             | 
| 209 | 
            +
                def decode(self, x, *args, **kwargs):
         | 
| 210 | 
            +
                    return x
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                def quantize(self, x, *args, **kwargs):
         | 
| 213 | 
            +
                    if self.vq_interface:
         | 
| 214 | 
            +
                        return x, None, [None, None, None]
         | 
| 215 | 
            +
                    return x
         | 
| 216 | 
            +
             | 
| 217 | 
            +
                def forward(self, x, *args, **kwargs):
         | 
| 218 | 
            +
                    return x
         | 
| 219 | 
            +
             | 
    	
        ldm/models/diffusion/__init__.py
    ADDED
    
    | 
            File without changes
         | 
    	
        ldm/models/diffusion/__pycache__/__init__.cpython-310.pyc
    ADDED
    
    | Binary file (155 Bytes). View file | 
|  | 
    	
        ldm/models/diffusion/__pycache__/__init__.cpython-38.pyc
    ADDED
    
    | Binary file (153 Bytes). View file | 
|  | 
    	
        ldm/models/diffusion/__pycache__/__init__.cpython-39.pyc
    ADDED
    
    | Binary file (153 Bytes). View file | 
|  | 
    	
        ldm/models/diffusion/__pycache__/ddim.cpython-310.pyc
    ADDED
    
    | Binary file (9.33 kB). View file | 
|  | 
    	
        ldm/models/diffusion/__pycache__/ddim.cpython-38.pyc
    ADDED
    
    | Binary file (9.27 kB). View file | 
|  | 
    	
        ldm/models/diffusion/__pycache__/ddim.cpython-39.pyc
    ADDED
    
    | Binary file (9.19 kB). View file | 
|  | 
    	
        ldm/models/diffusion/__pycache__/ddpm.cpython-310.pyc
    ADDED
    
    | Binary file (52.8 kB). View file | 
|  | 
    	
        ldm/models/diffusion/__pycache__/ddpm.cpython-38.pyc
    ADDED
    
    | Binary file (53 kB). View file | 
|  | 
    	
        ldm/models/diffusion/__pycache__/ddpm.cpython-39.pyc
    ADDED
    
    | Binary file (53 kB). View file | 
|  | 
    	
        ldm/models/diffusion/__pycache__/plms.cpython-39.pyc
    ADDED
    
    | Binary file (7.46 kB). View file | 
|  | 
    	
        ldm/models/diffusion/__pycache__/sampling_util.cpython-39.pyc
    ADDED
    
    | Binary file (1.07 kB). View file | 
|  | 
    	
        ldm/models/diffusion/ddim.py
    ADDED
    
    | @@ -0,0 +1,336 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """SAMPLING ONLY."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            import numpy as np
         | 
| 5 | 
            +
            from tqdm import tqdm
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
         | 
| 8 | 
            +
             | 
| 9 | 
            +
             | 
| 10 | 
            +
            class DDIMSampler(object):
         | 
| 11 | 
            +
                def __init__(self, model, schedule="linear", **kwargs):
         | 
| 12 | 
            +
                    super().__init__()
         | 
| 13 | 
            +
                    self.model = model
         | 
| 14 | 
            +
                    self.ddpm_num_timesteps = model.num_timesteps
         | 
| 15 | 
            +
                    self.schedule = schedule
         | 
| 16 | 
            +
             | 
| 17 | 
            +
                def register_buffer(self, name, attr):
         | 
| 18 | 
            +
                    if type(attr) == torch.Tensor:
         | 
| 19 | 
            +
                        if attr.device != torch.device("cuda"):
         | 
| 20 | 
            +
                            attr = attr.to(torch.device("cuda"))
         | 
| 21 | 
            +
                    setattr(self, name, attr)
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
         | 
| 24 | 
            +
                    self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
         | 
| 25 | 
            +
                                                              num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
         | 
| 26 | 
            +
                    alphas_cumprod = self.model.alphas_cumprod
         | 
| 27 | 
            +
                    assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
         | 
| 28 | 
            +
                    to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                    self.register_buffer('betas', to_torch(self.model.betas))
         | 
| 31 | 
            +
                    self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
         | 
| 32 | 
            +
                    self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                    # calculations for diffusion q(x_t | x_{t-1}) and others
         | 
| 35 | 
            +
                    self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
         | 
| 36 | 
            +
                    self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
         | 
| 37 | 
            +
                    self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
         | 
| 38 | 
            +
                    self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
         | 
| 39 | 
            +
                    self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
         | 
| 40 | 
            +
             | 
| 41 | 
            +
                    # ddim sampling parameters
         | 
| 42 | 
            +
                    ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
         | 
| 43 | 
            +
                                                                                               ddim_timesteps=self.ddim_timesteps,
         | 
| 44 | 
            +
                                                                                               eta=ddim_eta,verbose=verbose)
         | 
| 45 | 
            +
                    self.register_buffer('ddim_sigmas', ddim_sigmas)
         | 
| 46 | 
            +
                    self.register_buffer('ddim_alphas', ddim_alphas)
         | 
| 47 | 
            +
                    self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
         | 
| 48 | 
            +
                    self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
         | 
| 49 | 
            +
                    sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
         | 
| 50 | 
            +
                        (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
         | 
| 51 | 
            +
                                    1 - self.alphas_cumprod / self.alphas_cumprod_prev))
         | 
| 52 | 
            +
                    self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                @torch.no_grad()
         | 
| 55 | 
            +
                def sample(self,
         | 
| 56 | 
            +
                           S,
         | 
| 57 | 
            +
                           batch_size,
         | 
| 58 | 
            +
                           shape,
         | 
| 59 | 
            +
                           conditioning=None,
         | 
| 60 | 
            +
                           callback=None,
         | 
| 61 | 
            +
                           normals_sequence=None,
         | 
| 62 | 
            +
                           img_callback=None,
         | 
| 63 | 
            +
                           quantize_x0=False,
         | 
| 64 | 
            +
                           eta=0.,
         | 
| 65 | 
            +
                           mask=None,
         | 
| 66 | 
            +
                           x0=None,
         | 
| 67 | 
            +
                           temperature=1.,
         | 
| 68 | 
            +
                           noise_dropout=0.,
         | 
| 69 | 
            +
                           score_corrector=None,
         | 
| 70 | 
            +
                           corrector_kwargs=None,
         | 
| 71 | 
            +
                           verbose=True,
         | 
| 72 | 
            +
                           x_T=None,
         | 
| 73 | 
            +
                           log_every_t=100,
         | 
| 74 | 
            +
                           unconditional_guidance_scale=1.,
         | 
| 75 | 
            +
                           unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
         | 
| 76 | 
            +
                           dynamic_threshold=None,
         | 
| 77 | 
            +
                           ucg_schedule=None,
         | 
| 78 | 
            +
                           **kwargs
         | 
| 79 | 
            +
                           ):
         | 
| 80 | 
            +
                    if conditioning is not None:
         | 
| 81 | 
            +
                        if isinstance(conditioning, dict):
         | 
| 82 | 
            +
                            ctmp = conditioning[list(conditioning.keys())[0]]
         | 
| 83 | 
            +
                            while isinstance(ctmp, list): ctmp = ctmp[0]
         | 
| 84 | 
            +
                            cbs = ctmp.shape[0]
         | 
| 85 | 
            +
                            if cbs != batch_size:
         | 
| 86 | 
            +
                                print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                        elif isinstance(conditioning, list):
         | 
| 89 | 
            +
                            for ctmp in conditioning:
         | 
| 90 | 
            +
                                if ctmp.shape[0] != batch_size:
         | 
| 91 | 
            +
                                    print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                        else:
         | 
| 94 | 
            +
                            if conditioning.shape[0] != batch_size:
         | 
| 95 | 
            +
                                print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                    self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
         | 
| 98 | 
            +
                    # sampling
         | 
| 99 | 
            +
                    C, H, W = shape
         | 
| 100 | 
            +
                    size = (batch_size, C, H, W)
         | 
| 101 | 
            +
                    print(f'Data shape for DDIM sampling is {size}, eta {eta}')
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                    samples, intermediates = self.ddim_sampling(conditioning, size,
         | 
| 104 | 
            +
                                                                callback=callback,
         | 
| 105 | 
            +
                                                                img_callback=img_callback,
         | 
| 106 | 
            +
                                                                quantize_denoised=quantize_x0,
         | 
| 107 | 
            +
                                                                mask=mask, x0=x0,
         | 
| 108 | 
            +
                                                                ddim_use_original_steps=False,
         | 
| 109 | 
            +
                                                                noise_dropout=noise_dropout,
         | 
| 110 | 
            +
                                                                temperature=temperature,
         | 
| 111 | 
            +
                                                                score_corrector=score_corrector,
         | 
| 112 | 
            +
                                                                corrector_kwargs=corrector_kwargs,
         | 
| 113 | 
            +
                                                                x_T=x_T,
         | 
| 114 | 
            +
                                                                log_every_t=log_every_t,
         | 
| 115 | 
            +
                                                                unconditional_guidance_scale=unconditional_guidance_scale,
         | 
| 116 | 
            +
                                                                unconditional_conditioning=unconditional_conditioning,
         | 
| 117 | 
            +
                                                                dynamic_threshold=dynamic_threshold,
         | 
| 118 | 
            +
                                                                ucg_schedule=ucg_schedule
         | 
| 119 | 
            +
                                                                )
         | 
| 120 | 
            +
                    return samples, intermediates
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                @torch.no_grad()
         | 
| 123 | 
            +
                def ddim_sampling(self, cond, shape,
         | 
| 124 | 
            +
                                  x_T=None, ddim_use_original_steps=False,
         | 
| 125 | 
            +
                                  callback=None, timesteps=None, quantize_denoised=False,
         | 
| 126 | 
            +
                                  mask=None, x0=None, img_callback=None, log_every_t=100,
         | 
| 127 | 
            +
                                  temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
         | 
| 128 | 
            +
                                  unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
         | 
| 129 | 
            +
                                  ucg_schedule=None):
         | 
| 130 | 
            +
                    device = self.model.betas.device
         | 
| 131 | 
            +
                    b = shape[0]
         | 
| 132 | 
            +
                    if x_T is None:
         | 
| 133 | 
            +
                        img = torch.randn(shape, device=device)
         | 
| 134 | 
            +
                    else:
         | 
| 135 | 
            +
                        img = x_T
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                    if timesteps is None:
         | 
| 138 | 
            +
                        timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
         | 
| 139 | 
            +
                    elif timesteps is not None and not ddim_use_original_steps:
         | 
| 140 | 
            +
                        subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
         | 
| 141 | 
            +
                        timesteps = self.ddim_timesteps[:subset_end]
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                    intermediates = {'x_inter': [img], 'pred_x0': [img]}
         | 
| 144 | 
            +
                    time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
         | 
| 145 | 
            +
                    total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
         | 
| 146 | 
            +
                    print(f"Running DDIM Sampling with {total_steps} timesteps")
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                    iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                    for i, step in enumerate(iterator):
         | 
| 151 | 
            +
                        index = total_steps - i - 1
         | 
| 152 | 
            +
                        ts = torch.full((b,), step, device=device, dtype=torch.long)
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                        if mask is not None:
         | 
| 155 | 
            +
                            assert x0 is not None
         | 
| 156 | 
            +
                            img_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass?
         | 
| 157 | 
            +
                            img = img_orig * mask + (1. - mask) * img
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                        if ucg_schedule is not None:
         | 
| 160 | 
            +
                            assert len(ucg_schedule) == len(time_range)
         | 
| 161 | 
            +
                            unconditional_guidance_scale = ucg_schedule[i]
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                        outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
         | 
| 164 | 
            +
                                                  quantize_denoised=quantize_denoised, temperature=temperature,
         | 
| 165 | 
            +
                                                  noise_dropout=noise_dropout, score_corrector=score_corrector,
         | 
| 166 | 
            +
                                                  corrector_kwargs=corrector_kwargs,
         | 
| 167 | 
            +
                                                  unconditional_guidance_scale=unconditional_guidance_scale,
         | 
| 168 | 
            +
                                                  unconditional_conditioning=unconditional_conditioning,
         | 
| 169 | 
            +
                                                  dynamic_threshold=dynamic_threshold)
         | 
| 170 | 
            +
                        img, pred_x0 = outs
         | 
| 171 | 
            +
                        if callback: callback(i)
         | 
| 172 | 
            +
                        if img_callback: img_callback(pred_x0, i)
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                        if index % log_every_t == 0 or index == total_steps - 1:
         | 
| 175 | 
            +
                            intermediates['x_inter'].append(img)
         | 
| 176 | 
            +
                            intermediates['pred_x0'].append(pred_x0)
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                    return img, intermediates
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                @torch.no_grad()
         | 
| 181 | 
            +
                def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
         | 
| 182 | 
            +
                                  temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
         | 
| 183 | 
            +
                                  unconditional_guidance_scale=1., unconditional_conditioning=None,
         | 
| 184 | 
            +
                                  dynamic_threshold=None):
         | 
| 185 | 
            +
                    b, *_, device = *x.shape, x.device
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                    if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
         | 
| 188 | 
            +
                        model_output = self.model.apply_model(x, t, c)
         | 
| 189 | 
            +
                    else:
         | 
| 190 | 
            +
                        x_in = torch.cat([x] * 2)
         | 
| 191 | 
            +
                        t_in = torch.cat([t] * 2)
         | 
| 192 | 
            +
                        if isinstance(c, dict):
         | 
| 193 | 
            +
                            assert isinstance(unconditional_conditioning, dict)
         | 
| 194 | 
            +
                            c_in = dict()
         | 
| 195 | 
            +
                            for k in c:
         | 
| 196 | 
            +
                                if isinstance(c[k], list):
         | 
| 197 | 
            +
                                    c_in[k] = [torch.cat([
         | 
| 198 | 
            +
                                        unconditional_conditioning[k][i],
         | 
| 199 | 
            +
                                        c[k][i]]) for i in range(len(c[k]))]
         | 
| 200 | 
            +
                                else:
         | 
| 201 | 
            +
                                    c_in[k] = torch.cat([
         | 
| 202 | 
            +
                                            unconditional_conditioning[k],
         | 
| 203 | 
            +
                                            c[k]])
         | 
| 204 | 
            +
                        elif isinstance(c, list):
         | 
| 205 | 
            +
                            c_in = list()
         | 
| 206 | 
            +
                            assert isinstance(unconditional_conditioning, list)
         | 
| 207 | 
            +
                            for i in range(len(c)):
         | 
| 208 | 
            +
                                c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
         | 
| 209 | 
            +
                        else:
         | 
| 210 | 
            +
                            c_in = torch.cat([unconditional_conditioning, c])
         | 
| 211 | 
            +
                        model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
         | 
| 212 | 
            +
                        model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                    if self.model.parameterization == "v":
         | 
| 215 | 
            +
                        e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
         | 
| 216 | 
            +
                    else:
         | 
| 217 | 
            +
                        e_t = model_output
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                    if score_corrector is not None:
         | 
| 220 | 
            +
                        assert self.model.parameterization == "eps", 'not implemented'
         | 
| 221 | 
            +
                        e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
         | 
| 222 | 
            +
             | 
| 223 | 
            +
                    alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
         | 
| 224 | 
            +
                    alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
         | 
| 225 | 
            +
                    sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
         | 
| 226 | 
            +
                    sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
         | 
| 227 | 
            +
                    # select parameters corresponding to the currently considered timestep
         | 
| 228 | 
            +
                    a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
         | 
| 229 | 
            +
                    a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
         | 
| 230 | 
            +
                    sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
         | 
| 231 | 
            +
                    sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
         | 
| 232 | 
            +
             | 
| 233 | 
            +
                    # current prediction for x_0
         | 
| 234 | 
            +
                    if self.model.parameterization != "v":
         | 
| 235 | 
            +
                        pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
         | 
| 236 | 
            +
                    else:
         | 
| 237 | 
            +
                        pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                    if quantize_denoised:
         | 
| 240 | 
            +
                        pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
         | 
| 241 | 
            +
             | 
| 242 | 
            +
                    if dynamic_threshold is not None:
         | 
| 243 | 
            +
                        raise NotImplementedError()
         | 
| 244 | 
            +
             | 
| 245 | 
            +
                    # direction pointing to x_t
         | 
| 246 | 
            +
                    dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
         | 
| 247 | 
            +
                    noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
         | 
| 248 | 
            +
                    if noise_dropout > 0.:
         | 
| 249 | 
            +
                        noise = torch.nn.functional.dropout(noise, p=noise_dropout)
         | 
| 250 | 
            +
                    x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
         | 
| 251 | 
            +
                    return x_prev, pred_x0
         | 
| 252 | 
            +
             | 
| 253 | 
            +
                @torch.no_grad()
         | 
| 254 | 
            +
                def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
         | 
| 255 | 
            +
                           unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
         | 
| 256 | 
            +
                    num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                    assert t_enc <= num_reference_steps
         | 
| 259 | 
            +
                    num_steps = t_enc
         | 
| 260 | 
            +
             | 
| 261 | 
            +
                    if use_original_steps:
         | 
| 262 | 
            +
                        alphas_next = self.alphas_cumprod[:num_steps]
         | 
| 263 | 
            +
                        alphas = self.alphas_cumprod_prev[:num_steps]
         | 
| 264 | 
            +
                    else:
         | 
| 265 | 
            +
                        alphas_next = self.ddim_alphas[:num_steps]
         | 
| 266 | 
            +
                        alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                    x_next = x0
         | 
| 269 | 
            +
                    intermediates = []
         | 
| 270 | 
            +
                    inter_steps = []
         | 
| 271 | 
            +
                    for i in tqdm(range(num_steps), desc='Encoding Image'):
         | 
| 272 | 
            +
                        t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
         | 
| 273 | 
            +
                        if unconditional_guidance_scale == 1.:
         | 
| 274 | 
            +
                            noise_pred = self.model.apply_model(x_next, t, c)
         | 
| 275 | 
            +
                        else:
         | 
| 276 | 
            +
                            assert unconditional_conditioning is not None
         | 
| 277 | 
            +
                            e_t_uncond, noise_pred = torch.chunk(
         | 
| 278 | 
            +
                                self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
         | 
| 279 | 
            +
                                                       torch.cat((unconditional_conditioning, c))), 2)
         | 
| 280 | 
            +
                            noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
         | 
| 281 | 
            +
             | 
| 282 | 
            +
                        xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
         | 
| 283 | 
            +
                        weighted_noise_pred = alphas_next[i].sqrt() * (
         | 
| 284 | 
            +
                                (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
         | 
| 285 | 
            +
                        x_next = xt_weighted + weighted_noise_pred
         | 
| 286 | 
            +
                        if return_intermediates and i % (
         | 
| 287 | 
            +
                                num_steps // return_intermediates) == 0 and i < num_steps - 1:
         | 
| 288 | 
            +
                            intermediates.append(x_next)
         | 
| 289 | 
            +
                            inter_steps.append(i)
         | 
| 290 | 
            +
                        elif return_intermediates and i >= num_steps - 2:
         | 
| 291 | 
            +
                            intermediates.append(x_next)
         | 
| 292 | 
            +
                            inter_steps.append(i)
         | 
| 293 | 
            +
                        if callback: callback(i)
         | 
| 294 | 
            +
             | 
| 295 | 
            +
                    out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
         | 
| 296 | 
            +
                    if return_intermediates:
         | 
| 297 | 
            +
                        out.update({'intermediates': intermediates})
         | 
| 298 | 
            +
                    return x_next, out
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                @torch.no_grad()
         | 
| 301 | 
            +
                def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
         | 
| 302 | 
            +
                    # fast, but does not allow for exact reconstruction
         | 
| 303 | 
            +
                    # t serves as an index to gather the correct alphas
         | 
| 304 | 
            +
                    if use_original_steps:
         | 
| 305 | 
            +
                        sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
         | 
| 306 | 
            +
                        sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
         | 
| 307 | 
            +
                    else:
         | 
| 308 | 
            +
                        sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
         | 
| 309 | 
            +
                        sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
         | 
| 310 | 
            +
             | 
| 311 | 
            +
                    if noise is None:
         | 
| 312 | 
            +
                        noise = torch.randn_like(x0)
         | 
| 313 | 
            +
                    return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
         | 
| 314 | 
            +
                            extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                @torch.no_grad()
         | 
| 317 | 
            +
                def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
         | 
| 318 | 
            +
                           use_original_steps=False, callback=None):
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                    timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
         | 
| 321 | 
            +
                    timesteps = timesteps[:t_start]
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                    time_range = np.flip(timesteps)
         | 
| 324 | 
            +
                    total_steps = timesteps.shape[0]
         | 
| 325 | 
            +
                    print(f"Running DDIM Sampling with {total_steps} timesteps")
         | 
| 326 | 
            +
             | 
| 327 | 
            +
                    iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
         | 
| 328 | 
            +
                    x_dec = x_latent
         | 
| 329 | 
            +
                    for i, step in enumerate(iterator):
         | 
| 330 | 
            +
                        index = total_steps - i - 1
         | 
| 331 | 
            +
                        ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
         | 
| 332 | 
            +
                        x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
         | 
| 333 | 
            +
                                                      unconditional_guidance_scale=unconditional_guidance_scale,
         | 
| 334 | 
            +
                                                      unconditional_conditioning=unconditional_conditioning)
         | 
| 335 | 
            +
                        if callback: callback(i)
         | 
| 336 | 
            +
                    return x_dec
         | 
    	
        ldm/models/diffusion/ddpm.py
    ADDED
    
    | @@ -0,0 +1,1795 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """
         | 
| 2 | 
            +
            wild mixture of
         | 
| 3 | 
            +
            https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
         | 
| 4 | 
            +
            https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
         | 
| 5 | 
            +
            https://github.com/CompVis/taming-transformers
         | 
| 6 | 
            +
            -- merci
         | 
| 7 | 
            +
            """
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            import torch
         | 
| 10 | 
            +
            import torch.nn as nn
         | 
| 11 | 
            +
            import numpy as np
         | 
| 12 | 
            +
            import pytorch_lightning as pl
         | 
| 13 | 
            +
            from torch.optim.lr_scheduler import LambdaLR
         | 
| 14 | 
            +
            from einops import rearrange, repeat
         | 
| 15 | 
            +
            from contextlib import contextmanager, nullcontext
         | 
| 16 | 
            +
            from functools import partial
         | 
| 17 | 
            +
            import itertools
         | 
| 18 | 
            +
            from tqdm import tqdm
         | 
| 19 | 
            +
            from torchvision.utils import make_grid
         | 
| 20 | 
            +
            from pytorch_lightning.utilities.distributed import rank_zero_only
         | 
| 21 | 
            +
            from omegaconf import ListConfig
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
         | 
| 24 | 
            +
            from ldm.modules.ema import LitEma
         | 
| 25 | 
            +
            from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
         | 
| 26 | 
            +
            from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
         | 
| 27 | 
            +
            from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
         | 
| 28 | 
            +
            from ldm.models.diffusion.ddim import DDIMSampler
         | 
| 29 | 
            +
             | 
| 30 | 
            +
             | 
| 31 | 
            +
            __conditioning_keys__ = {'concat': 'c_concat',
         | 
| 32 | 
            +
                                     'crossattn': 'c_crossattn',
         | 
| 33 | 
            +
                                     'adm': 'y'}
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
            def disabled_train(self, mode=True):
         | 
| 37 | 
            +
                """Overwrite model.train with this function to make sure train/eval mode
         | 
| 38 | 
            +
                does not change anymore."""
         | 
| 39 | 
            +
                return self
         | 
| 40 | 
            +
             | 
| 41 | 
            +
             | 
| 42 | 
            +
            def uniform_on_device(r1, r2, shape, device):
         | 
| 43 | 
            +
                return (r1 - r2) * torch.rand(*shape, device=device) + r2
         | 
| 44 | 
            +
             | 
| 45 | 
            +
             | 
| 46 | 
            +
            class DDPM(pl.LightningModule):
         | 
| 47 | 
            +
                # classic DDPM with Gaussian diffusion, in image space
         | 
| 48 | 
            +
                def __init__(self,
         | 
| 49 | 
            +
                             unet_config,
         | 
| 50 | 
            +
                             timesteps=1000,
         | 
| 51 | 
            +
                             beta_schedule="linear",
         | 
| 52 | 
            +
                             loss_type="l2",
         | 
| 53 | 
            +
                             ckpt_path=None,
         | 
| 54 | 
            +
                             ignore_keys=[],
         | 
| 55 | 
            +
                             load_only_unet=False,
         | 
| 56 | 
            +
                             monitor="val/loss",
         | 
| 57 | 
            +
                             use_ema=True,
         | 
| 58 | 
            +
                             first_stage_key="image",
         | 
| 59 | 
            +
                             image_size=256,
         | 
| 60 | 
            +
                             channels=3,
         | 
| 61 | 
            +
                             log_every_t=100,
         | 
| 62 | 
            +
                             clip_denoised=True,
         | 
| 63 | 
            +
                             linear_start=1e-4,
         | 
| 64 | 
            +
                             linear_end=2e-2,
         | 
| 65 | 
            +
                             cosine_s=8e-3,
         | 
| 66 | 
            +
                             given_betas=None,
         | 
| 67 | 
            +
                             original_elbo_weight=0.,
         | 
| 68 | 
            +
                             v_posterior=0.,  # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
         | 
| 69 | 
            +
                             l_simple_weight=1.,
         | 
| 70 | 
            +
                             conditioning_key=None,
         | 
| 71 | 
            +
                             parameterization="eps",  # all assuming fixed variance schedules
         | 
| 72 | 
            +
                             scheduler_config=None,
         | 
| 73 | 
            +
                             use_positional_encodings=False,
         | 
| 74 | 
            +
                             learn_logvar=False,
         | 
| 75 | 
            +
                             logvar_init=0.,
         | 
| 76 | 
            +
                             make_it_fit=False,
         | 
| 77 | 
            +
                             ucg_training=None,
         | 
| 78 | 
            +
                             reset_ema=False,
         | 
| 79 | 
            +
                             reset_num_ema_updates=False,
         | 
| 80 | 
            +
                             ):
         | 
| 81 | 
            +
                    super().__init__()
         | 
| 82 | 
            +
                    assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"'
         | 
| 83 | 
            +
                    self.parameterization = parameterization
         | 
| 84 | 
            +
                    print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
         | 
| 85 | 
            +
                    self.cond_stage_model = None
         | 
| 86 | 
            +
                    self.clip_denoised = clip_denoised
         | 
| 87 | 
            +
                    self.log_every_t = log_every_t
         | 
| 88 | 
            +
                    self.first_stage_key = first_stage_key
         | 
| 89 | 
            +
                    self.image_size = image_size  # try conv?
         | 
| 90 | 
            +
                    self.channels = channels
         | 
| 91 | 
            +
                    self.use_positional_encodings = use_positional_encodings
         | 
| 92 | 
            +
                    self.model = DiffusionWrapper(unet_config, conditioning_key)
         | 
| 93 | 
            +
                    count_params(self.model, verbose=True)
         | 
| 94 | 
            +
                    self.use_ema = use_ema
         | 
| 95 | 
            +
                    if self.use_ema:
         | 
| 96 | 
            +
                        self.model_ema = LitEma(self.model)
         | 
| 97 | 
            +
                        print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                    self.use_scheduler = scheduler_config is not None
         | 
| 100 | 
            +
                    if self.use_scheduler:
         | 
| 101 | 
            +
                        self.scheduler_config = scheduler_config
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                    self.v_posterior = v_posterior
         | 
| 104 | 
            +
                    self.original_elbo_weight = original_elbo_weight
         | 
| 105 | 
            +
                    self.l_simple_weight = l_simple_weight
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                    if monitor is not None:
         | 
| 108 | 
            +
                        self.monitor = monitor
         | 
| 109 | 
            +
                    self.make_it_fit = make_it_fit
         | 
| 110 | 
            +
                    if reset_ema: assert exists(ckpt_path)
         | 
| 111 | 
            +
                    if ckpt_path is not None:
         | 
| 112 | 
            +
                        self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
         | 
| 113 | 
            +
                        if reset_ema:
         | 
| 114 | 
            +
                            assert self.use_ema
         | 
| 115 | 
            +
                            print(f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
         | 
| 116 | 
            +
                            self.model_ema = LitEma(self.model)
         | 
| 117 | 
            +
                    if reset_num_ema_updates:
         | 
| 118 | 
            +
                        print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
         | 
| 119 | 
            +
                        assert self.use_ema
         | 
| 120 | 
            +
                        self.model_ema.reset_num_updates()
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                    self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
         | 
| 123 | 
            +
                                           linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                    self.loss_type = loss_type
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                    self.learn_logvar = learn_logvar
         | 
| 128 | 
            +
                    self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
         | 
| 129 | 
            +
                    if self.learn_logvar:
         | 
| 130 | 
            +
                        self.logvar = nn.Parameter(self.logvar, requires_grad=True)
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                    self.ucg_training = ucg_training or dict()
         | 
| 133 | 
            +
                    if self.ucg_training:
         | 
| 134 | 
            +
                        self.ucg_prng = np.random.RandomState()
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
         | 
| 137 | 
            +
                                      linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
         | 
| 138 | 
            +
                    if exists(given_betas):
         | 
| 139 | 
            +
                        betas = given_betas
         | 
| 140 | 
            +
                    else:
         | 
| 141 | 
            +
                        betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
         | 
| 142 | 
            +
                                                   cosine_s=cosine_s)
         | 
| 143 | 
            +
                    alphas = 1. - betas
         | 
| 144 | 
            +
                    alphas_cumprod = np.cumprod(alphas, axis=0)
         | 
| 145 | 
            +
                    alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                    timesteps, = betas.shape
         | 
| 148 | 
            +
                    self.num_timesteps = int(timesteps)
         | 
| 149 | 
            +
                    self.linear_start = linear_start
         | 
| 150 | 
            +
                    self.linear_end = linear_end
         | 
| 151 | 
            +
                    assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                    to_torch = partial(torch.tensor, dtype=torch.float32)
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                    self.register_buffer('betas', to_torch(betas))
         | 
| 156 | 
            +
                    self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
         | 
| 157 | 
            +
                    self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                    # calculations for diffusion q(x_t | x_{t-1}) and others
         | 
| 160 | 
            +
                    self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
         | 
| 161 | 
            +
                    self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
         | 
| 162 | 
            +
                    self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
         | 
| 163 | 
            +
                    self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
         | 
| 164 | 
            +
                    self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                    # calculations for posterior q(x_{t-1} | x_t, x_0)
         | 
| 167 | 
            +
                    posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
         | 
| 168 | 
            +
                            1. - alphas_cumprod) + self.v_posterior * betas
         | 
| 169 | 
            +
                    # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
         | 
| 170 | 
            +
                    self.register_buffer('posterior_variance', to_torch(posterior_variance))
         | 
| 171 | 
            +
                    # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
         | 
| 172 | 
            +
                    self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
         | 
| 173 | 
            +
                    self.register_buffer('posterior_mean_coef1', to_torch(
         | 
| 174 | 
            +
                        betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
         | 
| 175 | 
            +
                    self.register_buffer('posterior_mean_coef2', to_torch(
         | 
| 176 | 
            +
                        (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                    if self.parameterization == "eps":
         | 
| 179 | 
            +
                        lvlb_weights = self.betas ** 2 / (
         | 
| 180 | 
            +
                                2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
         | 
| 181 | 
            +
                    elif self.parameterization == "x0":
         | 
| 182 | 
            +
                        lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
         | 
| 183 | 
            +
                    elif self.parameterization == "v":
         | 
| 184 | 
            +
                        lvlb_weights = torch.ones_like(self.betas ** 2 / (
         | 
| 185 | 
            +
                                2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)))
         | 
| 186 | 
            +
                    else:
         | 
| 187 | 
            +
                        raise NotImplementedError("mu not supported")
         | 
| 188 | 
            +
                    lvlb_weights[0] = lvlb_weights[1]
         | 
| 189 | 
            +
                    self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
         | 
| 190 | 
            +
                    assert not torch.isnan(self.lvlb_weights).all()
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                @contextmanager
         | 
| 193 | 
            +
                def ema_scope(self, context=None):
         | 
| 194 | 
            +
                    if self.use_ema:
         | 
| 195 | 
            +
                        self.model_ema.store(self.model.parameters())
         | 
| 196 | 
            +
                        self.model_ema.copy_to(self.model)
         | 
| 197 | 
            +
                        if context is not None:
         | 
| 198 | 
            +
                            print(f"{context}: Switched to EMA weights")
         | 
| 199 | 
            +
                    try:
         | 
| 200 | 
            +
                        yield None
         | 
| 201 | 
            +
                    finally:
         | 
| 202 | 
            +
                        if self.use_ema:
         | 
| 203 | 
            +
                            self.model_ema.restore(self.model.parameters())
         | 
| 204 | 
            +
                            if context is not None:
         | 
| 205 | 
            +
                                print(f"{context}: Restored training weights")
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                @torch.no_grad()
         | 
| 208 | 
            +
                def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
         | 
| 209 | 
            +
                    sd = torch.load(path, map_location="cpu")
         | 
| 210 | 
            +
                    if "state_dict" in list(sd.keys()):
         | 
| 211 | 
            +
                        sd = sd["state_dict"]
         | 
| 212 | 
            +
                    keys = list(sd.keys())
         | 
| 213 | 
            +
                    for k in keys:
         | 
| 214 | 
            +
                        for ik in ignore_keys:
         | 
| 215 | 
            +
                            if k.startswith(ik):
         | 
| 216 | 
            +
                                print("Deleting key {} from state_dict.".format(k))
         | 
| 217 | 
            +
                                del sd[k]
         | 
| 218 | 
            +
                    if self.make_it_fit:
         | 
| 219 | 
            +
                        n_params = len([name for name, _ in
         | 
| 220 | 
            +
                                        itertools.chain(self.named_parameters(),
         | 
| 221 | 
            +
                                                        self.named_buffers())])
         | 
| 222 | 
            +
                        for name, param in tqdm(
         | 
| 223 | 
            +
                                itertools.chain(self.named_parameters(),
         | 
| 224 | 
            +
                                                self.named_buffers()),
         | 
| 225 | 
            +
                                desc="Fitting old weights to new weights",
         | 
| 226 | 
            +
                                total=n_params
         | 
| 227 | 
            +
                        ):
         | 
| 228 | 
            +
                            if not name in sd:
         | 
| 229 | 
            +
                                continue
         | 
| 230 | 
            +
                            old_shape = sd[name].shape
         | 
| 231 | 
            +
                            new_shape = param.shape
         | 
| 232 | 
            +
                            assert len(old_shape) == len(new_shape)
         | 
| 233 | 
            +
                            if len(new_shape) > 2:
         | 
| 234 | 
            +
                                # we only modify first two axes
         | 
| 235 | 
            +
                                assert new_shape[2:] == old_shape[2:]
         | 
| 236 | 
            +
                            # assumes first axis corresponds to output dim
         | 
| 237 | 
            +
                            if not new_shape == old_shape:
         | 
| 238 | 
            +
                                new_param = param.clone()
         | 
| 239 | 
            +
                                old_param = sd[name]
         | 
| 240 | 
            +
                                if len(new_shape) == 1:
         | 
| 241 | 
            +
                                    for i in range(new_param.shape[0]):
         | 
| 242 | 
            +
                                        new_param[i] = old_param[i % old_shape[0]]
         | 
| 243 | 
            +
                                elif len(new_shape) >= 2:
         | 
| 244 | 
            +
                                    for i in range(new_param.shape[0]):
         | 
| 245 | 
            +
                                        for j in range(new_param.shape[1]):
         | 
| 246 | 
            +
                                            new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
         | 
| 247 | 
            +
             | 
| 248 | 
            +
                                    n_used_old = torch.ones(old_shape[1])
         | 
| 249 | 
            +
                                    for j in range(new_param.shape[1]):
         | 
| 250 | 
            +
                                        n_used_old[j % old_shape[1]] += 1
         | 
| 251 | 
            +
                                    n_used_new = torch.zeros(new_shape[1])
         | 
| 252 | 
            +
                                    for j in range(new_param.shape[1]):
         | 
| 253 | 
            +
                                        n_used_new[j] = n_used_old[j % old_shape[1]]
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                                    n_used_new = n_used_new[None, :]
         | 
| 256 | 
            +
                                    while len(n_used_new.shape) < len(new_shape):
         | 
| 257 | 
            +
                                        n_used_new = n_used_new.unsqueeze(-1)
         | 
| 258 | 
            +
                                    new_param /= n_used_new
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                                sd[name] = new_param
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                    missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
         | 
| 263 | 
            +
                        sd, strict=False)
         | 
| 264 | 
            +
                    print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
         | 
| 265 | 
            +
                    if len(missing) > 0:
         | 
| 266 | 
            +
                        print(f"Missing Keys:\n {missing}")
         | 
| 267 | 
            +
                    if len(unexpected) > 0:
         | 
| 268 | 
            +
                        print(f"\nUnexpected Keys:\n {unexpected}")
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                def q_mean_variance(self, x_start, t):
         | 
| 271 | 
            +
                    """
         | 
| 272 | 
            +
                    Get the distribution q(x_t | x_0).
         | 
| 273 | 
            +
                    :param x_start: the [N x C x ...] tensor of noiseless inputs.
         | 
| 274 | 
            +
                    :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
         | 
| 275 | 
            +
                    :return: A tuple (mean, variance, log_variance), all of x_start's shape.
         | 
| 276 | 
            +
                    """
         | 
| 277 | 
            +
                    mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
         | 
| 278 | 
            +
                    variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
         | 
| 279 | 
            +
                    log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
         | 
| 280 | 
            +
                    return mean, variance, log_variance
         | 
| 281 | 
            +
             | 
| 282 | 
            +
                def predict_start_from_noise(self, x_t, t, noise):
         | 
| 283 | 
            +
                    return (
         | 
| 284 | 
            +
                            extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
         | 
| 285 | 
            +
                            extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
         | 
| 286 | 
            +
                    )
         | 
| 287 | 
            +
             | 
| 288 | 
            +
                def predict_start_from_z_and_v(self, x_t, t, v):
         | 
| 289 | 
            +
                    # self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
         | 
| 290 | 
            +
                    # self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
         | 
| 291 | 
            +
                    return (
         | 
| 292 | 
            +
                            extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
         | 
| 293 | 
            +
                            extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
         | 
| 294 | 
            +
                    )
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                def predict_eps_from_z_and_v(self, x_t, t, v):
         | 
| 297 | 
            +
                    return (
         | 
| 298 | 
            +
                            extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v +
         | 
| 299 | 
            +
                            extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t
         | 
| 300 | 
            +
                    )
         | 
| 301 | 
            +
             | 
| 302 | 
            +
                def q_posterior(self, x_start, x_t, t):
         | 
| 303 | 
            +
                    posterior_mean = (
         | 
| 304 | 
            +
                            extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
         | 
| 305 | 
            +
                            extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
         | 
| 306 | 
            +
                    )
         | 
| 307 | 
            +
                    posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
         | 
| 308 | 
            +
                    posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
         | 
| 309 | 
            +
                    return posterior_mean, posterior_variance, posterior_log_variance_clipped
         | 
| 310 | 
            +
             | 
| 311 | 
            +
                def p_mean_variance(self, x, t, clip_denoised: bool):
         | 
| 312 | 
            +
                    model_out = self.model(x, t)
         | 
| 313 | 
            +
                    if self.parameterization == "eps":
         | 
| 314 | 
            +
                        x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
         | 
| 315 | 
            +
                    elif self.parameterization == "x0":
         | 
| 316 | 
            +
                        x_recon = model_out
         | 
| 317 | 
            +
                    if clip_denoised:
         | 
| 318 | 
            +
                        x_recon.clamp_(-1., 1.)
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                    model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
         | 
| 321 | 
            +
                    return model_mean, posterior_variance, posterior_log_variance
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                @torch.no_grad()
         | 
| 324 | 
            +
                def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
         | 
| 325 | 
            +
                    b, *_, device = *x.shape, x.device
         | 
| 326 | 
            +
                    model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
         | 
| 327 | 
            +
                    noise = noise_like(x.shape, device, repeat_noise)
         | 
| 328 | 
            +
                    # no noise when t == 0
         | 
| 329 | 
            +
                    nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
         | 
| 330 | 
            +
                    return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                @torch.no_grad()
         | 
| 333 | 
            +
                def p_sample_loop(self, shape, return_intermediates=False):
         | 
| 334 | 
            +
                    device = self.betas.device
         | 
| 335 | 
            +
                    b = shape[0]
         | 
| 336 | 
            +
                    img = torch.randn(shape, device=device)
         | 
| 337 | 
            +
                    intermediates = [img]
         | 
| 338 | 
            +
                    for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
         | 
| 339 | 
            +
                        img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
         | 
| 340 | 
            +
                                            clip_denoised=self.clip_denoised)
         | 
| 341 | 
            +
                        if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
         | 
| 342 | 
            +
                            intermediates.append(img)
         | 
| 343 | 
            +
                    if return_intermediates:
         | 
| 344 | 
            +
                        return img, intermediates
         | 
| 345 | 
            +
                    return img
         | 
| 346 | 
            +
             | 
| 347 | 
            +
                @torch.no_grad()
         | 
| 348 | 
            +
                def sample(self, batch_size=16, return_intermediates=False):
         | 
| 349 | 
            +
                    image_size = self.image_size
         | 
| 350 | 
            +
                    channels = self.channels
         | 
| 351 | 
            +
                    return self.p_sample_loop((batch_size, channels, image_size, image_size),
         | 
| 352 | 
            +
                                              return_intermediates=return_intermediates)
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                def q_sample(self, x_start, t, noise=None):
         | 
| 355 | 
            +
                    noise = default(noise, lambda: torch.randn_like(x_start))
         | 
| 356 | 
            +
                    return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
         | 
| 357 | 
            +
                            extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                def get_v(self, x, noise, t):
         | 
| 360 | 
            +
                    return (
         | 
| 361 | 
            +
                            extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
         | 
| 362 | 
            +
                            extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
         | 
| 363 | 
            +
                    )
         | 
| 364 | 
            +
             | 
| 365 | 
            +
                def get_loss(self, pred, target, mean=True):
         | 
| 366 | 
            +
                    if self.loss_type == 'l1':
         | 
| 367 | 
            +
                        loss = (target - pred).abs()
         | 
| 368 | 
            +
                        if mean:
         | 
| 369 | 
            +
                            loss = loss.mean()
         | 
| 370 | 
            +
                    elif self.loss_type == 'l2':
         | 
| 371 | 
            +
                        if mean:
         | 
| 372 | 
            +
                            loss = torch.nn.functional.mse_loss(target, pred)
         | 
| 373 | 
            +
                        else:
         | 
| 374 | 
            +
                            loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
         | 
| 375 | 
            +
                    else:
         | 
| 376 | 
            +
                        raise NotImplementedError("unknown loss type '{loss_type}'")
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                    return loss
         | 
| 379 | 
            +
             | 
| 380 | 
            +
                def p_losses(self, x_start, t, noise=None):
         | 
| 381 | 
            +
                    noise = default(noise, lambda: torch.randn_like(x_start))
         | 
| 382 | 
            +
                    x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
         | 
| 383 | 
            +
                    model_out = self.model(x_noisy, t)
         | 
| 384 | 
            +
             | 
| 385 | 
            +
                    loss_dict = {}
         | 
| 386 | 
            +
                    if self.parameterization == "eps":
         | 
| 387 | 
            +
                        target = noise
         | 
| 388 | 
            +
                    elif self.parameterization == "x0":
         | 
| 389 | 
            +
                        target = x_start
         | 
| 390 | 
            +
                    elif self.parameterization == "v":
         | 
| 391 | 
            +
                        target = self.get_v(x_start, noise, t)
         | 
| 392 | 
            +
                    else:
         | 
| 393 | 
            +
                        raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported")
         | 
| 394 | 
            +
             | 
| 395 | 
            +
                    loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
         | 
| 396 | 
            +
             | 
| 397 | 
            +
                    log_prefix = 'train' if self.training else 'val'
         | 
| 398 | 
            +
             | 
| 399 | 
            +
                    loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
         | 
| 400 | 
            +
                    loss_simple = loss.mean() * self.l_simple_weight
         | 
| 401 | 
            +
             | 
| 402 | 
            +
                    loss_vlb = (self.lvlb_weights[t] * loss).mean()
         | 
| 403 | 
            +
                    loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                    loss = loss_simple + self.original_elbo_weight * loss_vlb
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                    loss_dict.update({f'{log_prefix}/loss': loss})
         | 
| 408 | 
            +
             | 
| 409 | 
            +
                    return loss, loss_dict
         | 
| 410 | 
            +
             | 
| 411 | 
            +
                def forward(self, x, *args, **kwargs):
         | 
| 412 | 
            +
                    # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
         | 
| 413 | 
            +
                    # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
         | 
| 414 | 
            +
                    t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
         | 
| 415 | 
            +
                    return self.p_losses(x, t, *args, **kwargs)
         | 
| 416 | 
            +
             | 
| 417 | 
            +
                def get_input(self, batch, k):
         | 
| 418 | 
            +
                    x = batch[k]
         | 
| 419 | 
            +
                    if len(x.shape) == 3:
         | 
| 420 | 
            +
                        x = x[..., None]
         | 
| 421 | 
            +
                    x = rearrange(x, 'b h w c -> b c h w')
         | 
| 422 | 
            +
                    x = x.to(memory_format=torch.contiguous_format).float()
         | 
| 423 | 
            +
                    return x
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                def shared_step(self, batch):
         | 
| 426 | 
            +
                    x = self.get_input(batch, self.first_stage_key)
         | 
| 427 | 
            +
                    loss, loss_dict = self(x)
         | 
| 428 | 
            +
                    return loss, loss_dict
         | 
| 429 | 
            +
             | 
| 430 | 
            +
                def training_step(self, batch, batch_idx):
         | 
| 431 | 
            +
                    for k in self.ucg_training:
         | 
| 432 | 
            +
                        p = self.ucg_training[k]["p"]
         | 
| 433 | 
            +
                        val = self.ucg_training[k]["val"]
         | 
| 434 | 
            +
                        if val is None:
         | 
| 435 | 
            +
                            val = ""
         | 
| 436 | 
            +
                        for i in range(len(batch[k])):
         | 
| 437 | 
            +
                            if self.ucg_prng.choice(2, p=[1 - p, p]):
         | 
| 438 | 
            +
                                batch[k][i] = val
         | 
| 439 | 
            +
             | 
| 440 | 
            +
                    loss, loss_dict = self.shared_step(batch)
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                    self.log_dict(loss_dict, prog_bar=True,
         | 
| 443 | 
            +
                                  logger=True, on_step=True, on_epoch=True)
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                    self.log("global_step", self.global_step,
         | 
| 446 | 
            +
                             prog_bar=True, logger=True, on_step=True, on_epoch=False)
         | 
| 447 | 
            +
             | 
| 448 | 
            +
                    if self.use_scheduler:
         | 
| 449 | 
            +
                        lr = self.optimizers().param_groups[0]['lr']
         | 
| 450 | 
            +
                        self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
         | 
| 451 | 
            +
             | 
| 452 | 
            +
                    return loss
         | 
| 453 | 
            +
             | 
| 454 | 
            +
                @torch.no_grad()
         | 
| 455 | 
            +
                def validation_step(self, batch, batch_idx):
         | 
| 456 | 
            +
                    _, loss_dict_no_ema = self.shared_step(batch)
         | 
| 457 | 
            +
                    with self.ema_scope():
         | 
| 458 | 
            +
                        _, loss_dict_ema = self.shared_step(batch)
         | 
| 459 | 
            +
                        loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
         | 
| 460 | 
            +
                    self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
         | 
| 461 | 
            +
                    self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
         | 
| 462 | 
            +
             | 
| 463 | 
            +
                def on_train_batch_end(self, *args, **kwargs):
         | 
| 464 | 
            +
                    if self.use_ema:
         | 
| 465 | 
            +
                        self.model_ema(self.model)
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                def _get_rows_from_list(self, samples):
         | 
| 468 | 
            +
                    n_imgs_per_row = len(samples)
         | 
| 469 | 
            +
                    denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
         | 
| 470 | 
            +
                    denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
         | 
| 471 | 
            +
                    denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
         | 
| 472 | 
            +
                    return denoise_grid
         | 
| 473 | 
            +
             | 
| 474 | 
            +
                @torch.no_grad()
         | 
| 475 | 
            +
                def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
         | 
| 476 | 
            +
                    log = dict()
         | 
| 477 | 
            +
                    x = self.get_input(batch, self.first_stage_key)
         | 
| 478 | 
            +
                    N = min(x.shape[0], N)
         | 
| 479 | 
            +
                    n_row = min(x.shape[0], n_row)
         | 
| 480 | 
            +
                    x = x.to(self.device)[:N]
         | 
| 481 | 
            +
                    log["inputs"] = x
         | 
| 482 | 
            +
             | 
| 483 | 
            +
                    # get diffusion row
         | 
| 484 | 
            +
                    diffusion_row = list()
         | 
| 485 | 
            +
                    x_start = x[:n_row]
         | 
| 486 | 
            +
             | 
| 487 | 
            +
                    for t in range(self.num_timesteps):
         | 
| 488 | 
            +
                        if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
         | 
| 489 | 
            +
                            t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
         | 
| 490 | 
            +
                            t = t.to(self.device).long()
         | 
| 491 | 
            +
                            noise = torch.randn_like(x_start)
         | 
| 492 | 
            +
                            x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
         | 
| 493 | 
            +
                            diffusion_row.append(x_noisy)
         | 
| 494 | 
            +
             | 
| 495 | 
            +
                    log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
         | 
| 496 | 
            +
             | 
| 497 | 
            +
                    if sample:
         | 
| 498 | 
            +
                        # get denoise row
         | 
| 499 | 
            +
                        with self.ema_scope("Plotting"):
         | 
| 500 | 
            +
                            samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
         | 
| 501 | 
            +
             | 
| 502 | 
            +
                        log["samples"] = samples
         | 
| 503 | 
            +
                        log["denoise_row"] = self._get_rows_from_list(denoise_row)
         | 
| 504 | 
            +
             | 
| 505 | 
            +
                    if return_keys:
         | 
| 506 | 
            +
                        if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
         | 
| 507 | 
            +
                            return log
         | 
| 508 | 
            +
                        else:
         | 
| 509 | 
            +
                            return {key: log[key] for key in return_keys}
         | 
| 510 | 
            +
                    return log
         | 
| 511 | 
            +
             | 
| 512 | 
            +
                def configure_optimizers(self):
         | 
| 513 | 
            +
                    lr = self.learning_rate
         | 
| 514 | 
            +
                    params = list(self.model.parameters())
         | 
| 515 | 
            +
                    if self.learn_logvar:
         | 
| 516 | 
            +
                        params = params + [self.logvar]
         | 
| 517 | 
            +
                    opt = torch.optim.AdamW(params, lr=lr)
         | 
| 518 | 
            +
                    return opt
         | 
| 519 | 
            +
             | 
| 520 | 
            +
             | 
| 521 | 
            +
            class LatentDiffusion(DDPM):
         | 
| 522 | 
            +
                """main class"""
         | 
| 523 | 
            +
             | 
| 524 | 
            +
                def __init__(self,
         | 
| 525 | 
            +
                             first_stage_config,
         | 
| 526 | 
            +
                             cond_stage_config,
         | 
| 527 | 
            +
                             num_timesteps_cond=None,
         | 
| 528 | 
            +
                             cond_stage_key="image",
         | 
| 529 | 
            +
                             cond_stage_trainable=False,
         | 
| 530 | 
            +
                             concat_mode=True,
         | 
| 531 | 
            +
                             cond_stage_forward=None,
         | 
| 532 | 
            +
                             conditioning_key=None,
         | 
| 533 | 
            +
                             scale_factor=1.0,
         | 
| 534 | 
            +
                             scale_by_std=False,
         | 
| 535 | 
            +
                             force_null_conditioning=False,
         | 
| 536 | 
            +
                             *args, **kwargs):
         | 
| 537 | 
            +
                    self.force_null_conditioning = force_null_conditioning
         | 
| 538 | 
            +
                    self.num_timesteps_cond = default(num_timesteps_cond, 1)
         | 
| 539 | 
            +
                    self.scale_by_std = scale_by_std
         | 
| 540 | 
            +
                    assert self.num_timesteps_cond <= kwargs['timesteps']
         | 
| 541 | 
            +
                    # for backwards compatibility after implementation of DiffusionWrapper
         | 
| 542 | 
            +
                    if conditioning_key is None:
         | 
| 543 | 
            +
                        conditioning_key = 'concat' if concat_mode else 'crossattn'
         | 
| 544 | 
            +
                    if cond_stage_config == '__is_unconditional__' and not self.force_null_conditioning:
         | 
| 545 | 
            +
                        conditioning_key = None
         | 
| 546 | 
            +
                    ckpt_path = kwargs.pop("ckpt_path", None)
         | 
| 547 | 
            +
                    reset_ema = kwargs.pop("reset_ema", False)
         | 
| 548 | 
            +
                    reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
         | 
| 549 | 
            +
                    ignore_keys = kwargs.pop("ignore_keys", [])
         | 
| 550 | 
            +
                    super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
         | 
| 551 | 
            +
                    self.concat_mode = concat_mode
         | 
| 552 | 
            +
                    self.cond_stage_trainable = cond_stage_trainable
         | 
| 553 | 
            +
                    self.cond_stage_key = cond_stage_key
         | 
| 554 | 
            +
                    try:
         | 
| 555 | 
            +
                        self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
         | 
| 556 | 
            +
                    except:
         | 
| 557 | 
            +
                        self.num_downs = 0
         | 
| 558 | 
            +
                    if not scale_by_std:
         | 
| 559 | 
            +
                        self.scale_factor = scale_factor
         | 
| 560 | 
            +
                    else:
         | 
| 561 | 
            +
                        self.register_buffer('scale_factor', torch.tensor(scale_factor))
         | 
| 562 | 
            +
                    self.instantiate_first_stage(first_stage_config)
         | 
| 563 | 
            +
                    self.instantiate_cond_stage(cond_stage_config)
         | 
| 564 | 
            +
                    self.cond_stage_forward = cond_stage_forward
         | 
| 565 | 
            +
                    self.clip_denoised = False
         | 
| 566 | 
            +
                    self.bbox_tokenizer = None
         | 
| 567 | 
            +
             | 
| 568 | 
            +
                    self.restarted_from_ckpt = False
         | 
| 569 | 
            +
                    if ckpt_path is not None:
         | 
| 570 | 
            +
                        self.init_from_ckpt(ckpt_path, ignore_keys)
         | 
| 571 | 
            +
                        self.restarted_from_ckpt = True
         | 
| 572 | 
            +
                        if reset_ema:
         | 
| 573 | 
            +
                            assert self.use_ema
         | 
| 574 | 
            +
                            print(
         | 
| 575 | 
            +
                                f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
         | 
| 576 | 
            +
                            self.model_ema = LitEma(self.model)
         | 
| 577 | 
            +
                    if reset_num_ema_updates:
         | 
| 578 | 
            +
                        print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
         | 
| 579 | 
            +
                        assert self.use_ema
         | 
| 580 | 
            +
                        self.model_ema.reset_num_updates()
         | 
| 581 | 
            +
             | 
| 582 | 
            +
                def make_cond_schedule(self, ):
         | 
| 583 | 
            +
                    self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
         | 
| 584 | 
            +
                    ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
         | 
| 585 | 
            +
                    self.cond_ids[:self.num_timesteps_cond] = ids
         | 
| 586 | 
            +
             | 
| 587 | 
            +
                @rank_zero_only
         | 
| 588 | 
            +
                @torch.no_grad()
         | 
| 589 | 
            +
                def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
         | 
| 590 | 
            +
                    # only for very first batch
         | 
| 591 | 
            +
                    if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
         | 
| 592 | 
            +
                        assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
         | 
| 593 | 
            +
                        # set rescale weight to 1./std of encodings
         | 
| 594 | 
            +
                        print("### USING STD-RESCALING ###")
         | 
| 595 | 
            +
                        x = super().get_input(batch, self.first_stage_key)
         | 
| 596 | 
            +
                        x = x.to(self.device)
         | 
| 597 | 
            +
                        encoder_posterior = self.encode_first_stage(x)
         | 
| 598 | 
            +
                        z = self.get_first_stage_encoding(encoder_posterior).detach()
         | 
| 599 | 
            +
                        del self.scale_factor
         | 
| 600 | 
            +
                        self.register_buffer('scale_factor', 1. / z.flatten().std())
         | 
| 601 | 
            +
                        print(f"setting self.scale_factor to {self.scale_factor}")
         | 
| 602 | 
            +
                        print("### USING STD-RESCALING ###")
         | 
| 603 | 
            +
             | 
| 604 | 
            +
                def register_schedule(self,
         | 
| 605 | 
            +
                                      given_betas=None, beta_schedule="linear", timesteps=1000,
         | 
| 606 | 
            +
                                      linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
         | 
| 607 | 
            +
                    super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
         | 
| 608 | 
            +
             | 
| 609 | 
            +
                    self.shorten_cond_schedule = self.num_timesteps_cond > 1
         | 
| 610 | 
            +
                    if self.shorten_cond_schedule:
         | 
| 611 | 
            +
                        self.make_cond_schedule()
         | 
| 612 | 
            +
             | 
| 613 | 
            +
                def instantiate_first_stage(self, config):
         | 
| 614 | 
            +
                    model = instantiate_from_config(config)
         | 
| 615 | 
            +
                    self.first_stage_model = model.eval()
         | 
| 616 | 
            +
                    self.first_stage_model.train = disabled_train
         | 
| 617 | 
            +
                    for param in self.first_stage_model.parameters():
         | 
| 618 | 
            +
                        param.requires_grad = False
         | 
| 619 | 
            +
             | 
| 620 | 
            +
                def instantiate_cond_stage(self, config):
         | 
| 621 | 
            +
                    if not self.cond_stage_trainable:
         | 
| 622 | 
            +
                        if config == "__is_first_stage__":
         | 
| 623 | 
            +
                            print("Using first stage also as cond stage.")
         | 
| 624 | 
            +
                            self.cond_stage_model = self.first_stage_model
         | 
| 625 | 
            +
                        elif config == "__is_unconditional__":
         | 
| 626 | 
            +
                            print(f"Training {self.__class__.__name__} as an unconditional model.")
         | 
| 627 | 
            +
                            self.cond_stage_model = None
         | 
| 628 | 
            +
                            # self.be_unconditional = True
         | 
| 629 | 
            +
                        else:
         | 
| 630 | 
            +
                            model = instantiate_from_config(config)
         | 
| 631 | 
            +
                            self.cond_stage_model = model.eval()
         | 
| 632 | 
            +
                            self.cond_stage_model.train = disabled_train
         | 
| 633 | 
            +
                            for param in self.cond_stage_model.parameters():
         | 
| 634 | 
            +
                                param.requires_grad = False
         | 
| 635 | 
            +
                    else:
         | 
| 636 | 
            +
                        assert config != '__is_first_stage__'
         | 
| 637 | 
            +
                        assert config != '__is_unconditional__'
         | 
| 638 | 
            +
                        model = instantiate_from_config(config)
         | 
| 639 | 
            +
                        self.cond_stage_model = model
         | 
| 640 | 
            +
             | 
| 641 | 
            +
                def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
         | 
| 642 | 
            +
                    denoise_row = []
         | 
| 643 | 
            +
                    for zd in tqdm(samples, desc=desc):
         | 
| 644 | 
            +
                        denoise_row.append(self.decode_first_stage(zd.to(self.device),
         | 
| 645 | 
            +
                                                                   force_not_quantize=force_no_decoder_quantization))
         | 
| 646 | 
            +
                    n_imgs_per_row = len(denoise_row)
         | 
| 647 | 
            +
                    denoise_row = torch.stack(denoise_row)  # n_log_step, n_row, C, H, W
         | 
| 648 | 
            +
                    denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
         | 
| 649 | 
            +
                    denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
         | 
| 650 | 
            +
                    denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
         | 
| 651 | 
            +
                    return denoise_grid
         | 
| 652 | 
            +
             | 
| 653 | 
            +
                def get_first_stage_encoding(self, encoder_posterior):
         | 
| 654 | 
            +
                    if isinstance(encoder_posterior, DiagonalGaussianDistribution):
         | 
| 655 | 
            +
                        z = encoder_posterior.sample()
         | 
| 656 | 
            +
                    elif isinstance(encoder_posterior, torch.Tensor):
         | 
| 657 | 
            +
                        z = encoder_posterior
         | 
| 658 | 
            +
                    else:
         | 
| 659 | 
            +
                        raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
         | 
| 660 | 
            +
                    return self.scale_factor * z
         | 
| 661 | 
            +
             | 
| 662 | 
            +
                def get_learned_conditioning(self, c):
         | 
| 663 | 
            +
                    if self.cond_stage_forward is None:
         | 
| 664 | 
            +
                        if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
         | 
| 665 | 
            +
                            c = self.cond_stage_model.encode(c)
         | 
| 666 | 
            +
                            if isinstance(c, DiagonalGaussianDistribution):
         | 
| 667 | 
            +
                                c = c.mode()
         | 
| 668 | 
            +
                        else:
         | 
| 669 | 
            +
                            c = self.cond_stage_model(c)
         | 
| 670 | 
            +
                    else:
         | 
| 671 | 
            +
                        assert hasattr(self.cond_stage_model, self.cond_stage_forward)
         | 
| 672 | 
            +
                        c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
         | 
| 673 | 
            +
                    return c
         | 
| 674 | 
            +
             | 
| 675 | 
            +
                def meshgrid(self, h, w):
         | 
| 676 | 
            +
                    y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
         | 
| 677 | 
            +
                    x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
         | 
| 678 | 
            +
             | 
| 679 | 
            +
                    arr = torch.cat([y, x], dim=-1)
         | 
| 680 | 
            +
                    return arr
         | 
| 681 | 
            +
             | 
| 682 | 
            +
                def delta_border(self, h, w):
         | 
| 683 | 
            +
                    """
         | 
| 684 | 
            +
                    :param h: height
         | 
| 685 | 
            +
                    :param w: width
         | 
| 686 | 
            +
                    :return: normalized distance to image border,
         | 
| 687 | 
            +
                     wtith min distance = 0 at border and max dist = 0.5 at image center
         | 
| 688 | 
            +
                    """
         | 
| 689 | 
            +
                    lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
         | 
| 690 | 
            +
                    arr = self.meshgrid(h, w) / lower_right_corner
         | 
| 691 | 
            +
                    dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
         | 
| 692 | 
            +
                    dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
         | 
| 693 | 
            +
                    edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
         | 
| 694 | 
            +
                    return edge_dist
         | 
| 695 | 
            +
             | 
| 696 | 
            +
                def get_weighting(self, h, w, Ly, Lx, device):
         | 
| 697 | 
            +
                    weighting = self.delta_border(h, w)
         | 
| 698 | 
            +
                    weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
         | 
| 699 | 
            +
                                           self.split_input_params["clip_max_weight"], )
         | 
| 700 | 
            +
                    weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
         | 
| 701 | 
            +
             | 
| 702 | 
            +
                    if self.split_input_params["tie_braker"]:
         | 
| 703 | 
            +
                        L_weighting = self.delta_border(Ly, Lx)
         | 
| 704 | 
            +
                        L_weighting = torch.clip(L_weighting,
         | 
| 705 | 
            +
                                                 self.split_input_params["clip_min_tie_weight"],
         | 
| 706 | 
            +
                                                 self.split_input_params["clip_max_tie_weight"])
         | 
| 707 | 
            +
             | 
| 708 | 
            +
                        L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
         | 
| 709 | 
            +
                        weighting = weighting * L_weighting
         | 
| 710 | 
            +
                    return weighting
         | 
| 711 | 
            +
             | 
| 712 | 
            +
                def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1):  # todo load once not every time, shorten code
         | 
| 713 | 
            +
                    """
         | 
| 714 | 
            +
                    :param x: img of size (bs, c, h, w)
         | 
| 715 | 
            +
                    :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
         | 
| 716 | 
            +
                    """
         | 
| 717 | 
            +
                    bs, nc, h, w = x.shape
         | 
| 718 | 
            +
             | 
| 719 | 
            +
                    # number of crops in image
         | 
| 720 | 
            +
                    Ly = (h - kernel_size[0]) // stride[0] + 1
         | 
| 721 | 
            +
                    Lx = (w - kernel_size[1]) // stride[1] + 1
         | 
| 722 | 
            +
             | 
| 723 | 
            +
                    if uf == 1 and df == 1:
         | 
| 724 | 
            +
                        fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
         | 
| 725 | 
            +
                        unfold = torch.nn.Unfold(**fold_params)
         | 
| 726 | 
            +
             | 
| 727 | 
            +
                        fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
         | 
| 728 | 
            +
             | 
| 729 | 
            +
                        weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
         | 
| 730 | 
            +
                        normalization = fold(weighting).view(1, 1, h, w)  # normalizes the overlap
         | 
| 731 | 
            +
                        weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
         | 
| 732 | 
            +
             | 
| 733 | 
            +
                    elif uf > 1 and df == 1:
         | 
| 734 | 
            +
                        fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
         | 
| 735 | 
            +
                        unfold = torch.nn.Unfold(**fold_params)
         | 
| 736 | 
            +
             | 
| 737 | 
            +
                        fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
         | 
| 738 | 
            +
                                            dilation=1, padding=0,
         | 
| 739 | 
            +
                                            stride=(stride[0] * uf, stride[1] * uf))
         | 
| 740 | 
            +
                        fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
         | 
| 741 | 
            +
             | 
| 742 | 
            +
                        weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
         | 
| 743 | 
            +
                        normalization = fold(weighting).view(1, 1, h * uf, w * uf)  # normalizes the overlap
         | 
| 744 | 
            +
                        weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
         | 
| 745 | 
            +
             | 
| 746 | 
            +
                    elif df > 1 and uf == 1:
         | 
| 747 | 
            +
                        fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
         | 
| 748 | 
            +
                        unfold = torch.nn.Unfold(**fold_params)
         | 
| 749 | 
            +
             | 
| 750 | 
            +
                        fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
         | 
| 751 | 
            +
                                            dilation=1, padding=0,
         | 
| 752 | 
            +
                                            stride=(stride[0] // df, stride[1] // df))
         | 
| 753 | 
            +
                        fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
         | 
| 754 | 
            +
             | 
| 755 | 
            +
                        weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
         | 
| 756 | 
            +
                        normalization = fold(weighting).view(1, 1, h // df, w // df)  # normalizes the overlap
         | 
| 757 | 
            +
                        weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
         | 
| 758 | 
            +
             | 
| 759 | 
            +
                    else:
         | 
| 760 | 
            +
                        raise NotImplementedError
         | 
| 761 | 
            +
             | 
| 762 | 
            +
                    return fold, unfold, normalization, weighting
         | 
| 763 | 
            +
             | 
| 764 | 
            +
                @torch.no_grad()
         | 
| 765 | 
            +
                def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
         | 
| 766 | 
            +
                              cond_key=None, return_original_cond=False, bs=None, return_x=False):
         | 
| 767 | 
            +
                    x = super().get_input(batch, k)
         | 
| 768 | 
            +
                    if bs is not None:
         | 
| 769 | 
            +
                        x = x[:bs]
         | 
| 770 | 
            +
                    x = x.to(self.device)
         | 
| 771 | 
            +
                    encoder_posterior = self.encode_first_stage(x)
         | 
| 772 | 
            +
                    z = self.get_first_stage_encoding(encoder_posterior).detach()
         | 
| 773 | 
            +
             | 
| 774 | 
            +
                    if self.model.conditioning_key is not None and not self.force_null_conditioning:
         | 
| 775 | 
            +
                        if cond_key is None:
         | 
| 776 | 
            +
                            cond_key = self.cond_stage_key
         | 
| 777 | 
            +
                        if cond_key != self.first_stage_key:
         | 
| 778 | 
            +
                            if cond_key in ['caption', 'coordinates_bbox', "txt"]:
         | 
| 779 | 
            +
                                xc = batch[cond_key]
         | 
| 780 | 
            +
                            elif cond_key in ['class_label', 'cls']:
         | 
| 781 | 
            +
                                xc = batch
         | 
| 782 | 
            +
                            else:
         | 
| 783 | 
            +
                                xc = super().get_input(batch, cond_key).to(self.device)
         | 
| 784 | 
            +
                        else:
         | 
| 785 | 
            +
                            xc = x
         | 
| 786 | 
            +
                        if not self.cond_stage_trainable or force_c_encode:
         | 
| 787 | 
            +
                            if isinstance(xc, dict) or isinstance(xc, list):
         | 
| 788 | 
            +
                                c = self.get_learned_conditioning(xc)
         | 
| 789 | 
            +
                            else:
         | 
| 790 | 
            +
                                c = self.get_learned_conditioning(xc.to(self.device))
         | 
| 791 | 
            +
                        else:
         | 
| 792 | 
            +
                            c = xc
         | 
| 793 | 
            +
                        if bs is not None:
         | 
| 794 | 
            +
                            c = c[:bs]
         | 
| 795 | 
            +
             | 
| 796 | 
            +
                        if self.use_positional_encodings:
         | 
| 797 | 
            +
                            pos_x, pos_y = self.compute_latent_shifts(batch)
         | 
| 798 | 
            +
                            ckey = __conditioning_keys__[self.model.conditioning_key]
         | 
| 799 | 
            +
                            c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
         | 
| 800 | 
            +
             | 
| 801 | 
            +
                    else:
         | 
| 802 | 
            +
                        c = None
         | 
| 803 | 
            +
                        xc = None
         | 
| 804 | 
            +
                        if self.use_positional_encodings:
         | 
| 805 | 
            +
                            pos_x, pos_y = self.compute_latent_shifts(batch)
         | 
| 806 | 
            +
                            c = {'pos_x': pos_x, 'pos_y': pos_y}
         | 
| 807 | 
            +
                    out = [z, c]
         | 
| 808 | 
            +
                    if return_first_stage_outputs:
         | 
| 809 | 
            +
                        xrec = self.decode_first_stage(z)
         | 
| 810 | 
            +
                        out.extend([x, xrec])
         | 
| 811 | 
            +
                    if return_x:
         | 
| 812 | 
            +
                        out.extend([x])
         | 
| 813 | 
            +
                    if return_original_cond:
         | 
| 814 | 
            +
                        out.append(xc)
         | 
| 815 | 
            +
                    return out
         | 
| 816 | 
            +
             | 
| 817 | 
            +
                @torch.no_grad()
         | 
| 818 | 
            +
                def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
         | 
| 819 | 
            +
                    if predict_cids:
         | 
| 820 | 
            +
                        if z.dim() == 4:
         | 
| 821 | 
            +
                            z = torch.argmax(z.exp(), dim=1).long()
         | 
| 822 | 
            +
                        z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
         | 
| 823 | 
            +
                        z = rearrange(z, 'b h w c -> b c h w').contiguous()
         | 
| 824 | 
            +
             | 
| 825 | 
            +
                    z = 1. / self.scale_factor * z
         | 
| 826 | 
            +
                    return self.first_stage_model.decode(z)
         | 
| 827 | 
            +
             | 
| 828 | 
            +
                @torch.no_grad()
         | 
| 829 | 
            +
                def encode_first_stage(self, x):
         | 
| 830 | 
            +
                    return self.first_stage_model.encode(x)
         | 
| 831 | 
            +
             | 
| 832 | 
            +
                def shared_step(self, batch, **kwargs):
         | 
| 833 | 
            +
                    x, c = self.get_input(batch, self.first_stage_key)
         | 
| 834 | 
            +
                    loss = self(x, c)
         | 
| 835 | 
            +
                    return loss
         | 
| 836 | 
            +
             | 
| 837 | 
            +
                def forward(self, x, c, *args, **kwargs):
         | 
| 838 | 
            +
                    t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
         | 
| 839 | 
            +
                    if self.model.conditioning_key is not None:
         | 
| 840 | 
            +
                        assert c is not None
         | 
| 841 | 
            +
                        if self.cond_stage_trainable:
         | 
| 842 | 
            +
                            c = self.get_learned_conditioning(c)
         | 
| 843 | 
            +
                        if self.shorten_cond_schedule:  # TODO: drop this option
         | 
| 844 | 
            +
                            tc = self.cond_ids[t].to(self.device)
         | 
| 845 | 
            +
                            c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
         | 
| 846 | 
            +
                    return self.p_losses(x, c, t, *args, **kwargs)
         | 
| 847 | 
            +
             | 
| 848 | 
            +
                def apply_model(self, x_noisy, t, cond, return_ids=False):
         | 
| 849 | 
            +
                    if isinstance(cond, dict):
         | 
| 850 | 
            +
                        # hybrid case, cond is expected to be a dict
         | 
| 851 | 
            +
                        pass
         | 
| 852 | 
            +
                    else:
         | 
| 853 | 
            +
                        if not isinstance(cond, list):
         | 
| 854 | 
            +
                            cond = [cond]
         | 
| 855 | 
            +
                        key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
         | 
| 856 | 
            +
                        cond = {key: cond}
         | 
| 857 | 
            +
             | 
| 858 | 
            +
                    x_recon = self.model(x_noisy, t, **cond)
         | 
| 859 | 
            +
             | 
| 860 | 
            +
                    if isinstance(x_recon, tuple) and not return_ids:
         | 
| 861 | 
            +
                        return x_recon[0]
         | 
| 862 | 
            +
                    else:
         | 
| 863 | 
            +
                        return x_recon
         | 
| 864 | 
            +
             | 
| 865 | 
            +
                def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
         | 
| 866 | 
            +
                    return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
         | 
| 867 | 
            +
                           extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
         | 
| 868 | 
            +
             | 
| 869 | 
            +
                def _prior_bpd(self, x_start):
         | 
| 870 | 
            +
                    """
         | 
| 871 | 
            +
                    Get the prior KL term for the variational lower-bound, measured in
         | 
| 872 | 
            +
                    bits-per-dim.
         | 
| 873 | 
            +
                    This term can't be optimized, as it only depends on the encoder.
         | 
| 874 | 
            +
                    :param x_start: the [N x C x ...] tensor of inputs.
         | 
| 875 | 
            +
                    :return: a batch of [N] KL values (in bits), one per batch element.
         | 
| 876 | 
            +
                    """
         | 
| 877 | 
            +
                    batch_size = x_start.shape[0]
         | 
| 878 | 
            +
                    t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
         | 
| 879 | 
            +
                    qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
         | 
| 880 | 
            +
                    kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
         | 
| 881 | 
            +
                    return mean_flat(kl_prior) / np.log(2.0)
         | 
| 882 | 
            +
             | 
| 883 | 
            +
                def p_losses(self, x_start, cond, t, noise=None):
         | 
| 884 | 
            +
                    noise = default(noise, lambda: torch.randn_like(x_start))
         | 
| 885 | 
            +
                    x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
         | 
| 886 | 
            +
                    model_output = self.apply_model(x_noisy, t, cond)
         | 
| 887 | 
            +
             | 
| 888 | 
            +
                    loss_dict = {}
         | 
| 889 | 
            +
                    prefix = 'train' if self.training else 'val'
         | 
| 890 | 
            +
             | 
| 891 | 
            +
                    if self.parameterization == "x0":
         | 
| 892 | 
            +
                        target = x_start
         | 
| 893 | 
            +
                    elif self.parameterization == "eps":
         | 
| 894 | 
            +
                        target = noise
         | 
| 895 | 
            +
                    elif self.parameterization == "v":
         | 
| 896 | 
            +
                        target = self.get_v(x_start, noise, t)
         | 
| 897 | 
            +
                    else:
         | 
| 898 | 
            +
                        raise NotImplementedError()
         | 
| 899 | 
            +
             | 
| 900 | 
            +
                    loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
         | 
| 901 | 
            +
                    loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
         | 
| 902 | 
            +
             | 
| 903 | 
            +
                    logvar_t = self.logvar[t].to(self.device)
         | 
| 904 | 
            +
                    loss = loss_simple / torch.exp(logvar_t) + logvar_t
         | 
| 905 | 
            +
                    # loss = loss_simple / torch.exp(self.logvar) + self.logvar
         | 
| 906 | 
            +
                    if self.learn_logvar:
         | 
| 907 | 
            +
                        loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
         | 
| 908 | 
            +
                        loss_dict.update({'logvar': self.logvar.data.mean()})
         | 
| 909 | 
            +
             | 
| 910 | 
            +
                    loss = self.l_simple_weight * loss.mean()
         | 
| 911 | 
            +
             | 
| 912 | 
            +
                    loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
         | 
| 913 | 
            +
                    loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
         | 
| 914 | 
            +
                    loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
         | 
| 915 | 
            +
                    loss += (self.original_elbo_weight * loss_vlb)
         | 
| 916 | 
            +
                    loss_dict.update({f'{prefix}/loss': loss})
         | 
| 917 | 
            +
             | 
| 918 | 
            +
                    return loss, loss_dict
         | 
| 919 | 
            +
             | 
| 920 | 
            +
                def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
         | 
| 921 | 
            +
                                    return_x0=False, score_corrector=None, corrector_kwargs=None):
         | 
| 922 | 
            +
                    t_in = t
         | 
| 923 | 
            +
                    model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
         | 
| 924 | 
            +
             | 
| 925 | 
            +
                    if score_corrector is not None:
         | 
| 926 | 
            +
                        assert self.parameterization == "eps"
         | 
| 927 | 
            +
                        model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
         | 
| 928 | 
            +
             | 
| 929 | 
            +
                    if return_codebook_ids:
         | 
| 930 | 
            +
                        model_out, logits = model_out
         | 
| 931 | 
            +
             | 
| 932 | 
            +
                    if self.parameterization == "eps":
         | 
| 933 | 
            +
                        x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
         | 
| 934 | 
            +
                    elif self.parameterization == "x0":
         | 
| 935 | 
            +
                        x_recon = model_out
         | 
| 936 | 
            +
                    else:
         | 
| 937 | 
            +
                        raise NotImplementedError()
         | 
| 938 | 
            +
             | 
| 939 | 
            +
                    if clip_denoised:
         | 
| 940 | 
            +
                        x_recon.clamp_(-1., 1.)
         | 
| 941 | 
            +
                    if quantize_denoised:
         | 
| 942 | 
            +
                        x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
         | 
| 943 | 
            +
                    model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
         | 
| 944 | 
            +
                    if return_codebook_ids:
         | 
| 945 | 
            +
                        return model_mean, posterior_variance, posterior_log_variance, logits
         | 
| 946 | 
            +
                    elif return_x0:
         | 
| 947 | 
            +
                        return model_mean, posterior_variance, posterior_log_variance, x_recon
         | 
| 948 | 
            +
                    else:
         | 
| 949 | 
            +
                        return model_mean, posterior_variance, posterior_log_variance
         | 
| 950 | 
            +
             | 
| 951 | 
            +
                @torch.no_grad()
         | 
| 952 | 
            +
                def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
         | 
| 953 | 
            +
                             return_codebook_ids=False, quantize_denoised=False, return_x0=False,
         | 
| 954 | 
            +
                             temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
         | 
| 955 | 
            +
                    b, *_, device = *x.shape, x.device
         | 
| 956 | 
            +
                    outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
         | 
| 957 | 
            +
                                                   return_codebook_ids=return_codebook_ids,
         | 
| 958 | 
            +
                                                   quantize_denoised=quantize_denoised,
         | 
| 959 | 
            +
                                                   return_x0=return_x0,
         | 
| 960 | 
            +
                                                   score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
         | 
| 961 | 
            +
                    if return_codebook_ids:
         | 
| 962 | 
            +
                        raise DeprecationWarning("Support dropped.")
         | 
| 963 | 
            +
                        model_mean, _, model_log_variance, logits = outputs
         | 
| 964 | 
            +
                    elif return_x0:
         | 
| 965 | 
            +
                        model_mean, _, model_log_variance, x0 = outputs
         | 
| 966 | 
            +
                    else:
         | 
| 967 | 
            +
                        model_mean, _, model_log_variance = outputs
         | 
| 968 | 
            +
             | 
| 969 | 
            +
                    noise = noise_like(x.shape, device, repeat_noise) * temperature
         | 
| 970 | 
            +
                    if noise_dropout > 0.:
         | 
| 971 | 
            +
                        noise = torch.nn.functional.dropout(noise, p=noise_dropout)
         | 
| 972 | 
            +
                    # no noise when t == 0
         | 
| 973 | 
            +
                    nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
         | 
| 974 | 
            +
             | 
| 975 | 
            +
                    if return_codebook_ids:
         | 
| 976 | 
            +
                        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
         | 
| 977 | 
            +
                    if return_x0:
         | 
| 978 | 
            +
                        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
         | 
| 979 | 
            +
                    else:
         | 
| 980 | 
            +
                        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
         | 
| 981 | 
            +
             | 
| 982 | 
            +
                @torch.no_grad()
         | 
| 983 | 
            +
                def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
         | 
| 984 | 
            +
                                          img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
         | 
| 985 | 
            +
                                          score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
         | 
| 986 | 
            +
                                          log_every_t=None):
         | 
| 987 | 
            +
                    if not log_every_t:
         | 
| 988 | 
            +
                        log_every_t = self.log_every_t
         | 
| 989 | 
            +
                    timesteps = self.num_timesteps
         | 
| 990 | 
            +
                    if batch_size is not None:
         | 
| 991 | 
            +
                        b = batch_size if batch_size is not None else shape[0]
         | 
| 992 | 
            +
                        shape = [batch_size] + list(shape)
         | 
| 993 | 
            +
                    else:
         | 
| 994 | 
            +
                        b = batch_size = shape[0]
         | 
| 995 | 
            +
                    if x_T is None:
         | 
| 996 | 
            +
                        img = torch.randn(shape, device=self.device)
         | 
| 997 | 
            +
                    else:
         | 
| 998 | 
            +
                        img = x_T
         | 
| 999 | 
            +
                    intermediates = []
         | 
| 1000 | 
            +
                    if cond is not None:
         | 
| 1001 | 
            +
                        if isinstance(cond, dict):
         | 
| 1002 | 
            +
                            cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
         | 
| 1003 | 
            +
                            list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
         | 
| 1004 | 
            +
                        else:
         | 
| 1005 | 
            +
                            cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
         | 
| 1006 | 
            +
             | 
| 1007 | 
            +
                    if start_T is not None:
         | 
| 1008 | 
            +
                        timesteps = min(timesteps, start_T)
         | 
| 1009 | 
            +
                    iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
         | 
| 1010 | 
            +
                                    total=timesteps) if verbose else reversed(
         | 
| 1011 | 
            +
                        range(0, timesteps))
         | 
| 1012 | 
            +
                    if type(temperature) == float:
         | 
| 1013 | 
            +
                        temperature = [temperature] * timesteps
         | 
| 1014 | 
            +
             | 
| 1015 | 
            +
                    for i in iterator:
         | 
| 1016 | 
            +
                        ts = torch.full((b,), i, device=self.device, dtype=torch.long)
         | 
| 1017 | 
            +
                        if self.shorten_cond_schedule:
         | 
| 1018 | 
            +
                            assert self.model.conditioning_key != 'hybrid'
         | 
| 1019 | 
            +
                            tc = self.cond_ids[ts].to(cond.device)
         | 
| 1020 | 
            +
                            cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
         | 
| 1021 | 
            +
             | 
| 1022 | 
            +
                        img, x0_partial = self.p_sample(img, cond, ts,
         | 
| 1023 | 
            +
                                                        clip_denoised=self.clip_denoised,
         | 
| 1024 | 
            +
                                                        quantize_denoised=quantize_denoised, return_x0=True,
         | 
| 1025 | 
            +
                                                        temperature=temperature[i], noise_dropout=noise_dropout,
         | 
| 1026 | 
            +
                                                        score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
         | 
| 1027 | 
            +
                        if mask is not None:
         | 
| 1028 | 
            +
                            assert x0 is not None
         | 
| 1029 | 
            +
                            img_orig = self.q_sample(x0, ts)
         | 
| 1030 | 
            +
                            img = img_orig * mask + (1. - mask) * img
         | 
| 1031 | 
            +
             | 
| 1032 | 
            +
                        if i % log_every_t == 0 or i == timesteps - 1:
         | 
| 1033 | 
            +
                            intermediates.append(x0_partial)
         | 
| 1034 | 
            +
                        if callback: callback(i)
         | 
| 1035 | 
            +
                        if img_callback: img_callback(img, i)
         | 
| 1036 | 
            +
                    return img, intermediates
         | 
| 1037 | 
            +
             | 
| 1038 | 
            +
                @torch.no_grad()
         | 
| 1039 | 
            +
                def p_sample_loop(self, cond, shape, return_intermediates=False,
         | 
| 1040 | 
            +
                                  x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
         | 
| 1041 | 
            +
                                  mask=None, x0=None, img_callback=None, start_T=None,
         | 
| 1042 | 
            +
                                  log_every_t=None):
         | 
| 1043 | 
            +
             | 
| 1044 | 
            +
                    if not log_every_t:
         | 
| 1045 | 
            +
                        log_every_t = self.log_every_t
         | 
| 1046 | 
            +
                    device = self.betas.device
         | 
| 1047 | 
            +
                    b = shape[0]
         | 
| 1048 | 
            +
                    if x_T is None:
         | 
| 1049 | 
            +
                        img = torch.randn(shape, device=device)
         | 
| 1050 | 
            +
                    else:
         | 
| 1051 | 
            +
                        img = x_T
         | 
| 1052 | 
            +
             | 
| 1053 | 
            +
                    intermediates = [img]
         | 
| 1054 | 
            +
                    if timesteps is None:
         | 
| 1055 | 
            +
                        timesteps = self.num_timesteps
         | 
| 1056 | 
            +
             | 
| 1057 | 
            +
                    if start_T is not None:
         | 
| 1058 | 
            +
                        timesteps = min(timesteps, start_T)
         | 
| 1059 | 
            +
                    iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
         | 
| 1060 | 
            +
                        range(0, timesteps))
         | 
| 1061 | 
            +
             | 
| 1062 | 
            +
                    if mask is not None:
         | 
| 1063 | 
            +
                        assert x0 is not None
         | 
| 1064 | 
            +
                        assert x0.shape[2:3] == mask.shape[2:3]  # spatial size has to match
         | 
| 1065 | 
            +
             | 
| 1066 | 
            +
                    for i in iterator:
         | 
| 1067 | 
            +
                        ts = torch.full((b,), i, device=device, dtype=torch.long)
         | 
| 1068 | 
            +
                        if self.shorten_cond_schedule:
         | 
| 1069 | 
            +
                            assert self.model.conditioning_key != 'hybrid'
         | 
| 1070 | 
            +
                            tc = self.cond_ids[ts].to(cond.device)
         | 
| 1071 | 
            +
                            cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
         | 
| 1072 | 
            +
             | 
| 1073 | 
            +
                        img = self.p_sample(img, cond, ts,
         | 
| 1074 | 
            +
                                            clip_denoised=self.clip_denoised,
         | 
| 1075 | 
            +
                                            quantize_denoised=quantize_denoised)
         | 
| 1076 | 
            +
                        if mask is not None:
         | 
| 1077 | 
            +
                            img_orig = self.q_sample(x0, ts)
         | 
| 1078 | 
            +
                            img = img_orig * mask + (1. - mask) * img
         | 
| 1079 | 
            +
             | 
| 1080 | 
            +
                        if i % log_every_t == 0 or i == timesteps - 1:
         | 
| 1081 | 
            +
                            intermediates.append(img)
         | 
| 1082 | 
            +
                        if callback: callback(i)
         | 
| 1083 | 
            +
                        if img_callback: img_callback(img, i)
         | 
| 1084 | 
            +
             | 
| 1085 | 
            +
                    if return_intermediates:
         | 
| 1086 | 
            +
                        return img, intermediates
         | 
| 1087 | 
            +
                    return img
         | 
| 1088 | 
            +
             | 
| 1089 | 
            +
                @torch.no_grad()
         | 
| 1090 | 
            +
                def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
         | 
| 1091 | 
            +
                           verbose=True, timesteps=None, quantize_denoised=False,
         | 
| 1092 | 
            +
                           mask=None, x0=None, shape=None, **kwargs):
         | 
| 1093 | 
            +
                    if shape is None:
         | 
| 1094 | 
            +
                        shape = (batch_size, self.channels, self.image_size, self.image_size)
         | 
| 1095 | 
            +
                    if cond is not None:
         | 
| 1096 | 
            +
                        if isinstance(cond, dict):
         | 
| 1097 | 
            +
                            cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
         | 
| 1098 | 
            +
                            list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
         | 
| 1099 | 
            +
                        else:
         | 
| 1100 | 
            +
                            cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
         | 
| 1101 | 
            +
                    return self.p_sample_loop(cond,
         | 
| 1102 | 
            +
                                              shape,
         | 
| 1103 | 
            +
                                              return_intermediates=return_intermediates, x_T=x_T,
         | 
| 1104 | 
            +
                                              verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
         | 
| 1105 | 
            +
                                              mask=mask, x0=x0)
         | 
| 1106 | 
            +
             | 
| 1107 | 
            +
                @torch.no_grad()
         | 
| 1108 | 
            +
                def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
         | 
| 1109 | 
            +
                    if ddim:
         | 
| 1110 | 
            +
                        ddim_sampler = DDIMSampler(self)
         | 
| 1111 | 
            +
                        shape = (self.channels, self.image_size, self.image_size)
         | 
| 1112 | 
            +
                        samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
         | 
| 1113 | 
            +
                                                                     shape, cond, verbose=False, **kwargs)
         | 
| 1114 | 
            +
             | 
| 1115 | 
            +
                    else:
         | 
| 1116 | 
            +
                        samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
         | 
| 1117 | 
            +
                                                             return_intermediates=True, **kwargs)
         | 
| 1118 | 
            +
             | 
| 1119 | 
            +
                    return samples, intermediates
         | 
| 1120 | 
            +
             | 
| 1121 | 
            +
                @torch.no_grad()
         | 
| 1122 | 
            +
                def get_unconditional_conditioning(self, batch_size, null_label=None):
         | 
| 1123 | 
            +
                    if null_label is not None:
         | 
| 1124 | 
            +
                        xc = null_label
         | 
| 1125 | 
            +
                        if isinstance(xc, ListConfig):
         | 
| 1126 | 
            +
                            xc = list(xc)
         | 
| 1127 | 
            +
                        if isinstance(xc, dict) or isinstance(xc, list):
         | 
| 1128 | 
            +
                            c = self.get_learned_conditioning(xc)
         | 
| 1129 | 
            +
                        else:
         | 
| 1130 | 
            +
                            if hasattr(xc, "to"):
         | 
| 1131 | 
            +
                                xc = xc.to(self.device)
         | 
| 1132 | 
            +
                            c = self.get_learned_conditioning(xc)
         | 
| 1133 | 
            +
                    else:
         | 
| 1134 | 
            +
                        if self.cond_stage_key in ["class_label", "cls"]:
         | 
| 1135 | 
            +
                            xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
         | 
| 1136 | 
            +
                            return self.get_learned_conditioning(xc)
         | 
| 1137 | 
            +
                        else:
         | 
| 1138 | 
            +
                            raise NotImplementedError("todo")
         | 
| 1139 | 
            +
                    if isinstance(c, list):  # in case the encoder gives us a list
         | 
| 1140 | 
            +
                        for i in range(len(c)):
         | 
| 1141 | 
            +
                            c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
         | 
| 1142 | 
            +
                    else:
         | 
| 1143 | 
            +
                        c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
         | 
| 1144 | 
            +
                    return c
         | 
| 1145 | 
            +
             | 
| 1146 | 
            +
                @torch.no_grad()
         | 
| 1147 | 
            +
                def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=50, ddim_eta=0., return_keys=None,
         | 
| 1148 | 
            +
                               quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
         | 
| 1149 | 
            +
                               plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
         | 
| 1150 | 
            +
                               use_ema_scope=True,
         | 
| 1151 | 
            +
                               **kwargs):
         | 
| 1152 | 
            +
                    ema_scope = self.ema_scope if use_ema_scope else nullcontext
         | 
| 1153 | 
            +
                    use_ddim = ddim_steps is not None
         | 
| 1154 | 
            +
             | 
| 1155 | 
            +
                    log = dict()
         | 
| 1156 | 
            +
                    z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
         | 
| 1157 | 
            +
                                                       return_first_stage_outputs=True,
         | 
| 1158 | 
            +
                                                       force_c_encode=True,
         | 
| 1159 | 
            +
                                                       return_original_cond=True,
         | 
| 1160 | 
            +
                                                       bs=N)
         | 
| 1161 | 
            +
                    N = min(x.shape[0], N)
         | 
| 1162 | 
            +
                    n_row = min(x.shape[0], n_row)
         | 
| 1163 | 
            +
                    log["inputs"] = x
         | 
| 1164 | 
            +
                    log["reconstruction"] = xrec
         | 
| 1165 | 
            +
                    if self.model.conditioning_key is not None:
         | 
| 1166 | 
            +
                        if hasattr(self.cond_stage_model, "decode"):
         | 
| 1167 | 
            +
                            xc = self.cond_stage_model.decode(c)
         | 
| 1168 | 
            +
                            log["conditioning"] = xc
         | 
| 1169 | 
            +
                        elif self.cond_stage_key in ["caption", "txt"]:
         | 
| 1170 | 
            +
                            xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
         | 
| 1171 | 
            +
                            log["conditioning"] = xc
         | 
| 1172 | 
            +
                        elif self.cond_stage_key in ['class_label', "cls"]:
         | 
| 1173 | 
            +
                            try:
         | 
| 1174 | 
            +
                                xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
         | 
| 1175 | 
            +
                                log['conditioning'] = xc
         | 
| 1176 | 
            +
                            except KeyError:
         | 
| 1177 | 
            +
                                # probably no "human_label" in batch
         | 
| 1178 | 
            +
                                pass
         | 
| 1179 | 
            +
                        elif isimage(xc):
         | 
| 1180 | 
            +
                            log["conditioning"] = xc
         | 
| 1181 | 
            +
                        if ismap(xc):
         | 
| 1182 | 
            +
                            log["original_conditioning"] = self.to_rgb(xc)
         | 
| 1183 | 
            +
             | 
| 1184 | 
            +
                    if plot_diffusion_rows:
         | 
| 1185 | 
            +
                        # get diffusion row
         | 
| 1186 | 
            +
                        diffusion_row = list()
         | 
| 1187 | 
            +
                        z_start = z[:n_row]
         | 
| 1188 | 
            +
                        for t in range(self.num_timesteps):
         | 
| 1189 | 
            +
                            if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
         | 
| 1190 | 
            +
                                t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
         | 
| 1191 | 
            +
                                t = t.to(self.device).long()
         | 
| 1192 | 
            +
                                noise = torch.randn_like(z_start)
         | 
| 1193 | 
            +
                                z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
         | 
| 1194 | 
            +
                                diffusion_row.append(self.decode_first_stage(z_noisy))
         | 
| 1195 | 
            +
             | 
| 1196 | 
            +
                        diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
         | 
| 1197 | 
            +
                        diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
         | 
| 1198 | 
            +
                        diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
         | 
| 1199 | 
            +
                        diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
         | 
| 1200 | 
            +
                        log["diffusion_row"] = diffusion_grid
         | 
| 1201 | 
            +
             | 
| 1202 | 
            +
                    if sample:
         | 
| 1203 | 
            +
                        # get denoise row
         | 
| 1204 | 
            +
                        with ema_scope("Sampling"):
         | 
| 1205 | 
            +
                            samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
         | 
| 1206 | 
            +
                                                                     ddim_steps=ddim_steps, eta=ddim_eta)
         | 
| 1207 | 
            +
                            # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
         | 
| 1208 | 
            +
                        x_samples = self.decode_first_stage(samples)
         | 
| 1209 | 
            +
                        log["samples"] = x_samples
         | 
| 1210 | 
            +
                        if plot_denoise_rows:
         | 
| 1211 | 
            +
                            denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
         | 
| 1212 | 
            +
                            log["denoise_row"] = denoise_grid
         | 
| 1213 | 
            +
             | 
| 1214 | 
            +
                        if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
         | 
| 1215 | 
            +
                                self.first_stage_model, IdentityFirstStage):
         | 
| 1216 | 
            +
                            # also display when quantizing x0 while sampling
         | 
| 1217 | 
            +
                            with ema_scope("Plotting Quantized Denoised"):
         | 
| 1218 | 
            +
                                samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
         | 
| 1219 | 
            +
                                                                         ddim_steps=ddim_steps, eta=ddim_eta,
         | 
| 1220 | 
            +
                                                                         quantize_denoised=True)
         | 
| 1221 | 
            +
                                # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
         | 
| 1222 | 
            +
                                #                                      quantize_denoised=True)
         | 
| 1223 | 
            +
                            x_samples = self.decode_first_stage(samples.to(self.device))
         | 
| 1224 | 
            +
                            log["samples_x0_quantized"] = x_samples
         | 
| 1225 | 
            +
             | 
| 1226 | 
            +
                    if unconditional_guidance_scale > 1.0:
         | 
| 1227 | 
            +
                        uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
         | 
| 1228 | 
            +
                        if self.model.conditioning_key == "crossattn-adm":
         | 
| 1229 | 
            +
                            uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
         | 
| 1230 | 
            +
                        with ema_scope("Sampling with classifier-free guidance"):
         | 
| 1231 | 
            +
                            samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
         | 
| 1232 | 
            +
                                                             ddim_steps=ddim_steps, eta=ddim_eta,
         | 
| 1233 | 
            +
                                                             unconditional_guidance_scale=unconditional_guidance_scale,
         | 
| 1234 | 
            +
                                                             unconditional_conditioning=uc,
         | 
| 1235 | 
            +
                                                             )
         | 
| 1236 | 
            +
                            x_samples_cfg = self.decode_first_stage(samples_cfg)
         | 
| 1237 | 
            +
                            log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
         | 
| 1238 | 
            +
             | 
| 1239 | 
            +
                    if inpaint:
         | 
| 1240 | 
            +
                        # make a simple center square
         | 
| 1241 | 
            +
                        b, h, w = z.shape[0], z.shape[2], z.shape[3]
         | 
| 1242 | 
            +
                        mask = torch.ones(N, h, w).to(self.device)
         | 
| 1243 | 
            +
                        # zeros will be filled in
         | 
| 1244 | 
            +
                        mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
         | 
| 1245 | 
            +
                        mask = mask[:, None, ...]
         | 
| 1246 | 
            +
                        with ema_scope("Plotting Inpaint"):
         | 
| 1247 | 
            +
                            samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
         | 
| 1248 | 
            +
                                                         ddim_steps=ddim_steps, x0=z[:N], mask=mask)
         | 
| 1249 | 
            +
                        x_samples = self.decode_first_stage(samples.to(self.device))
         | 
| 1250 | 
            +
                        log["samples_inpainting"] = x_samples
         | 
| 1251 | 
            +
                        log["mask"] = mask
         | 
| 1252 | 
            +
             | 
| 1253 | 
            +
                        # outpaint
         | 
| 1254 | 
            +
                        mask = 1. - mask
         | 
| 1255 | 
            +
                        with ema_scope("Plotting Outpaint"):
         | 
| 1256 | 
            +
                            samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
         | 
| 1257 | 
            +
                                                         ddim_steps=ddim_steps, x0=z[:N], mask=mask)
         | 
| 1258 | 
            +
                        x_samples = self.decode_first_stage(samples.to(self.device))
         | 
| 1259 | 
            +
                        log["samples_outpainting"] = x_samples
         | 
| 1260 | 
            +
             | 
| 1261 | 
            +
                    if plot_progressive_rows:
         | 
| 1262 | 
            +
                        with ema_scope("Plotting Progressives"):
         | 
| 1263 | 
            +
                            img, progressives = self.progressive_denoising(c,
         | 
| 1264 | 
            +
                                                                           shape=(self.channels, self.image_size, self.image_size),
         | 
| 1265 | 
            +
                                                                           batch_size=N)
         | 
| 1266 | 
            +
                        prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
         | 
| 1267 | 
            +
                        log["progressive_row"] = prog_row
         | 
| 1268 | 
            +
             | 
| 1269 | 
            +
                    if return_keys:
         | 
| 1270 | 
            +
                        if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
         | 
| 1271 | 
            +
                            return log
         | 
| 1272 | 
            +
                        else:
         | 
| 1273 | 
            +
                            return {key: log[key] for key in return_keys}
         | 
| 1274 | 
            +
                    return log
         | 
| 1275 | 
            +
             | 
| 1276 | 
            +
                def configure_optimizers(self):
         | 
| 1277 | 
            +
                    lr = self.learning_rate
         | 
| 1278 | 
            +
                    params = list(self.model.parameters())
         | 
| 1279 | 
            +
                    if self.cond_stage_trainable:
         | 
| 1280 | 
            +
                        print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
         | 
| 1281 | 
            +
                        params = params + list(self.cond_stage_model.parameters())
         | 
| 1282 | 
            +
                    if self.learn_logvar:
         | 
| 1283 | 
            +
                        print('Diffusion model optimizing logvar')
         | 
| 1284 | 
            +
                        params.append(self.logvar)
         | 
| 1285 | 
            +
                    opt = torch.optim.AdamW(params, lr=lr)
         | 
| 1286 | 
            +
                    if self.use_scheduler:
         | 
| 1287 | 
            +
                        assert 'target' in self.scheduler_config
         | 
| 1288 | 
            +
                        scheduler = instantiate_from_config(self.scheduler_config)
         | 
| 1289 | 
            +
             | 
| 1290 | 
            +
                        print("Setting up LambdaLR scheduler...")
         | 
| 1291 | 
            +
                        scheduler = [
         | 
| 1292 | 
            +
                            {
         | 
| 1293 | 
            +
                                'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
         | 
| 1294 | 
            +
                                'interval': 'step',
         | 
| 1295 | 
            +
                                'frequency': 1
         | 
| 1296 | 
            +
                            }]
         | 
| 1297 | 
            +
                        return [opt], scheduler
         | 
| 1298 | 
            +
                    return opt
         | 
| 1299 | 
            +
             | 
| 1300 | 
            +
                @torch.no_grad()
         | 
| 1301 | 
            +
                def to_rgb(self, x):
         | 
| 1302 | 
            +
                    x = x.float()
         | 
| 1303 | 
            +
                    if not hasattr(self, "colorize"):
         | 
| 1304 | 
            +
                        self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
         | 
| 1305 | 
            +
                    x = nn.functional.conv2d(x, weight=self.colorize)
         | 
| 1306 | 
            +
                    x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
         | 
| 1307 | 
            +
                    return x
         | 
| 1308 | 
            +
             | 
| 1309 | 
            +
             | 
| 1310 | 
            +
            class DiffusionWrapper(pl.LightningModule):
         | 
| 1311 | 
            +
                def __init__(self, diff_model_config, conditioning_key):
         | 
| 1312 | 
            +
                    super().__init__()
         | 
| 1313 | 
            +
                    self.sequential_cross_attn = diff_model_config.pop("sequential_crossattn", False)
         | 
| 1314 | 
            +
                    self.diffusion_model = instantiate_from_config(diff_model_config)
         | 
| 1315 | 
            +
                    self.conditioning_key = conditioning_key
         | 
| 1316 | 
            +
                    assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm', 'crossattn-adm']
         | 
| 1317 | 
            +
             | 
| 1318 | 
            +
                def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
         | 
| 1319 | 
            +
                    if self.conditioning_key is None:
         | 
| 1320 | 
            +
                        out = self.diffusion_model(x, t)
         | 
| 1321 | 
            +
                    elif self.conditioning_key == 'concat':
         | 
| 1322 | 
            +
                        xc = torch.cat([x] + c_concat, dim=1)
         | 
| 1323 | 
            +
                        out = self.diffusion_model(xc, t)
         | 
| 1324 | 
            +
                    elif self.conditioning_key == 'crossattn':
         | 
| 1325 | 
            +
                        if not self.sequential_cross_attn:
         | 
| 1326 | 
            +
                            cc = torch.cat(c_crossattn, 1)
         | 
| 1327 | 
            +
                        else:
         | 
| 1328 | 
            +
                            cc = c_crossattn
         | 
| 1329 | 
            +
                        out = self.diffusion_model(x, t, context=cc)
         | 
| 1330 | 
            +
                    elif self.conditioning_key == 'hybrid':
         | 
| 1331 | 
            +
                        xc = torch.cat([x] + c_concat, dim=1)
         | 
| 1332 | 
            +
                        cc = torch.cat(c_crossattn, 1)
         | 
| 1333 | 
            +
                        out = self.diffusion_model(xc, t, context=cc)
         | 
| 1334 | 
            +
                    elif self.conditioning_key == 'hybrid-adm':
         | 
| 1335 | 
            +
                        assert c_adm is not None
         | 
| 1336 | 
            +
                        xc = torch.cat([x] + c_concat, dim=1)
         | 
| 1337 | 
            +
                        cc = torch.cat(c_crossattn, 1)
         | 
| 1338 | 
            +
                        out = self.diffusion_model(xc, t, context=cc, y=c_adm)
         | 
| 1339 | 
            +
                    elif self.conditioning_key == 'crossattn-adm':
         | 
| 1340 | 
            +
                        assert c_adm is not None
         | 
| 1341 | 
            +
                        cc = torch.cat(c_crossattn, 1)
         | 
| 1342 | 
            +
                        out = self.diffusion_model(x, t, context=cc, y=c_adm)
         | 
| 1343 | 
            +
                    elif self.conditioning_key == 'adm':
         | 
| 1344 | 
            +
                        cc = c_crossattn[0]
         | 
| 1345 | 
            +
                        out = self.diffusion_model(x, t, y=cc)
         | 
| 1346 | 
            +
                    else:
         | 
| 1347 | 
            +
                        raise NotImplementedError()
         | 
| 1348 | 
            +
             | 
| 1349 | 
            +
                    return out
         | 
| 1350 | 
            +
             | 
| 1351 | 
            +
             | 
| 1352 | 
            +
            class LatentUpscaleDiffusion(LatentDiffusion):
         | 
| 1353 | 
            +
                def __init__(self, *args, low_scale_config, low_scale_key="LR", noise_level_key=None, **kwargs):
         | 
| 1354 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 1355 | 
            +
                    # assumes that neither the cond_stage nor the low_scale_model contain trainable params
         | 
| 1356 | 
            +
                    assert not self.cond_stage_trainable
         | 
| 1357 | 
            +
                    self.instantiate_low_stage(low_scale_config)
         | 
| 1358 | 
            +
                    self.low_scale_key = low_scale_key
         | 
| 1359 | 
            +
                    self.noise_level_key = noise_level_key
         | 
| 1360 | 
            +
             | 
| 1361 | 
            +
                def instantiate_low_stage(self, config):
         | 
| 1362 | 
            +
                    model = instantiate_from_config(config)
         | 
| 1363 | 
            +
                    self.low_scale_model = model.eval()
         | 
| 1364 | 
            +
                    self.low_scale_model.train = disabled_train
         | 
| 1365 | 
            +
                    for param in self.low_scale_model.parameters():
         | 
| 1366 | 
            +
                        param.requires_grad = False
         | 
| 1367 | 
            +
             | 
| 1368 | 
            +
                @torch.no_grad()
         | 
| 1369 | 
            +
                def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
         | 
| 1370 | 
            +
                    if not log_mode:
         | 
| 1371 | 
            +
                        z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
         | 
| 1372 | 
            +
                    else:
         | 
| 1373 | 
            +
                        z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
         | 
| 1374 | 
            +
                                                              force_c_encode=True, return_original_cond=True, bs=bs)
         | 
| 1375 | 
            +
                    x_low = batch[self.low_scale_key][:bs]
         | 
| 1376 | 
            +
                    x_low = rearrange(x_low, 'b h w c -> b c h w')
         | 
| 1377 | 
            +
                    x_low = x_low.to(memory_format=torch.contiguous_format).float()
         | 
| 1378 | 
            +
                    zx, noise_level = self.low_scale_model(x_low)
         | 
| 1379 | 
            +
                    if self.noise_level_key is not None:
         | 
| 1380 | 
            +
                        # get noise level from batch instead, e.g. when extracting a custom noise level for bsr
         | 
| 1381 | 
            +
                        raise NotImplementedError('TODO')
         | 
| 1382 | 
            +
             | 
| 1383 | 
            +
                    all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
         | 
| 1384 | 
            +
                    if log_mode:
         | 
| 1385 | 
            +
                        # TODO: maybe disable if too expensive
         | 
| 1386 | 
            +
                        x_low_rec = self.low_scale_model.decode(zx)
         | 
| 1387 | 
            +
                        return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
         | 
| 1388 | 
            +
                    return z, all_conds
         | 
| 1389 | 
            +
             | 
| 1390 | 
            +
                @torch.no_grad()
         | 
| 1391 | 
            +
                def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
         | 
| 1392 | 
            +
                               plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
         | 
| 1393 | 
            +
                               unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
         | 
| 1394 | 
            +
                               **kwargs):
         | 
| 1395 | 
            +
                    ema_scope = self.ema_scope if use_ema_scope else nullcontext
         | 
| 1396 | 
            +
                    use_ddim = ddim_steps is not None
         | 
| 1397 | 
            +
             | 
| 1398 | 
            +
                    log = dict()
         | 
| 1399 | 
            +
                    z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
         | 
| 1400 | 
            +
                                                                                      log_mode=True)
         | 
| 1401 | 
            +
                    N = min(x.shape[0], N)
         | 
| 1402 | 
            +
                    n_row = min(x.shape[0], n_row)
         | 
| 1403 | 
            +
                    log["inputs"] = x
         | 
| 1404 | 
            +
                    log["reconstruction"] = xrec
         | 
| 1405 | 
            +
                    log["x_lr"] = x_low
         | 
| 1406 | 
            +
                    log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
         | 
| 1407 | 
            +
                    if self.model.conditioning_key is not None:
         | 
| 1408 | 
            +
                        if hasattr(self.cond_stage_model, "decode"):
         | 
| 1409 | 
            +
                            xc = self.cond_stage_model.decode(c)
         | 
| 1410 | 
            +
                            log["conditioning"] = xc
         | 
| 1411 | 
            +
                        elif self.cond_stage_key in ["caption", "txt"]:
         | 
| 1412 | 
            +
                            xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
         | 
| 1413 | 
            +
                            log["conditioning"] = xc
         | 
| 1414 | 
            +
                        elif self.cond_stage_key in ['class_label', 'cls']:
         | 
| 1415 | 
            +
                            xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
         | 
| 1416 | 
            +
                            log['conditioning'] = xc
         | 
| 1417 | 
            +
                        elif isimage(xc):
         | 
| 1418 | 
            +
                            log["conditioning"] = xc
         | 
| 1419 | 
            +
                        if ismap(xc):
         | 
| 1420 | 
            +
                            log["original_conditioning"] = self.to_rgb(xc)
         | 
| 1421 | 
            +
             | 
| 1422 | 
            +
                    if plot_diffusion_rows:
         | 
| 1423 | 
            +
                        # get diffusion row
         | 
| 1424 | 
            +
                        diffusion_row = list()
         | 
| 1425 | 
            +
                        z_start = z[:n_row]
         | 
| 1426 | 
            +
                        for t in range(self.num_timesteps):
         | 
| 1427 | 
            +
                            if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
         | 
| 1428 | 
            +
                                t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
         | 
| 1429 | 
            +
                                t = t.to(self.device).long()
         | 
| 1430 | 
            +
                                noise = torch.randn_like(z_start)
         | 
| 1431 | 
            +
                                z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
         | 
| 1432 | 
            +
                                diffusion_row.append(self.decode_first_stage(z_noisy))
         | 
| 1433 | 
            +
             | 
| 1434 | 
            +
                        diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
         | 
| 1435 | 
            +
                        diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
         | 
| 1436 | 
            +
                        diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
         | 
| 1437 | 
            +
                        diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
         | 
| 1438 | 
            +
                        log["diffusion_row"] = diffusion_grid
         | 
| 1439 | 
            +
             | 
| 1440 | 
            +
                    if sample:
         | 
| 1441 | 
            +
                        # get denoise row
         | 
| 1442 | 
            +
                        with ema_scope("Sampling"):
         | 
| 1443 | 
            +
                            samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
         | 
| 1444 | 
            +
                                                                     ddim_steps=ddim_steps, eta=ddim_eta)
         | 
| 1445 | 
            +
                            # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
         | 
| 1446 | 
            +
                        x_samples = self.decode_first_stage(samples)
         | 
| 1447 | 
            +
                        log["samples"] = x_samples
         | 
| 1448 | 
            +
                        if plot_denoise_rows:
         | 
| 1449 | 
            +
                            denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
         | 
| 1450 | 
            +
                            log["denoise_row"] = denoise_grid
         | 
| 1451 | 
            +
             | 
| 1452 | 
            +
                    if unconditional_guidance_scale > 1.0:
         | 
| 1453 | 
            +
                        uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
         | 
| 1454 | 
            +
                        # TODO explore better "unconditional" choices for the other keys
         | 
| 1455 | 
            +
                        # maybe guide away from empty text label and highest noise level and maximally degraded zx?
         | 
| 1456 | 
            +
                        uc = dict()
         | 
| 1457 | 
            +
                        for k in c:
         | 
| 1458 | 
            +
                            if k == "c_crossattn":
         | 
| 1459 | 
            +
                                assert isinstance(c[k], list) and len(c[k]) == 1
         | 
| 1460 | 
            +
                                uc[k] = [uc_tmp]
         | 
| 1461 | 
            +
                            elif k == "c_adm":  # todo: only run with text-based guidance?
         | 
| 1462 | 
            +
                                assert isinstance(c[k], torch.Tensor)
         | 
| 1463 | 
            +
                                #uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
         | 
| 1464 | 
            +
                                uc[k] = c[k]
         | 
| 1465 | 
            +
                            elif isinstance(c[k], list):
         | 
| 1466 | 
            +
                                uc[k] = [c[k][i] for i in range(len(c[k]))]
         | 
| 1467 | 
            +
                            else:
         | 
| 1468 | 
            +
                                uc[k] = c[k]
         | 
| 1469 | 
            +
             | 
| 1470 | 
            +
                        with ema_scope("Sampling with classifier-free guidance"):
         | 
| 1471 | 
            +
                            samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
         | 
| 1472 | 
            +
                                                             ddim_steps=ddim_steps, eta=ddim_eta,
         | 
| 1473 | 
            +
                                                             unconditional_guidance_scale=unconditional_guidance_scale,
         | 
| 1474 | 
            +
                                                             unconditional_conditioning=uc,
         | 
| 1475 | 
            +
                                                             )
         | 
| 1476 | 
            +
                            x_samples_cfg = self.decode_first_stage(samples_cfg)
         | 
| 1477 | 
            +
                            log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
         | 
| 1478 | 
            +
             | 
| 1479 | 
            +
                    if plot_progressive_rows:
         | 
| 1480 | 
            +
                        with ema_scope("Plotting Progressives"):
         | 
| 1481 | 
            +
                            img, progressives = self.progressive_denoising(c,
         | 
| 1482 | 
            +
                                                                           shape=(self.channels, self.image_size, self.image_size),
         | 
| 1483 | 
            +
                                                                           batch_size=N)
         | 
| 1484 | 
            +
                        prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
         | 
| 1485 | 
            +
                        log["progressive_row"] = prog_row
         | 
| 1486 | 
            +
             | 
| 1487 | 
            +
                    return log
         | 
| 1488 | 
            +
             | 
| 1489 | 
            +
             | 
| 1490 | 
            +
            class LatentFinetuneDiffusion(LatentDiffusion):
         | 
| 1491 | 
            +
                """
         | 
| 1492 | 
            +
                     Basis for different finetunas, such as inpainting or depth2image
         | 
| 1493 | 
            +
                     To disable finetuning mode, set finetune_keys to None
         | 
| 1494 | 
            +
                """
         | 
| 1495 | 
            +
             | 
| 1496 | 
            +
                def __init__(self,
         | 
| 1497 | 
            +
                             concat_keys: tuple,
         | 
| 1498 | 
            +
                             finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
         | 
| 1499 | 
            +
                                            "model_ema.diffusion_modelinput_blocks00weight"
         | 
| 1500 | 
            +
                                            ),
         | 
| 1501 | 
            +
                             keep_finetune_dims=4,
         | 
| 1502 | 
            +
                             # if model was trained without concat mode before and we would like to keep these channels
         | 
| 1503 | 
            +
                             c_concat_log_start=None,  # to log reconstruction of c_concat codes
         | 
| 1504 | 
            +
                             c_concat_log_end=None,
         | 
| 1505 | 
            +
                             *args, **kwargs
         | 
| 1506 | 
            +
                             ):
         | 
| 1507 | 
            +
                    ckpt_path = kwargs.pop("ckpt_path", None)
         | 
| 1508 | 
            +
                    ignore_keys = kwargs.pop("ignore_keys", list())
         | 
| 1509 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 1510 | 
            +
                    self.finetune_keys = finetune_keys
         | 
| 1511 | 
            +
                    self.concat_keys = concat_keys
         | 
| 1512 | 
            +
                    self.keep_dims = keep_finetune_dims
         | 
| 1513 | 
            +
                    self.c_concat_log_start = c_concat_log_start
         | 
| 1514 | 
            +
                    self.c_concat_log_end = c_concat_log_end
         | 
| 1515 | 
            +
                    if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
         | 
| 1516 | 
            +
                    if exists(ckpt_path):
         | 
| 1517 | 
            +
                        self.init_from_ckpt(ckpt_path, ignore_keys)
         | 
| 1518 | 
            +
             | 
| 1519 | 
            +
                def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
         | 
| 1520 | 
            +
                    sd = torch.load(path, map_location="cpu")
         | 
| 1521 | 
            +
                    if "state_dict" in list(sd.keys()):
         | 
| 1522 | 
            +
                        sd = sd["state_dict"]
         | 
| 1523 | 
            +
                    keys = list(sd.keys())
         | 
| 1524 | 
            +
                    for k in keys:
         | 
| 1525 | 
            +
                        for ik in ignore_keys:
         | 
| 1526 | 
            +
                            if k.startswith(ik):
         | 
| 1527 | 
            +
                                print("Deleting key {} from state_dict.".format(k))
         | 
| 1528 | 
            +
                                del sd[k]
         | 
| 1529 | 
            +
             | 
| 1530 | 
            +
                        # make it explicit, finetune by including extra input channels
         | 
| 1531 | 
            +
                        if exists(self.finetune_keys) and k in self.finetune_keys:
         | 
| 1532 | 
            +
                            new_entry = None
         | 
| 1533 | 
            +
                            for name, param in self.named_parameters():
         | 
| 1534 | 
            +
                                if name in self.finetune_keys:
         | 
| 1535 | 
            +
                                    print(
         | 
| 1536 | 
            +
                                        f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
         | 
| 1537 | 
            +
                                    new_entry = torch.zeros_like(param)  # zero init
         | 
| 1538 | 
            +
                            assert exists(new_entry), 'did not find matching parameter to modify'
         | 
| 1539 | 
            +
                            new_entry[:, :self.keep_dims, ...] = sd[k]
         | 
| 1540 | 
            +
                            sd[k] = new_entry
         | 
| 1541 | 
            +
             | 
| 1542 | 
            +
                    missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
         | 
| 1543 | 
            +
                        sd, strict=False)
         | 
| 1544 | 
            +
                    print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
         | 
| 1545 | 
            +
                    if len(missing) > 0:
         | 
| 1546 | 
            +
                        print(f"Missing Keys: {missing}")
         | 
| 1547 | 
            +
                    if len(unexpected) > 0:
         | 
| 1548 | 
            +
                        print(f"Unexpected Keys: {unexpected}")
         | 
| 1549 | 
            +
             | 
| 1550 | 
            +
                @torch.no_grad()
         | 
| 1551 | 
            +
                def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
         | 
| 1552 | 
            +
                               quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
         | 
| 1553 | 
            +
                               plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
         | 
| 1554 | 
            +
                               use_ema_scope=True,
         | 
| 1555 | 
            +
                               **kwargs):
         | 
| 1556 | 
            +
                    ema_scope = self.ema_scope if use_ema_scope else nullcontext
         | 
| 1557 | 
            +
                    use_ddim = ddim_steps is not None
         | 
| 1558 | 
            +
             | 
| 1559 | 
            +
                    log = dict()
         | 
| 1560 | 
            +
                    z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
         | 
| 1561 | 
            +
                    c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
         | 
| 1562 | 
            +
                    N = min(x.shape[0], N)
         | 
| 1563 | 
            +
                    n_row = min(x.shape[0], n_row)
         | 
| 1564 | 
            +
                    log["inputs"] = x
         | 
| 1565 | 
            +
                    log["reconstruction"] = xrec
         | 
| 1566 | 
            +
                    if self.model.conditioning_key is not None:
         | 
| 1567 | 
            +
                        if hasattr(self.cond_stage_model, "decode"):
         | 
| 1568 | 
            +
                            xc = self.cond_stage_model.decode(c)
         | 
| 1569 | 
            +
                            log["conditioning"] = xc
         | 
| 1570 | 
            +
                        elif self.cond_stage_key in ["caption", "txt"]:
         | 
| 1571 | 
            +
                            xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
         | 
| 1572 | 
            +
                            log["conditioning"] = xc
         | 
| 1573 | 
            +
                        elif self.cond_stage_key in ['class_label', 'cls']:
         | 
| 1574 | 
            +
                            xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
         | 
| 1575 | 
            +
                            log['conditioning'] = xc
         | 
| 1576 | 
            +
                        elif isimage(xc):
         | 
| 1577 | 
            +
                            log["conditioning"] = xc
         | 
| 1578 | 
            +
                        if ismap(xc):
         | 
| 1579 | 
            +
                            log["original_conditioning"] = self.to_rgb(xc)
         | 
| 1580 | 
            +
             | 
| 1581 | 
            +
                    if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
         | 
| 1582 | 
            +
                        log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end])
         | 
| 1583 | 
            +
             | 
| 1584 | 
            +
                    if plot_diffusion_rows:
         | 
| 1585 | 
            +
                        # get diffusion row
         | 
| 1586 | 
            +
                        diffusion_row = list()
         | 
| 1587 | 
            +
                        z_start = z[:n_row]
         | 
| 1588 | 
            +
                        for t in range(self.num_timesteps):
         | 
| 1589 | 
            +
                            if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
         | 
| 1590 | 
            +
                                t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
         | 
| 1591 | 
            +
                                t = t.to(self.device).long()
         | 
| 1592 | 
            +
                                noise = torch.randn_like(z_start)
         | 
| 1593 | 
            +
                                z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
         | 
| 1594 | 
            +
                                diffusion_row.append(self.decode_first_stage(z_noisy))
         | 
| 1595 | 
            +
             | 
| 1596 | 
            +
                        diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
         | 
| 1597 | 
            +
                        diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
         | 
| 1598 | 
            +
                        diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
         | 
| 1599 | 
            +
                        diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
         | 
| 1600 | 
            +
                        log["diffusion_row"] = diffusion_grid
         | 
| 1601 | 
            +
             | 
| 1602 | 
            +
                    if sample:
         | 
| 1603 | 
            +
                        # get denoise row
         | 
| 1604 | 
            +
                        with ema_scope("Sampling"):
         | 
| 1605 | 
            +
                            samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
         | 
| 1606 | 
            +
                                                                     batch_size=N, ddim=use_ddim,
         | 
| 1607 | 
            +
                                                                     ddim_steps=ddim_steps, eta=ddim_eta)
         | 
| 1608 | 
            +
                            # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
         | 
| 1609 | 
            +
                        x_samples = self.decode_first_stage(samples)
         | 
| 1610 | 
            +
                        log["samples"] = x_samples
         | 
| 1611 | 
            +
                        if plot_denoise_rows:
         | 
| 1612 | 
            +
                            denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
         | 
| 1613 | 
            +
                            log["denoise_row"] = denoise_grid
         | 
| 1614 | 
            +
             | 
| 1615 | 
            +
                    if unconditional_guidance_scale > 1.0:
         | 
| 1616 | 
            +
                        uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
         | 
| 1617 | 
            +
                        uc_cat = c_cat
         | 
| 1618 | 
            +
                        uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
         | 
| 1619 | 
            +
                        with ema_scope("Sampling with classifier-free guidance"):
         | 
| 1620 | 
            +
                            samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
         | 
| 1621 | 
            +
                                                             batch_size=N, ddim=use_ddim,
         | 
| 1622 | 
            +
                                                             ddim_steps=ddim_steps, eta=ddim_eta,
         | 
| 1623 | 
            +
                                                             unconditional_guidance_scale=unconditional_guidance_scale,
         | 
| 1624 | 
            +
                                                             unconditional_conditioning=uc_full,
         | 
| 1625 | 
            +
                                                             )
         | 
| 1626 | 
            +
                            x_samples_cfg = self.decode_first_stage(samples_cfg)
         | 
| 1627 | 
            +
                            log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
         | 
| 1628 | 
            +
             | 
| 1629 | 
            +
                    return log
         | 
| 1630 | 
            +
             | 
| 1631 | 
            +
             | 
| 1632 | 
            +
            class LatentInpaintDiffusion(LatentFinetuneDiffusion):
         | 
| 1633 | 
            +
                """
         | 
| 1634 | 
            +
                can either run as pure inpainting model (only concat mode) or with mixed conditionings,
         | 
| 1635 | 
            +
                e.g. mask as concat and text via cross-attn.
         | 
| 1636 | 
            +
                To disable finetuning mode, set finetune_keys to None
         | 
| 1637 | 
            +
                 """
         | 
| 1638 | 
            +
             | 
| 1639 | 
            +
                def __init__(self,
         | 
| 1640 | 
            +
                             concat_keys=("mask", "masked_image"),
         | 
| 1641 | 
            +
                             masked_image_key="masked_image",
         | 
| 1642 | 
            +
                             *args, **kwargs
         | 
| 1643 | 
            +
                             ):
         | 
| 1644 | 
            +
                    super().__init__(concat_keys, *args, **kwargs)
         | 
| 1645 | 
            +
                    self.masked_image_key = masked_image_key
         | 
| 1646 | 
            +
                    assert self.masked_image_key in concat_keys
         | 
| 1647 | 
            +
             | 
| 1648 | 
            +
                @torch.no_grad()
         | 
| 1649 | 
            +
                def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
         | 
| 1650 | 
            +
                    # note: restricted to non-trainable encoders currently
         | 
| 1651 | 
            +
                    assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
         | 
| 1652 | 
            +
                    z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
         | 
| 1653 | 
            +
                                                          force_c_encode=True, return_original_cond=True, bs=bs)
         | 
| 1654 | 
            +
             | 
| 1655 | 
            +
                    assert exists(self.concat_keys)
         | 
| 1656 | 
            +
                    c_cat = list()
         | 
| 1657 | 
            +
                    for ck in self.concat_keys:
         | 
| 1658 | 
            +
                        cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
         | 
| 1659 | 
            +
                        if bs is not None:
         | 
| 1660 | 
            +
                            cc = cc[:bs]
         | 
| 1661 | 
            +
                            cc = cc.to(self.device)
         | 
| 1662 | 
            +
                        bchw = z.shape
         | 
| 1663 | 
            +
                        if ck != self.masked_image_key:
         | 
| 1664 | 
            +
                            cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
         | 
| 1665 | 
            +
                        else:
         | 
| 1666 | 
            +
                            cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
         | 
| 1667 | 
            +
                        c_cat.append(cc)
         | 
| 1668 | 
            +
                    c_cat = torch.cat(c_cat, dim=1)
         | 
| 1669 | 
            +
                    all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
         | 
| 1670 | 
            +
                    if return_first_stage_outputs:
         | 
| 1671 | 
            +
                        return z, all_conds, x, xrec, xc
         | 
| 1672 | 
            +
                    return z, all_conds
         | 
| 1673 | 
            +
             | 
| 1674 | 
            +
                @torch.no_grad()
         | 
| 1675 | 
            +
                def log_images(self, *args, **kwargs):
         | 
| 1676 | 
            +
                    log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
         | 
| 1677 | 
            +
                    log["masked_image"] = rearrange(args[0]["masked_image"],
         | 
| 1678 | 
            +
                                                    'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
         | 
| 1679 | 
            +
                    return log
         | 
| 1680 | 
            +
             | 
| 1681 | 
            +
             | 
| 1682 | 
            +
            class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion):
         | 
| 1683 | 
            +
                """
         | 
| 1684 | 
            +
                condition on monocular depth estimation
         | 
| 1685 | 
            +
                """
         | 
| 1686 | 
            +
             | 
| 1687 | 
            +
                def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs):
         | 
| 1688 | 
            +
                    super().__init__(concat_keys=concat_keys, *args, **kwargs)
         | 
| 1689 | 
            +
                    self.depth_model = instantiate_from_config(depth_stage_config)
         | 
| 1690 | 
            +
                    self.depth_stage_key = concat_keys[0]
         | 
| 1691 | 
            +
             | 
| 1692 | 
            +
                @torch.no_grad()
         | 
| 1693 | 
            +
                def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
         | 
| 1694 | 
            +
                    # note: restricted to non-trainable encoders currently
         | 
| 1695 | 
            +
                    assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for depth2img'
         | 
| 1696 | 
            +
                    z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
         | 
| 1697 | 
            +
                                                          force_c_encode=True, return_original_cond=True, bs=bs)
         | 
| 1698 | 
            +
             | 
| 1699 | 
            +
                    assert exists(self.concat_keys)
         | 
| 1700 | 
            +
                    assert len(self.concat_keys) == 1
         | 
| 1701 | 
            +
                    c_cat = list()
         | 
| 1702 | 
            +
                    for ck in self.concat_keys:
         | 
| 1703 | 
            +
                        cc = batch[ck]
         | 
| 1704 | 
            +
                        if bs is not None:
         | 
| 1705 | 
            +
                            cc = cc[:bs]
         | 
| 1706 | 
            +
                            cc = cc.to(self.device)
         | 
| 1707 | 
            +
                        cc = self.depth_model(cc)
         | 
| 1708 | 
            +
                        cc = torch.nn.functional.interpolate(
         | 
| 1709 | 
            +
                            cc,
         | 
| 1710 | 
            +
                            size=z.shape[2:],
         | 
| 1711 | 
            +
                            mode="bicubic",
         | 
| 1712 | 
            +
                            align_corners=False,
         | 
| 1713 | 
            +
                        )
         | 
| 1714 | 
            +
             | 
| 1715 | 
            +
                        depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
         | 
| 1716 | 
            +
                                                                                                       keepdim=True)
         | 
| 1717 | 
            +
                        cc = 2. * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.
         | 
| 1718 | 
            +
                        c_cat.append(cc)
         | 
| 1719 | 
            +
                    c_cat = torch.cat(c_cat, dim=1)
         | 
| 1720 | 
            +
                    all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
         | 
| 1721 | 
            +
                    if return_first_stage_outputs:
         | 
| 1722 | 
            +
                        return z, all_conds, x, xrec, xc
         | 
| 1723 | 
            +
                    return z, all_conds
         | 
| 1724 | 
            +
             | 
| 1725 | 
            +
                @torch.no_grad()
         | 
| 1726 | 
            +
                def log_images(self, *args, **kwargs):
         | 
| 1727 | 
            +
                    log = super().log_images(*args, **kwargs)
         | 
| 1728 | 
            +
                    depth = self.depth_model(args[0][self.depth_stage_key])
         | 
| 1729 | 
            +
                    depth_min, depth_max = torch.amin(depth, dim=[1, 2, 3], keepdim=True), \
         | 
| 1730 | 
            +
                                           torch.amax(depth, dim=[1, 2, 3], keepdim=True)
         | 
| 1731 | 
            +
                    log["depth"] = 2. * (depth - depth_min) / (depth_max - depth_min) - 1.
         | 
| 1732 | 
            +
                    return log
         | 
| 1733 | 
            +
             | 
| 1734 | 
            +
             | 
| 1735 | 
            +
            class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
         | 
| 1736 | 
            +
                """
         | 
| 1737 | 
            +
                    condition on low-res image (and optionally on some spatial noise augmentation)
         | 
| 1738 | 
            +
                """
         | 
| 1739 | 
            +
                def __init__(self, concat_keys=("lr",), reshuffle_patch_size=None,
         | 
| 1740 | 
            +
                             low_scale_config=None, low_scale_key=None, *args, **kwargs):
         | 
| 1741 | 
            +
                    super().__init__(concat_keys=concat_keys, *args, **kwargs)
         | 
| 1742 | 
            +
                    self.reshuffle_patch_size = reshuffle_patch_size
         | 
| 1743 | 
            +
                    self.low_scale_model = None
         | 
| 1744 | 
            +
                    if low_scale_config is not None:
         | 
| 1745 | 
            +
                        print("Initializing a low-scale model")
         | 
| 1746 | 
            +
                        assert exists(low_scale_key)
         | 
| 1747 | 
            +
                        self.instantiate_low_stage(low_scale_config)
         | 
| 1748 | 
            +
                        self.low_scale_key = low_scale_key
         | 
| 1749 | 
            +
             | 
| 1750 | 
            +
                def instantiate_low_stage(self, config):
         | 
| 1751 | 
            +
                    model = instantiate_from_config(config)
         | 
| 1752 | 
            +
                    self.low_scale_model = model.eval()
         | 
| 1753 | 
            +
                    self.low_scale_model.train = disabled_train
         | 
| 1754 | 
            +
                    for param in self.low_scale_model.parameters():
         | 
| 1755 | 
            +
                        param.requires_grad = False
         | 
| 1756 | 
            +
             | 
| 1757 | 
            +
                @torch.no_grad()
         | 
| 1758 | 
            +
                def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
         | 
| 1759 | 
            +
                    # note: restricted to non-trainable encoders currently
         | 
| 1760 | 
            +
                    assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for upscaling-ft'
         | 
| 1761 | 
            +
                    z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
         | 
| 1762 | 
            +
                                                          force_c_encode=True, return_original_cond=True, bs=bs)
         | 
| 1763 | 
            +
             | 
| 1764 | 
            +
                    assert exists(self.concat_keys)
         | 
| 1765 | 
            +
                    assert len(self.concat_keys) == 1
         | 
| 1766 | 
            +
                    # optionally make spatial noise_level here
         | 
| 1767 | 
            +
                    c_cat = list()
         | 
| 1768 | 
            +
                    noise_level = None
         | 
| 1769 | 
            +
                    for ck in self.concat_keys:
         | 
| 1770 | 
            +
                        cc = batch[ck]
         | 
| 1771 | 
            +
                        cc = rearrange(cc, 'b h w c -> b c h w')
         | 
| 1772 | 
            +
                        if exists(self.reshuffle_patch_size):
         | 
| 1773 | 
            +
                            assert isinstance(self.reshuffle_patch_size, int)
         | 
| 1774 | 
            +
                            cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
         | 
| 1775 | 
            +
                                           p1=self.reshuffle_patch_size, p2=self.reshuffle_patch_size)
         | 
| 1776 | 
            +
                        if bs is not None:
         | 
| 1777 | 
            +
                            cc = cc[:bs]
         | 
| 1778 | 
            +
                            cc = cc.to(self.device)
         | 
| 1779 | 
            +
                        if exists(self.low_scale_model) and ck == self.low_scale_key:
         | 
| 1780 | 
            +
                            cc, noise_level = self.low_scale_model(cc)
         | 
| 1781 | 
            +
                        c_cat.append(cc)
         | 
| 1782 | 
            +
                    c_cat = torch.cat(c_cat, dim=1)
         | 
| 1783 | 
            +
                    if exists(noise_level):
         | 
| 1784 | 
            +
                        all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level}
         | 
| 1785 | 
            +
                    else:
         | 
| 1786 | 
            +
                        all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
         | 
| 1787 | 
            +
                    if return_first_stage_outputs:
         | 
| 1788 | 
            +
                        return z, all_conds, x, xrec, xc
         | 
| 1789 | 
            +
                    return z, all_conds
         | 
| 1790 | 
            +
             | 
| 1791 | 
            +
                @torch.no_grad()
         | 
| 1792 | 
            +
                def log_images(self, *args, **kwargs):
         | 
| 1793 | 
            +
                    log = super().log_images(*args, **kwargs)
         | 
| 1794 | 
            +
                    log["lr"] = rearrange(args[0]["lr"], 'b h w c -> b c h w')
         | 
| 1795 | 
            +
                    return log
         | 
    	
        ldm/models/diffusion/dpm_solver/__init__.py
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            from .sampler import DPMSolverSampler
         | 
    	
        ldm/models/diffusion/dpm_solver/__pycache__/__init__.cpython-39.pyc
    ADDED
    
    | Binary file (212 Bytes). View file | 
|  | 
    	
        ldm/models/diffusion/dpm_solver/__pycache__/dpm_solver.cpython-39.pyc
    ADDED
    
    | Binary file (51.6 kB). View file | 
|  | 
    	
        ldm/models/diffusion/dpm_solver/__pycache__/sampler.cpython-39.pyc
    ADDED
    
    | Binary file (2.79 kB). View file | 
|  | 
    	
        ldm/models/diffusion/dpm_solver/dpm_solver.py
    ADDED
    
    | @@ -0,0 +1,1154 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            import torch.nn.functional as F
         | 
| 3 | 
            +
            import math
         | 
| 4 | 
            +
            from tqdm import tqdm
         | 
| 5 | 
            +
             | 
| 6 | 
            +
             | 
| 7 | 
            +
            class NoiseScheduleVP:
         | 
| 8 | 
            +
                def __init__(
         | 
| 9 | 
            +
                        self,
         | 
| 10 | 
            +
                        schedule='discrete',
         | 
| 11 | 
            +
                        betas=None,
         | 
| 12 | 
            +
                        alphas_cumprod=None,
         | 
| 13 | 
            +
                        continuous_beta_0=0.1,
         | 
| 14 | 
            +
                        continuous_beta_1=20.,
         | 
| 15 | 
            +
                ):
         | 
| 16 | 
            +
                    """Create a wrapper class for the forward SDE (VP type).
         | 
| 17 | 
            +
                    ***
         | 
| 18 | 
            +
                    Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
         | 
| 19 | 
            +
                            We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
         | 
| 20 | 
            +
                    ***
         | 
| 21 | 
            +
                    The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
         | 
| 22 | 
            +
                    We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
         | 
| 23 | 
            +
                    Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
         | 
| 24 | 
            +
                        log_alpha_t = self.marginal_log_mean_coeff(t)
         | 
| 25 | 
            +
                        sigma_t = self.marginal_std(t)
         | 
| 26 | 
            +
                        lambda_t = self.marginal_lambda(t)
         | 
| 27 | 
            +
                    Moreover, as lambda(t) is an invertible function, we also support its inverse function:
         | 
| 28 | 
            +
                        t = self.inverse_lambda(lambda_t)
         | 
| 29 | 
            +
                    ===============================================================
         | 
| 30 | 
            +
                    We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
         | 
| 31 | 
            +
                    1. For discrete-time DPMs:
         | 
| 32 | 
            +
                        For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
         | 
| 33 | 
            +
                            t_i = (i + 1) / N
         | 
| 34 | 
            +
                        e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
         | 
| 35 | 
            +
                        We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
         | 
| 36 | 
            +
                        Args:
         | 
| 37 | 
            +
                            betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
         | 
| 38 | 
            +
                            alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
         | 
| 39 | 
            +
                        Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
         | 
| 40 | 
            +
                        **Important**:  Please pay special attention for the args for `alphas_cumprod`:
         | 
| 41 | 
            +
                            The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
         | 
| 42 | 
            +
                                q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
         | 
| 43 | 
            +
                            Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
         | 
| 44 | 
            +
                                alpha_{t_n} = \sqrt{\hat{alpha_n}},
         | 
| 45 | 
            +
                            and
         | 
| 46 | 
            +
                                log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
         | 
| 47 | 
            +
                    2. For continuous-time DPMs:
         | 
| 48 | 
            +
                        We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
         | 
| 49 | 
            +
                        schedule are the default settings in DDPM and improved-DDPM:
         | 
| 50 | 
            +
                        Args:
         | 
| 51 | 
            +
                            beta_min: A `float` number. The smallest beta for the linear schedule.
         | 
| 52 | 
            +
                            beta_max: A `float` number. The largest beta for the linear schedule.
         | 
| 53 | 
            +
                            cosine_s: A `float` number. The hyperparameter in the cosine schedule.
         | 
| 54 | 
            +
                            cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
         | 
| 55 | 
            +
                            T: A `float` number. The ending time of the forward process.
         | 
| 56 | 
            +
                    ===============================================================
         | 
| 57 | 
            +
                    Args:
         | 
| 58 | 
            +
                        schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
         | 
| 59 | 
            +
                                'linear' or 'cosine' for continuous-time DPMs.
         | 
| 60 | 
            +
                    Returns:
         | 
| 61 | 
            +
                        A wrapper object of the forward SDE (VP type).
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                    ===============================================================
         | 
| 64 | 
            +
                    Example:
         | 
| 65 | 
            +
                    # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
         | 
| 66 | 
            +
                    >>> ns = NoiseScheduleVP('discrete', betas=betas)
         | 
| 67 | 
            +
                    # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
         | 
| 68 | 
            +
                    >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
         | 
| 69 | 
            +
                    # For continuous-time DPMs (VPSDE), linear schedule:
         | 
| 70 | 
            +
                    >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
         | 
| 71 | 
            +
                    """
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                    if schedule not in ['discrete', 'linear', 'cosine']:
         | 
| 74 | 
            +
                        raise ValueError(
         | 
| 75 | 
            +
                            "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
         | 
| 76 | 
            +
                                schedule))
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                    self.schedule = schedule
         | 
| 79 | 
            +
                    if schedule == 'discrete':
         | 
| 80 | 
            +
                        if betas is not None:
         | 
| 81 | 
            +
                            log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
         | 
| 82 | 
            +
                        else:
         | 
| 83 | 
            +
                            assert alphas_cumprod is not None
         | 
| 84 | 
            +
                            log_alphas = 0.5 * torch.log(alphas_cumprod)
         | 
| 85 | 
            +
                        self.total_N = len(log_alphas)
         | 
| 86 | 
            +
                        self.T = 1.
         | 
| 87 | 
            +
                        self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
         | 
| 88 | 
            +
                        self.log_alpha_array = log_alphas.reshape((1, -1,))
         | 
| 89 | 
            +
                    else:
         | 
| 90 | 
            +
                        self.total_N = 1000
         | 
| 91 | 
            +
                        self.beta_0 = continuous_beta_0
         | 
| 92 | 
            +
                        self.beta_1 = continuous_beta_1
         | 
| 93 | 
            +
                        self.cosine_s = 0.008
         | 
| 94 | 
            +
                        self.cosine_beta_max = 999.
         | 
| 95 | 
            +
                        self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
         | 
| 96 | 
            +
                                    1. + self.cosine_s) / math.pi - self.cosine_s
         | 
| 97 | 
            +
                        self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
         | 
| 98 | 
            +
                        self.schedule = schedule
         | 
| 99 | 
            +
                        if schedule == 'cosine':
         | 
| 100 | 
            +
                            # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
         | 
| 101 | 
            +
                            # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
         | 
| 102 | 
            +
                            self.T = 0.9946
         | 
| 103 | 
            +
                        else:
         | 
| 104 | 
            +
                            self.T = 1.
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                def marginal_log_mean_coeff(self, t):
         | 
| 107 | 
            +
                    """
         | 
| 108 | 
            +
                    Compute log(alpha_t) of a given continuous-time label t in [0, T].
         | 
| 109 | 
            +
                    """
         | 
| 110 | 
            +
                    if self.schedule == 'discrete':
         | 
| 111 | 
            +
                        return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
         | 
| 112 | 
            +
                                              self.log_alpha_array.to(t.device)).reshape((-1))
         | 
| 113 | 
            +
                    elif self.schedule == 'linear':
         | 
| 114 | 
            +
                        return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
         | 
| 115 | 
            +
                    elif self.schedule == 'cosine':
         | 
| 116 | 
            +
                        log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
         | 
| 117 | 
            +
                        log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
         | 
| 118 | 
            +
                        return log_alpha_t
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                def marginal_alpha(self, t):
         | 
| 121 | 
            +
                    """
         | 
| 122 | 
            +
                    Compute alpha_t of a given continuous-time label t in [0, T].
         | 
| 123 | 
            +
                    """
         | 
| 124 | 
            +
                    return torch.exp(self.marginal_log_mean_coeff(t))
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                def marginal_std(self, t):
         | 
| 127 | 
            +
                    """
         | 
| 128 | 
            +
                    Compute sigma_t of a given continuous-time label t in [0, T].
         | 
| 129 | 
            +
                    """
         | 
| 130 | 
            +
                    return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                def marginal_lambda(self, t):
         | 
| 133 | 
            +
                    """
         | 
| 134 | 
            +
                    Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
         | 
| 135 | 
            +
                    """
         | 
| 136 | 
            +
                    log_mean_coeff = self.marginal_log_mean_coeff(t)
         | 
| 137 | 
            +
                    log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
         | 
| 138 | 
            +
                    return log_mean_coeff - log_std
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                def inverse_lambda(self, lamb):
         | 
| 141 | 
            +
                    """
         | 
| 142 | 
            +
                    Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
         | 
| 143 | 
            +
                    """
         | 
| 144 | 
            +
                    if self.schedule == 'linear':
         | 
| 145 | 
            +
                        tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
         | 
| 146 | 
            +
                        Delta = self.beta_0 ** 2 + tmp
         | 
| 147 | 
            +
                        return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
         | 
| 148 | 
            +
                    elif self.schedule == 'discrete':
         | 
| 149 | 
            +
                        log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
         | 
| 150 | 
            +
                        t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
         | 
| 151 | 
            +
                                           torch.flip(self.t_array.to(lamb.device), [1]))
         | 
| 152 | 
            +
                        return t.reshape((-1,))
         | 
| 153 | 
            +
                    else:
         | 
| 154 | 
            +
                        log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
         | 
| 155 | 
            +
                        t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
         | 
| 156 | 
            +
                                    1. + self.cosine_s) / math.pi - self.cosine_s
         | 
| 157 | 
            +
                        t = t_fn(log_alpha)
         | 
| 158 | 
            +
                        return t
         | 
| 159 | 
            +
             | 
| 160 | 
            +
             | 
| 161 | 
            +
            def model_wrapper(
         | 
| 162 | 
            +
                    model,
         | 
| 163 | 
            +
                    noise_schedule,
         | 
| 164 | 
            +
                    model_type="noise",
         | 
| 165 | 
            +
                    model_kwargs={},
         | 
| 166 | 
            +
                    guidance_type="uncond",
         | 
| 167 | 
            +
                    condition=None,
         | 
| 168 | 
            +
                    unconditional_condition=None,
         | 
| 169 | 
            +
                    guidance_scale=1.,
         | 
| 170 | 
            +
                    classifier_fn=None,
         | 
| 171 | 
            +
                    classifier_kwargs={},
         | 
| 172 | 
            +
            ):
         | 
| 173 | 
            +
                """Create a wrapper function for the noise prediction model.
         | 
| 174 | 
            +
                DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
         | 
| 175 | 
            +
                firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
         | 
| 176 | 
            +
                We support four types of the diffusion model by setting `model_type`:
         | 
| 177 | 
            +
                    1. "noise": noise prediction model. (Trained by predicting noise).
         | 
| 178 | 
            +
                    2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
         | 
| 179 | 
            +
                    3. "v": velocity prediction model. (Trained by predicting the velocity).
         | 
| 180 | 
            +
                        The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
         | 
| 181 | 
            +
                        [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
         | 
| 182 | 
            +
                            arXiv preprint arXiv:2202.00512 (2022).
         | 
| 183 | 
            +
                        [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
         | 
| 184 | 
            +
                            arXiv preprint arXiv:2210.02303 (2022).
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                    4. "score": marginal score function. (Trained by denoising score matching).
         | 
| 187 | 
            +
                        Note that the score function and the noise prediction model follows a simple relationship:
         | 
| 188 | 
            +
                        ```
         | 
| 189 | 
            +
                            noise(x_t, t) = -sigma_t * score(x_t, t)
         | 
| 190 | 
            +
                        ```
         | 
| 191 | 
            +
                We support three types of guided sampling by DPMs by setting `guidance_type`:
         | 
| 192 | 
            +
                    1. "uncond": unconditional sampling by DPMs.
         | 
| 193 | 
            +
                        The input `model` has the following format:
         | 
| 194 | 
            +
                        ``
         | 
| 195 | 
            +
                            model(x, t_input, **model_kwargs) -> noise | x_start | v | score
         | 
| 196 | 
            +
                        ``
         | 
| 197 | 
            +
                    2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
         | 
| 198 | 
            +
                        The input `model` has the following format:
         | 
| 199 | 
            +
                        ``
         | 
| 200 | 
            +
                            model(x, t_input, **model_kwargs) -> noise | x_start | v | score
         | 
| 201 | 
            +
                        ``
         | 
| 202 | 
            +
                        The input `classifier_fn` has the following format:
         | 
| 203 | 
            +
                        ``
         | 
| 204 | 
            +
                            classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
         | 
| 205 | 
            +
                        ``
         | 
| 206 | 
            +
                        [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
         | 
| 207 | 
            +
                            in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
         | 
| 208 | 
            +
                    3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
         | 
| 209 | 
            +
                        The input `model` has the following format:
         | 
| 210 | 
            +
                        ``
         | 
| 211 | 
            +
                            model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
         | 
| 212 | 
            +
                        ``
         | 
| 213 | 
            +
                        And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
         | 
| 214 | 
            +
                        [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
         | 
| 215 | 
            +
                            arXiv preprint arXiv:2207.12598 (2022).
         | 
| 216 | 
            +
             | 
| 217 | 
            +
                The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
         | 
| 218 | 
            +
                or continuous-time labels (i.e. epsilon to T).
         | 
| 219 | 
            +
                We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
         | 
| 220 | 
            +
                ``
         | 
| 221 | 
            +
                    def model_fn(x, t_continuous) -> noise:
         | 
| 222 | 
            +
                        t_input = get_model_input_time(t_continuous)
         | 
| 223 | 
            +
                        return noise_pred(model, x, t_input, **model_kwargs)
         | 
| 224 | 
            +
                ``
         | 
| 225 | 
            +
                where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
         | 
| 226 | 
            +
                ===============================================================
         | 
| 227 | 
            +
                Args:
         | 
| 228 | 
            +
                    model: A diffusion model with the corresponding format described above.
         | 
| 229 | 
            +
                    noise_schedule: A noise schedule object, such as NoiseScheduleVP.
         | 
| 230 | 
            +
                    model_type: A `str`. The parameterization type of the diffusion model.
         | 
| 231 | 
            +
                                "noise" or "x_start" or "v" or "score".
         | 
| 232 | 
            +
                    model_kwargs: A `dict`. A dict for the other inputs of the model function.
         | 
| 233 | 
            +
                    guidance_type: A `str`. The type of the guidance for sampling.
         | 
| 234 | 
            +
                                "uncond" or "classifier" or "classifier-free".
         | 
| 235 | 
            +
                    condition: A pytorch tensor. The condition for the guided sampling.
         | 
| 236 | 
            +
                                Only used for "classifier" or "classifier-free" guidance type.
         | 
| 237 | 
            +
                    unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
         | 
| 238 | 
            +
                                Only used for "classifier-free" guidance type.
         | 
| 239 | 
            +
                    guidance_scale: A `float`. The scale for the guided sampling.
         | 
| 240 | 
            +
                    classifier_fn: A classifier function. Only used for the classifier guidance.
         | 
| 241 | 
            +
                    classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
         | 
| 242 | 
            +
                Returns:
         | 
| 243 | 
            +
                    A noise prediction model that accepts the noised data and the continuous time as the inputs.
         | 
| 244 | 
            +
                """
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                def get_model_input_time(t_continuous):
         | 
| 247 | 
            +
                    """
         | 
| 248 | 
            +
                    Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
         | 
| 249 | 
            +
                    For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
         | 
| 250 | 
            +
                    For continuous-time DPMs, we just use `t_continuous`.
         | 
| 251 | 
            +
                    """
         | 
| 252 | 
            +
                    if noise_schedule.schedule == 'discrete':
         | 
| 253 | 
            +
                        return (t_continuous - 1. / noise_schedule.total_N) * 1000.
         | 
| 254 | 
            +
                    else:
         | 
| 255 | 
            +
                        return t_continuous
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                def noise_pred_fn(x, t_continuous, cond=None):
         | 
| 258 | 
            +
                    if t_continuous.reshape((-1,)).shape[0] == 1:
         | 
| 259 | 
            +
                        t_continuous = t_continuous.expand((x.shape[0]))
         | 
| 260 | 
            +
                    t_input = get_model_input_time(t_continuous)
         | 
| 261 | 
            +
                    if cond is None:
         | 
| 262 | 
            +
                        output = model(x, t_input, **model_kwargs)
         | 
| 263 | 
            +
                    else:
         | 
| 264 | 
            +
                        output = model(x, t_input, cond, **model_kwargs)
         | 
| 265 | 
            +
                    if model_type == "noise":
         | 
| 266 | 
            +
                        return output
         | 
| 267 | 
            +
                    elif model_type == "x_start":
         | 
| 268 | 
            +
                        alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
         | 
| 269 | 
            +
                        dims = x.dim()
         | 
| 270 | 
            +
                        return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
         | 
| 271 | 
            +
                    elif model_type == "v":
         | 
| 272 | 
            +
                        alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
         | 
| 273 | 
            +
                        dims = x.dim()
         | 
| 274 | 
            +
                        return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
         | 
| 275 | 
            +
                    elif model_type == "score":
         | 
| 276 | 
            +
                        sigma_t = noise_schedule.marginal_std(t_continuous)
         | 
| 277 | 
            +
                        dims = x.dim()
         | 
| 278 | 
            +
                        return -expand_dims(sigma_t, dims) * output
         | 
| 279 | 
            +
             | 
| 280 | 
            +
                def cond_grad_fn(x, t_input):
         | 
| 281 | 
            +
                    """
         | 
| 282 | 
            +
                    Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
         | 
| 283 | 
            +
                    """
         | 
| 284 | 
            +
                    with torch.enable_grad():
         | 
| 285 | 
            +
                        x_in = x.detach().requires_grad_(True)
         | 
| 286 | 
            +
                        log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
         | 
| 287 | 
            +
                        return torch.autograd.grad(log_prob.sum(), x_in)[0]
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                def model_fn(x, t_continuous):
         | 
| 290 | 
            +
                    """
         | 
| 291 | 
            +
                    The noise predicition model function that is used for DPM-Solver.
         | 
| 292 | 
            +
                    """
         | 
| 293 | 
            +
                    if t_continuous.reshape((-1,)).shape[0] == 1:
         | 
| 294 | 
            +
                        t_continuous = t_continuous.expand((x.shape[0]))
         | 
| 295 | 
            +
                    if guidance_type == "uncond":
         | 
| 296 | 
            +
                        return noise_pred_fn(x, t_continuous)
         | 
| 297 | 
            +
                    elif guidance_type == "classifier":
         | 
| 298 | 
            +
                        assert classifier_fn is not None
         | 
| 299 | 
            +
                        t_input = get_model_input_time(t_continuous)
         | 
| 300 | 
            +
                        cond_grad = cond_grad_fn(x, t_input)
         | 
| 301 | 
            +
                        sigma_t = noise_schedule.marginal_std(t_continuous)
         | 
| 302 | 
            +
                        noise = noise_pred_fn(x, t_continuous)
         | 
| 303 | 
            +
                        return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
         | 
| 304 | 
            +
                    elif guidance_type == "classifier-free":
         | 
| 305 | 
            +
                        if guidance_scale == 1. or unconditional_condition is None:
         | 
| 306 | 
            +
                            return noise_pred_fn(x, t_continuous, cond=condition)
         | 
| 307 | 
            +
                        else:
         | 
| 308 | 
            +
                            x_in = torch.cat([x] * 2)
         | 
| 309 | 
            +
                            t_in = torch.cat([t_continuous] * 2)
         | 
| 310 | 
            +
                            c_in = torch.cat([unconditional_condition, condition])
         | 
| 311 | 
            +
                            noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
         | 
| 312 | 
            +
                            return noise_uncond + guidance_scale * (noise - noise_uncond)
         | 
| 313 | 
            +
             | 
| 314 | 
            +
                assert model_type in ["noise", "x_start", "v"]
         | 
| 315 | 
            +
                assert guidance_type in ["uncond", "classifier", "classifier-free"]
         | 
| 316 | 
            +
                return model_fn
         | 
| 317 | 
            +
             | 
| 318 | 
            +
             | 
| 319 | 
            +
            class DPM_Solver:
         | 
| 320 | 
            +
                def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
         | 
| 321 | 
            +
                    """Construct a DPM-Solver.
         | 
| 322 | 
            +
                    We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
         | 
| 323 | 
            +
                    If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
         | 
| 324 | 
            +
                    If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
         | 
| 325 | 
            +
                        In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
         | 
| 326 | 
            +
                        The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
         | 
| 327 | 
            +
                    Args:
         | 
| 328 | 
            +
                        model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
         | 
| 329 | 
            +
                            ``
         | 
| 330 | 
            +
                            def model_fn(x, t_continuous):
         | 
| 331 | 
            +
                                return noise
         | 
| 332 | 
            +
                            ``
         | 
| 333 | 
            +
                        noise_schedule: A noise schedule object, such as NoiseScheduleVP.
         | 
| 334 | 
            +
                        predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
         | 
| 335 | 
            +
                        thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
         | 
| 336 | 
            +
                        max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                    [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
         | 
| 339 | 
            +
                    """
         | 
| 340 | 
            +
                    self.model = model_fn
         | 
| 341 | 
            +
                    self.noise_schedule = noise_schedule
         | 
| 342 | 
            +
                    self.predict_x0 = predict_x0
         | 
| 343 | 
            +
                    self.thresholding = thresholding
         | 
| 344 | 
            +
                    self.max_val = max_val
         | 
| 345 | 
            +
             | 
| 346 | 
            +
                def noise_prediction_fn(self, x, t):
         | 
| 347 | 
            +
                    """
         | 
| 348 | 
            +
                    Return the noise prediction model.
         | 
| 349 | 
            +
                    """
         | 
| 350 | 
            +
                    return self.model(x, t)
         | 
| 351 | 
            +
             | 
| 352 | 
            +
                def data_prediction_fn(self, x, t):
         | 
| 353 | 
            +
                    """
         | 
| 354 | 
            +
                    Return the data prediction model (with thresholding).
         | 
| 355 | 
            +
                    """
         | 
| 356 | 
            +
                    noise = self.noise_prediction_fn(x, t)
         | 
| 357 | 
            +
                    dims = x.dim()
         | 
| 358 | 
            +
                    alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
         | 
| 359 | 
            +
                    x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
         | 
| 360 | 
            +
                    if self.thresholding:
         | 
| 361 | 
            +
                        p = 0.995  # A hyperparameter in the paper of "Imagen" [1].
         | 
| 362 | 
            +
                        s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
         | 
| 363 | 
            +
                        s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
         | 
| 364 | 
            +
                        x0 = torch.clamp(x0, -s, s) / s
         | 
| 365 | 
            +
                    return x0
         | 
| 366 | 
            +
             | 
| 367 | 
            +
                def model_fn(self, x, t):
         | 
| 368 | 
            +
                    """
         | 
| 369 | 
            +
                    Convert the model to the noise prediction model or the data prediction model.
         | 
| 370 | 
            +
                    """
         | 
| 371 | 
            +
                    if self.predict_x0:
         | 
| 372 | 
            +
                        return self.data_prediction_fn(x, t)
         | 
| 373 | 
            +
                    else:
         | 
| 374 | 
            +
                        return self.noise_prediction_fn(x, t)
         | 
| 375 | 
            +
             | 
| 376 | 
            +
                def get_time_steps(self, skip_type, t_T, t_0, N, device):
         | 
| 377 | 
            +
                    """Compute the intermediate time steps for sampling.
         | 
| 378 | 
            +
                    Args:
         | 
| 379 | 
            +
                        skip_type: A `str`. The type for the spacing of the time steps. We support three types:
         | 
| 380 | 
            +
                            - 'logSNR': uniform logSNR for the time steps.
         | 
| 381 | 
            +
                            - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
         | 
| 382 | 
            +
                            - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
         | 
| 383 | 
            +
                        t_T: A `float`. The starting time of the sampling (default is T).
         | 
| 384 | 
            +
                        t_0: A `float`. The ending time of the sampling (default is epsilon).
         | 
| 385 | 
            +
                        N: A `int`. The total number of the spacing of the time steps.
         | 
| 386 | 
            +
                        device: A torch device.
         | 
| 387 | 
            +
                    Returns:
         | 
| 388 | 
            +
                        A pytorch tensor of the time steps, with the shape (N + 1,).
         | 
| 389 | 
            +
                    """
         | 
| 390 | 
            +
                    if skip_type == 'logSNR':
         | 
| 391 | 
            +
                        lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
         | 
| 392 | 
            +
                        lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
         | 
| 393 | 
            +
                        logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
         | 
| 394 | 
            +
                        return self.noise_schedule.inverse_lambda(logSNR_steps)
         | 
| 395 | 
            +
                    elif skip_type == 'time_uniform':
         | 
| 396 | 
            +
                        return torch.linspace(t_T, t_0, N + 1).to(device)
         | 
| 397 | 
            +
                    elif skip_type == 'time_quadratic':
         | 
| 398 | 
            +
                        t_order = 2
         | 
| 399 | 
            +
                        t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
         | 
| 400 | 
            +
                        return t
         | 
| 401 | 
            +
                    else:
         | 
| 402 | 
            +
                        raise ValueError(
         | 
| 403 | 
            +
                            "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
         | 
| 406 | 
            +
                    """
         | 
| 407 | 
            +
                    Get the order of each step for sampling by the singlestep DPM-Solver.
         | 
| 408 | 
            +
                    We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
         | 
| 409 | 
            +
                    Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
         | 
| 410 | 
            +
                        - If order == 1:
         | 
| 411 | 
            +
                            We take `steps` of DPM-Solver-1 (i.e. DDIM).
         | 
| 412 | 
            +
                        - If order == 2:
         | 
| 413 | 
            +
                            - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
         | 
| 414 | 
            +
                            - If steps % 2 == 0, we use K steps of DPM-Solver-2.
         | 
| 415 | 
            +
                            - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
         | 
| 416 | 
            +
                        - If order == 3:
         | 
| 417 | 
            +
                            - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
         | 
| 418 | 
            +
                            - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
         | 
| 419 | 
            +
                            - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
         | 
| 420 | 
            +
                            - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
         | 
| 421 | 
            +
                    ============================================
         | 
| 422 | 
            +
                    Args:
         | 
| 423 | 
            +
                        order: A `int`. The max order for the solver (2 or 3).
         | 
| 424 | 
            +
                        steps: A `int`. The total number of function evaluations (NFE).
         | 
| 425 | 
            +
                        skip_type: A `str`. The type for the spacing of the time steps. We support three types:
         | 
| 426 | 
            +
                            - 'logSNR': uniform logSNR for the time steps.
         | 
| 427 | 
            +
                            - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
         | 
| 428 | 
            +
                            - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
         | 
| 429 | 
            +
                        t_T: A `float`. The starting time of the sampling (default is T).
         | 
| 430 | 
            +
                        t_0: A `float`. The ending time of the sampling (default is epsilon).
         | 
| 431 | 
            +
                        device: A torch device.
         | 
| 432 | 
            +
                    Returns:
         | 
| 433 | 
            +
                        orders: A list of the solver order of each step.
         | 
| 434 | 
            +
                    """
         | 
| 435 | 
            +
                    if order == 3:
         | 
| 436 | 
            +
                        K = steps // 3 + 1
         | 
| 437 | 
            +
                        if steps % 3 == 0:
         | 
| 438 | 
            +
                            orders = [3, ] * (K - 2) + [2, 1]
         | 
| 439 | 
            +
                        elif steps % 3 == 1:
         | 
| 440 | 
            +
                            orders = [3, ] * (K - 1) + [1]
         | 
| 441 | 
            +
                        else:
         | 
| 442 | 
            +
                            orders = [3, ] * (K - 1) + [2]
         | 
| 443 | 
            +
                    elif order == 2:
         | 
| 444 | 
            +
                        if steps % 2 == 0:
         | 
| 445 | 
            +
                            K = steps // 2
         | 
| 446 | 
            +
                            orders = [2, ] * K
         | 
| 447 | 
            +
                        else:
         | 
| 448 | 
            +
                            K = steps // 2 + 1
         | 
| 449 | 
            +
                            orders = [2, ] * (K - 1) + [1]
         | 
| 450 | 
            +
                    elif order == 1:
         | 
| 451 | 
            +
                        K = 1
         | 
| 452 | 
            +
                        orders = [1, ] * steps
         | 
| 453 | 
            +
                    else:
         | 
| 454 | 
            +
                        raise ValueError("'order' must be '1' or '2' or '3'.")
         | 
| 455 | 
            +
                    if skip_type == 'logSNR':
         | 
| 456 | 
            +
                        # To reproduce the results in DPM-Solver paper
         | 
| 457 | 
            +
                        timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
         | 
| 458 | 
            +
                    else:
         | 
| 459 | 
            +
                        timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
         | 
| 460 | 
            +
                            torch.cumsum(torch.tensor([0, ] + orders)).to(device)]
         | 
| 461 | 
            +
                    return timesteps_outer, orders
         | 
| 462 | 
            +
             | 
| 463 | 
            +
                def denoise_to_zero_fn(self, x, s):
         | 
| 464 | 
            +
                    """
         | 
| 465 | 
            +
                    Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
         | 
| 466 | 
            +
                    """
         | 
| 467 | 
            +
                    return self.data_prediction_fn(x, s)
         | 
| 468 | 
            +
             | 
| 469 | 
            +
                def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
         | 
| 470 | 
            +
                    """
         | 
| 471 | 
            +
                    DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
         | 
| 472 | 
            +
                    Args:
         | 
| 473 | 
            +
                        x: A pytorch tensor. The initial value at time `s`.
         | 
| 474 | 
            +
                        s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
         | 
| 475 | 
            +
                        t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
         | 
| 476 | 
            +
                        model_s: A pytorch tensor. The model function evaluated at time `s`.
         | 
| 477 | 
            +
                            If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
         | 
| 478 | 
            +
                        return_intermediate: A `bool`. If true, also return the model value at time `s`.
         | 
| 479 | 
            +
                    Returns:
         | 
| 480 | 
            +
                        x_t: A pytorch tensor. The approximated solution at time `t`.
         | 
| 481 | 
            +
                    """
         | 
| 482 | 
            +
                    ns = self.noise_schedule
         | 
| 483 | 
            +
                    dims = x.dim()
         | 
| 484 | 
            +
                    lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
         | 
| 485 | 
            +
                    h = lambda_t - lambda_s
         | 
| 486 | 
            +
                    log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
         | 
| 487 | 
            +
                    sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
         | 
| 488 | 
            +
                    alpha_t = torch.exp(log_alpha_t)
         | 
| 489 | 
            +
             | 
| 490 | 
            +
                    if self.predict_x0:
         | 
| 491 | 
            +
                        phi_1 = torch.expm1(-h)
         | 
| 492 | 
            +
                        if model_s is None:
         | 
| 493 | 
            +
                            model_s = self.model_fn(x, s)
         | 
| 494 | 
            +
                        x_t = (
         | 
| 495 | 
            +
                                expand_dims(sigma_t / sigma_s, dims) * x
         | 
| 496 | 
            +
                                - expand_dims(alpha_t * phi_1, dims) * model_s
         | 
| 497 | 
            +
                        )
         | 
| 498 | 
            +
                        if return_intermediate:
         | 
| 499 | 
            +
                            return x_t, {'model_s': model_s}
         | 
| 500 | 
            +
                        else:
         | 
| 501 | 
            +
                            return x_t
         | 
| 502 | 
            +
                    else:
         | 
| 503 | 
            +
                        phi_1 = torch.expm1(h)
         | 
| 504 | 
            +
                        if model_s is None:
         | 
| 505 | 
            +
                            model_s = self.model_fn(x, s)
         | 
| 506 | 
            +
                        x_t = (
         | 
| 507 | 
            +
                                expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
         | 
| 508 | 
            +
                                - expand_dims(sigma_t * phi_1, dims) * model_s
         | 
| 509 | 
            +
                        )
         | 
| 510 | 
            +
                        if return_intermediate:
         | 
| 511 | 
            +
                            return x_t, {'model_s': model_s}
         | 
| 512 | 
            +
                        else:
         | 
| 513 | 
            +
                            return x_t
         | 
| 514 | 
            +
             | 
| 515 | 
            +
                def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
         | 
| 516 | 
            +
                                                        solver_type='dpm_solver'):
         | 
| 517 | 
            +
                    """
         | 
| 518 | 
            +
                    Singlestep solver DPM-Solver-2 from time `s` to time `t`.
         | 
| 519 | 
            +
                    Args:
         | 
| 520 | 
            +
                        x: A pytorch tensor. The initial value at time `s`.
         | 
| 521 | 
            +
                        s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
         | 
| 522 | 
            +
                        t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
         | 
| 523 | 
            +
                        r1: A `float`. The hyperparameter of the second-order solver.
         | 
| 524 | 
            +
                        model_s: A pytorch tensor. The model function evaluated at time `s`.
         | 
| 525 | 
            +
                            If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
         | 
| 526 | 
            +
                        return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
         | 
| 527 | 
            +
                        solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
         | 
| 528 | 
            +
                            The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
         | 
| 529 | 
            +
                    Returns:
         | 
| 530 | 
            +
                        x_t: A pytorch tensor. The approximated solution at time `t`.
         | 
| 531 | 
            +
                    """
         | 
| 532 | 
            +
                    if solver_type not in ['dpm_solver', 'taylor']:
         | 
| 533 | 
            +
                        raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
         | 
| 534 | 
            +
                    if r1 is None:
         | 
| 535 | 
            +
                        r1 = 0.5
         | 
| 536 | 
            +
                    ns = self.noise_schedule
         | 
| 537 | 
            +
                    dims = x.dim()
         | 
| 538 | 
            +
                    lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
         | 
| 539 | 
            +
                    h = lambda_t - lambda_s
         | 
| 540 | 
            +
                    lambda_s1 = lambda_s + r1 * h
         | 
| 541 | 
            +
                    s1 = ns.inverse_lambda(lambda_s1)
         | 
| 542 | 
            +
                    log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
         | 
| 543 | 
            +
                        s1), ns.marginal_log_mean_coeff(t)
         | 
| 544 | 
            +
                    sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
         | 
| 545 | 
            +
                    alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
         | 
| 546 | 
            +
             | 
| 547 | 
            +
                    if self.predict_x0:
         | 
| 548 | 
            +
                        phi_11 = torch.expm1(-r1 * h)
         | 
| 549 | 
            +
                        phi_1 = torch.expm1(-h)
         | 
| 550 | 
            +
             | 
| 551 | 
            +
                        if model_s is None:
         | 
| 552 | 
            +
                            model_s = self.model_fn(x, s)
         | 
| 553 | 
            +
                        x_s1 = (
         | 
| 554 | 
            +
                                expand_dims(sigma_s1 / sigma_s, dims) * x
         | 
| 555 | 
            +
                                - expand_dims(alpha_s1 * phi_11, dims) * model_s
         | 
| 556 | 
            +
                        )
         | 
| 557 | 
            +
                        model_s1 = self.model_fn(x_s1, s1)
         | 
| 558 | 
            +
                        if solver_type == 'dpm_solver':
         | 
| 559 | 
            +
                            x_t = (
         | 
| 560 | 
            +
                                    expand_dims(sigma_t / sigma_s, dims) * x
         | 
| 561 | 
            +
                                    - expand_dims(alpha_t * phi_1, dims) * model_s
         | 
| 562 | 
            +
                                    - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
         | 
| 563 | 
            +
                            )
         | 
| 564 | 
            +
                        elif solver_type == 'taylor':
         | 
| 565 | 
            +
                            x_t = (
         | 
| 566 | 
            +
                                    expand_dims(sigma_t / sigma_s, dims) * x
         | 
| 567 | 
            +
                                    - expand_dims(alpha_t * phi_1, dims) * model_s
         | 
| 568 | 
            +
                                    + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
         | 
| 569 | 
            +
                                                model_s1 - model_s)
         | 
| 570 | 
            +
                            )
         | 
| 571 | 
            +
                    else:
         | 
| 572 | 
            +
                        phi_11 = torch.expm1(r1 * h)
         | 
| 573 | 
            +
                        phi_1 = torch.expm1(h)
         | 
| 574 | 
            +
             | 
| 575 | 
            +
                        if model_s is None:
         | 
| 576 | 
            +
                            model_s = self.model_fn(x, s)
         | 
| 577 | 
            +
                        x_s1 = (
         | 
| 578 | 
            +
                                expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
         | 
| 579 | 
            +
                                - expand_dims(sigma_s1 * phi_11, dims) * model_s
         | 
| 580 | 
            +
                        )
         | 
| 581 | 
            +
                        model_s1 = self.model_fn(x_s1, s1)
         | 
| 582 | 
            +
                        if solver_type == 'dpm_solver':
         | 
| 583 | 
            +
                            x_t = (
         | 
| 584 | 
            +
                                    expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
         | 
| 585 | 
            +
                                    - expand_dims(sigma_t * phi_1, dims) * model_s
         | 
| 586 | 
            +
                                    - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
         | 
| 587 | 
            +
                            )
         | 
| 588 | 
            +
                        elif solver_type == 'taylor':
         | 
| 589 | 
            +
                            x_t = (
         | 
| 590 | 
            +
                                    expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
         | 
| 591 | 
            +
                                    - expand_dims(sigma_t * phi_1, dims) * model_s
         | 
| 592 | 
            +
                                    - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
         | 
| 593 | 
            +
                            )
         | 
| 594 | 
            +
                    if return_intermediate:
         | 
| 595 | 
            +
                        return x_t, {'model_s': model_s, 'model_s1': model_s1}
         | 
| 596 | 
            +
                    else:
         | 
| 597 | 
            +
                        return x_t
         | 
| 598 | 
            +
             | 
| 599 | 
            +
                def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
         | 
| 600 | 
            +
                                                       return_intermediate=False, solver_type='dpm_solver'):
         | 
| 601 | 
            +
                    """
         | 
| 602 | 
            +
                    Singlestep solver DPM-Solver-3 from time `s` to time `t`.
         | 
| 603 | 
            +
                    Args:
         | 
| 604 | 
            +
                        x: A pytorch tensor. The initial value at time `s`.
         | 
| 605 | 
            +
                        s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
         | 
| 606 | 
            +
                        t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
         | 
| 607 | 
            +
                        r1: A `float`. The hyperparameter of the third-order solver.
         | 
| 608 | 
            +
                        r2: A `float`. The hyperparameter of the third-order solver.
         | 
| 609 | 
            +
                        model_s: A pytorch tensor. The model function evaluated at time `s`.
         | 
| 610 | 
            +
                            If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
         | 
| 611 | 
            +
                        model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
         | 
| 612 | 
            +
                            If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
         | 
| 613 | 
            +
                        return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
         | 
| 614 | 
            +
                        solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
         | 
| 615 | 
            +
                            The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
         | 
| 616 | 
            +
                    Returns:
         | 
| 617 | 
            +
                        x_t: A pytorch tensor. The approximated solution at time `t`.
         | 
| 618 | 
            +
                    """
         | 
| 619 | 
            +
                    if solver_type not in ['dpm_solver', 'taylor']:
         | 
| 620 | 
            +
                        raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
         | 
| 621 | 
            +
                    if r1 is None:
         | 
| 622 | 
            +
                        r1 = 1. / 3.
         | 
| 623 | 
            +
                    if r2 is None:
         | 
| 624 | 
            +
                        r2 = 2. / 3.
         | 
| 625 | 
            +
                    ns = self.noise_schedule
         | 
| 626 | 
            +
                    dims = x.dim()
         | 
| 627 | 
            +
                    lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
         | 
| 628 | 
            +
                    h = lambda_t - lambda_s
         | 
| 629 | 
            +
                    lambda_s1 = lambda_s + r1 * h
         | 
| 630 | 
            +
                    lambda_s2 = lambda_s + r2 * h
         | 
| 631 | 
            +
                    s1 = ns.inverse_lambda(lambda_s1)
         | 
| 632 | 
            +
                    s2 = ns.inverse_lambda(lambda_s2)
         | 
| 633 | 
            +
                    log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
         | 
| 634 | 
            +
                        s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
         | 
| 635 | 
            +
                    sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
         | 
| 636 | 
            +
                        s2), ns.marginal_std(t)
         | 
| 637 | 
            +
                    alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
         | 
| 638 | 
            +
             | 
| 639 | 
            +
                    if self.predict_x0:
         | 
| 640 | 
            +
                        phi_11 = torch.expm1(-r1 * h)
         | 
| 641 | 
            +
                        phi_12 = torch.expm1(-r2 * h)
         | 
| 642 | 
            +
                        phi_1 = torch.expm1(-h)
         | 
| 643 | 
            +
                        phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
         | 
| 644 | 
            +
                        phi_2 = phi_1 / h + 1.
         | 
| 645 | 
            +
                        phi_3 = phi_2 / h - 0.5
         | 
| 646 | 
            +
             | 
| 647 | 
            +
                        if model_s is None:
         | 
| 648 | 
            +
                            model_s = self.model_fn(x, s)
         | 
| 649 | 
            +
                        if model_s1 is None:
         | 
| 650 | 
            +
                            x_s1 = (
         | 
| 651 | 
            +
                                    expand_dims(sigma_s1 / sigma_s, dims) * x
         | 
| 652 | 
            +
                                    - expand_dims(alpha_s1 * phi_11, dims) * model_s
         | 
| 653 | 
            +
                            )
         | 
| 654 | 
            +
                            model_s1 = self.model_fn(x_s1, s1)
         | 
| 655 | 
            +
                        x_s2 = (
         | 
| 656 | 
            +
                                expand_dims(sigma_s2 / sigma_s, dims) * x
         | 
| 657 | 
            +
                                - expand_dims(alpha_s2 * phi_12, dims) * model_s
         | 
| 658 | 
            +
                                + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
         | 
| 659 | 
            +
                        )
         | 
| 660 | 
            +
                        model_s2 = self.model_fn(x_s2, s2)
         | 
| 661 | 
            +
                        if solver_type == 'dpm_solver':
         | 
| 662 | 
            +
                            x_t = (
         | 
| 663 | 
            +
                                    expand_dims(sigma_t / sigma_s, dims) * x
         | 
| 664 | 
            +
                                    - expand_dims(alpha_t * phi_1, dims) * model_s
         | 
| 665 | 
            +
                                    + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
         | 
| 666 | 
            +
                            )
         | 
| 667 | 
            +
                        elif solver_type == 'taylor':
         | 
| 668 | 
            +
                            D1_0 = (1. / r1) * (model_s1 - model_s)
         | 
| 669 | 
            +
                            D1_1 = (1. / r2) * (model_s2 - model_s)
         | 
| 670 | 
            +
                            D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
         | 
| 671 | 
            +
                            D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
         | 
| 672 | 
            +
                            x_t = (
         | 
| 673 | 
            +
                                    expand_dims(sigma_t / sigma_s, dims) * x
         | 
| 674 | 
            +
                                    - expand_dims(alpha_t * phi_1, dims) * model_s
         | 
| 675 | 
            +
                                    + expand_dims(alpha_t * phi_2, dims) * D1
         | 
| 676 | 
            +
                                    - expand_dims(alpha_t * phi_3, dims) * D2
         | 
| 677 | 
            +
                            )
         | 
| 678 | 
            +
                    else:
         | 
| 679 | 
            +
                        phi_11 = torch.expm1(r1 * h)
         | 
| 680 | 
            +
                        phi_12 = torch.expm1(r2 * h)
         | 
| 681 | 
            +
                        phi_1 = torch.expm1(h)
         | 
| 682 | 
            +
                        phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
         | 
| 683 | 
            +
                        phi_2 = phi_1 / h - 1.
         | 
| 684 | 
            +
                        phi_3 = phi_2 / h - 0.5
         | 
| 685 | 
            +
             | 
| 686 | 
            +
                        if model_s is None:
         | 
| 687 | 
            +
                            model_s = self.model_fn(x, s)
         | 
| 688 | 
            +
                        if model_s1 is None:
         | 
| 689 | 
            +
                            x_s1 = (
         | 
| 690 | 
            +
                                    expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
         | 
| 691 | 
            +
                                    - expand_dims(sigma_s1 * phi_11, dims) * model_s
         | 
| 692 | 
            +
                            )
         | 
| 693 | 
            +
                            model_s1 = self.model_fn(x_s1, s1)
         | 
| 694 | 
            +
                        x_s2 = (
         | 
| 695 | 
            +
                                expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
         | 
| 696 | 
            +
                                - expand_dims(sigma_s2 * phi_12, dims) * model_s
         | 
| 697 | 
            +
                                - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
         | 
| 698 | 
            +
                        )
         | 
| 699 | 
            +
                        model_s2 = self.model_fn(x_s2, s2)
         | 
| 700 | 
            +
                        if solver_type == 'dpm_solver':
         | 
| 701 | 
            +
                            x_t = (
         | 
| 702 | 
            +
                                    expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
         | 
| 703 | 
            +
                                    - expand_dims(sigma_t * phi_1, dims) * model_s
         | 
| 704 | 
            +
                                    - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
         | 
| 705 | 
            +
                            )
         | 
| 706 | 
            +
                        elif solver_type == 'taylor':
         | 
| 707 | 
            +
                            D1_0 = (1. / r1) * (model_s1 - model_s)
         | 
| 708 | 
            +
                            D1_1 = (1. / r2) * (model_s2 - model_s)
         | 
| 709 | 
            +
                            D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
         | 
| 710 | 
            +
                            D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
         | 
| 711 | 
            +
                            x_t = (
         | 
| 712 | 
            +
                                    expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
         | 
| 713 | 
            +
                                    - expand_dims(sigma_t * phi_1, dims) * model_s
         | 
| 714 | 
            +
                                    - expand_dims(sigma_t * phi_2, dims) * D1
         | 
| 715 | 
            +
                                    - expand_dims(sigma_t * phi_3, dims) * D2
         | 
| 716 | 
            +
                            )
         | 
| 717 | 
            +
             | 
| 718 | 
            +
                    if return_intermediate:
         | 
| 719 | 
            +
                        return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
         | 
| 720 | 
            +
                    else:
         | 
| 721 | 
            +
                        return x_t
         | 
| 722 | 
            +
             | 
| 723 | 
            +
                def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
         | 
| 724 | 
            +
                    """
         | 
| 725 | 
            +
                    Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
         | 
| 726 | 
            +
                    Args:
         | 
| 727 | 
            +
                        x: A pytorch tensor. The initial value at time `s`.
         | 
| 728 | 
            +
                        model_prev_list: A list of pytorch tensor. The previous computed model values.
         | 
| 729 | 
            +
                        t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
         | 
| 730 | 
            +
                        t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
         | 
| 731 | 
            +
                        solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
         | 
| 732 | 
            +
                            The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
         | 
| 733 | 
            +
                    Returns:
         | 
| 734 | 
            +
                        x_t: A pytorch tensor. The approximated solution at time `t`.
         | 
| 735 | 
            +
                    """
         | 
| 736 | 
            +
                    if solver_type not in ['dpm_solver', 'taylor']:
         | 
| 737 | 
            +
                        raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
         | 
| 738 | 
            +
                    ns = self.noise_schedule
         | 
| 739 | 
            +
                    dims = x.dim()
         | 
| 740 | 
            +
                    model_prev_1, model_prev_0 = model_prev_list
         | 
| 741 | 
            +
                    t_prev_1, t_prev_0 = t_prev_list
         | 
| 742 | 
            +
                    lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
         | 
| 743 | 
            +
                        t_prev_0), ns.marginal_lambda(t)
         | 
| 744 | 
            +
                    log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
         | 
| 745 | 
            +
                    sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
         | 
| 746 | 
            +
                    alpha_t = torch.exp(log_alpha_t)
         | 
| 747 | 
            +
             | 
| 748 | 
            +
                    h_0 = lambda_prev_0 - lambda_prev_1
         | 
| 749 | 
            +
                    h = lambda_t - lambda_prev_0
         | 
| 750 | 
            +
                    r0 = h_0 / h
         | 
| 751 | 
            +
                    D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
         | 
| 752 | 
            +
                    if self.predict_x0:
         | 
| 753 | 
            +
                        if solver_type == 'dpm_solver':
         | 
| 754 | 
            +
                            x_t = (
         | 
| 755 | 
            +
                                    expand_dims(sigma_t / sigma_prev_0, dims) * x
         | 
| 756 | 
            +
                                    - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
         | 
| 757 | 
            +
                                    - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
         | 
| 758 | 
            +
                            )
         | 
| 759 | 
            +
                        elif solver_type == 'taylor':
         | 
| 760 | 
            +
                            x_t = (
         | 
| 761 | 
            +
                                    expand_dims(sigma_t / sigma_prev_0, dims) * x
         | 
| 762 | 
            +
                                    - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
         | 
| 763 | 
            +
                                    + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
         | 
| 764 | 
            +
                            )
         | 
| 765 | 
            +
                    else:
         | 
| 766 | 
            +
                        if solver_type == 'dpm_solver':
         | 
| 767 | 
            +
                            x_t = (
         | 
| 768 | 
            +
                                    expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
         | 
| 769 | 
            +
                                    - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
         | 
| 770 | 
            +
                                    - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
         | 
| 771 | 
            +
                            )
         | 
| 772 | 
            +
                        elif solver_type == 'taylor':
         | 
| 773 | 
            +
                            x_t = (
         | 
| 774 | 
            +
                                    expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
         | 
| 775 | 
            +
                                    - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
         | 
| 776 | 
            +
                                    - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
         | 
| 777 | 
            +
                            )
         | 
| 778 | 
            +
                    return x_t
         | 
| 779 | 
            +
             | 
| 780 | 
            +
                def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
         | 
| 781 | 
            +
                    """
         | 
| 782 | 
            +
                    Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
         | 
| 783 | 
            +
                    Args:
         | 
| 784 | 
            +
                        x: A pytorch tensor. The initial value at time `s`.
         | 
| 785 | 
            +
                        model_prev_list: A list of pytorch tensor. The previous computed model values.
         | 
| 786 | 
            +
                        t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
         | 
| 787 | 
            +
                        t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
         | 
| 788 | 
            +
                        solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
         | 
| 789 | 
            +
                            The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
         | 
| 790 | 
            +
                    Returns:
         | 
| 791 | 
            +
                        x_t: A pytorch tensor. The approximated solution at time `t`.
         | 
| 792 | 
            +
                    """
         | 
| 793 | 
            +
                    ns = self.noise_schedule
         | 
| 794 | 
            +
                    dims = x.dim()
         | 
| 795 | 
            +
                    model_prev_2, model_prev_1, model_prev_0 = model_prev_list
         | 
| 796 | 
            +
                    t_prev_2, t_prev_1, t_prev_0 = t_prev_list
         | 
| 797 | 
            +
                    lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
         | 
| 798 | 
            +
                        t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
         | 
| 799 | 
            +
                    log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
         | 
| 800 | 
            +
                    sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
         | 
| 801 | 
            +
                    alpha_t = torch.exp(log_alpha_t)
         | 
| 802 | 
            +
             | 
| 803 | 
            +
                    h_1 = lambda_prev_1 - lambda_prev_2
         | 
| 804 | 
            +
                    h_0 = lambda_prev_0 - lambda_prev_1
         | 
| 805 | 
            +
                    h = lambda_t - lambda_prev_0
         | 
| 806 | 
            +
                    r0, r1 = h_0 / h, h_1 / h
         | 
| 807 | 
            +
                    D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
         | 
| 808 | 
            +
                    D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
         | 
| 809 | 
            +
                    D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
         | 
| 810 | 
            +
                    D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
         | 
| 811 | 
            +
                    if self.predict_x0:
         | 
| 812 | 
            +
                        x_t = (
         | 
| 813 | 
            +
                                expand_dims(sigma_t / sigma_prev_0, dims) * x
         | 
| 814 | 
            +
                                - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
         | 
| 815 | 
            +
                                + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
         | 
| 816 | 
            +
                                - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
         | 
| 817 | 
            +
                        )
         | 
| 818 | 
            +
                    else:
         | 
| 819 | 
            +
                        x_t = (
         | 
| 820 | 
            +
                                expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
         | 
| 821 | 
            +
                                - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
         | 
| 822 | 
            +
                                - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
         | 
| 823 | 
            +
                                - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
         | 
| 824 | 
            +
                        )
         | 
| 825 | 
            +
                    return x_t
         | 
| 826 | 
            +
             | 
| 827 | 
            +
                def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
         | 
| 828 | 
            +
                                                 r2=None):
         | 
| 829 | 
            +
                    """
         | 
| 830 | 
            +
                    Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
         | 
| 831 | 
            +
                    Args:
         | 
| 832 | 
            +
                        x: A pytorch tensor. The initial value at time `s`.
         | 
| 833 | 
            +
                        s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
         | 
| 834 | 
            +
                        t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
         | 
| 835 | 
            +
                        order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
         | 
| 836 | 
            +
                        return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
         | 
| 837 | 
            +
                        solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
         | 
| 838 | 
            +
                            The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
         | 
| 839 | 
            +
                        r1: A `float`. The hyperparameter of the second-order or third-order solver.
         | 
| 840 | 
            +
                        r2: A `float`. The hyperparameter of the third-order solver.
         | 
| 841 | 
            +
                    Returns:
         | 
| 842 | 
            +
                        x_t: A pytorch tensor. The approximated solution at time `t`.
         | 
| 843 | 
            +
                    """
         | 
| 844 | 
            +
                    if order == 1:
         | 
| 845 | 
            +
                        return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
         | 
| 846 | 
            +
                    elif order == 2:
         | 
| 847 | 
            +
                        return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
         | 
| 848 | 
            +
                                                                        solver_type=solver_type, r1=r1)
         | 
| 849 | 
            +
                    elif order == 3:
         | 
| 850 | 
            +
                        return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
         | 
| 851 | 
            +
                                                                       solver_type=solver_type, r1=r1, r2=r2)
         | 
| 852 | 
            +
                    else:
         | 
| 853 | 
            +
                        raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
         | 
| 854 | 
            +
             | 
| 855 | 
            +
                def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
         | 
| 856 | 
            +
                    """
         | 
| 857 | 
            +
                    Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
         | 
| 858 | 
            +
                    Args:
         | 
| 859 | 
            +
                        x: A pytorch tensor. The initial value at time `s`.
         | 
| 860 | 
            +
                        model_prev_list: A list of pytorch tensor. The previous computed model values.
         | 
| 861 | 
            +
                        t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
         | 
| 862 | 
            +
                        t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
         | 
| 863 | 
            +
                        order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
         | 
| 864 | 
            +
                        solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
         | 
| 865 | 
            +
                            The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
         | 
| 866 | 
            +
                    Returns:
         | 
| 867 | 
            +
                        x_t: A pytorch tensor. The approximated solution at time `t`.
         | 
| 868 | 
            +
                    """
         | 
| 869 | 
            +
                    if order == 1:
         | 
| 870 | 
            +
                        return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
         | 
| 871 | 
            +
                    elif order == 2:
         | 
| 872 | 
            +
                        return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
         | 
| 873 | 
            +
                    elif order == 3:
         | 
| 874 | 
            +
                        return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
         | 
| 875 | 
            +
                    else:
         | 
| 876 | 
            +
                        raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
         | 
| 877 | 
            +
             | 
| 878 | 
            +
                def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
         | 
| 879 | 
            +
                                        solver_type='dpm_solver'):
         | 
| 880 | 
            +
                    """
         | 
| 881 | 
            +
                    The adaptive step size solver based on singlestep DPM-Solver.
         | 
| 882 | 
            +
                    Args:
         | 
| 883 | 
            +
                        x: A pytorch tensor. The initial value at time `t_T`.
         | 
| 884 | 
            +
                        order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
         | 
| 885 | 
            +
                        t_T: A `float`. The starting time of the sampling (default is T).
         | 
| 886 | 
            +
                        t_0: A `float`. The ending time of the sampling (default is epsilon).
         | 
| 887 | 
            +
                        h_init: A `float`. The initial step size (for logSNR).
         | 
| 888 | 
            +
                        atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
         | 
| 889 | 
            +
                        rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
         | 
| 890 | 
            +
                        theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
         | 
| 891 | 
            +
                        t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
         | 
| 892 | 
            +
                            current time and `t_0` is less than `t_err`. The default setting is 1e-5.
         | 
| 893 | 
            +
                        solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
         | 
| 894 | 
            +
                            The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
         | 
| 895 | 
            +
                    Returns:
         | 
| 896 | 
            +
                        x_0: A pytorch tensor. The approximated solution at time `t_0`.
         | 
| 897 | 
            +
                    [1] A. Jolicoeur-Martineau, K. Li, R. PichΓ©-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
         | 
| 898 | 
            +
                    """
         | 
| 899 | 
            +
                    ns = self.noise_schedule
         | 
| 900 | 
            +
                    s = t_T * torch.ones((x.shape[0],)).to(x)
         | 
| 901 | 
            +
                    lambda_s = ns.marginal_lambda(s)
         | 
| 902 | 
            +
                    lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
         | 
| 903 | 
            +
                    h = h_init * torch.ones_like(s).to(x)
         | 
| 904 | 
            +
                    x_prev = x
         | 
| 905 | 
            +
                    nfe = 0
         | 
| 906 | 
            +
                    if order == 2:
         | 
| 907 | 
            +
                        r1 = 0.5
         | 
| 908 | 
            +
                        lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
         | 
| 909 | 
            +
                        higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
         | 
| 910 | 
            +
                                                                                                           solver_type=solver_type,
         | 
| 911 | 
            +
                                                                                                           **kwargs)
         | 
| 912 | 
            +
                    elif order == 3:
         | 
| 913 | 
            +
                        r1, r2 = 1. / 3., 2. / 3.
         | 
| 914 | 
            +
                        lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
         | 
| 915 | 
            +
                                                                                                return_intermediate=True,
         | 
| 916 | 
            +
                                                                                                solver_type=solver_type)
         | 
| 917 | 
            +
                        higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
         | 
| 918 | 
            +
                                                                                                          solver_type=solver_type,
         | 
| 919 | 
            +
                                                                                                          **kwargs)
         | 
| 920 | 
            +
                    else:
         | 
| 921 | 
            +
                        raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
         | 
| 922 | 
            +
                    while torch.abs((s - t_0)).mean() > t_err:
         | 
| 923 | 
            +
                        t = ns.inverse_lambda(lambda_s + h)
         | 
| 924 | 
            +
                        x_lower, lower_noise_kwargs = lower_update(x, s, t)
         | 
| 925 | 
            +
                        x_higher = higher_update(x, s, t, **lower_noise_kwargs)
         | 
| 926 | 
            +
                        delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
         | 
| 927 | 
            +
                        norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
         | 
| 928 | 
            +
                        E = norm_fn((x_higher - x_lower) / delta).max()
         | 
| 929 | 
            +
                        if torch.all(E <= 1.):
         | 
| 930 | 
            +
                            x = x_higher
         | 
| 931 | 
            +
                            s = t
         | 
| 932 | 
            +
                            x_prev = x_lower
         | 
| 933 | 
            +
                            lambda_s = ns.marginal_lambda(s)
         | 
| 934 | 
            +
                        h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
         | 
| 935 | 
            +
                        nfe += order
         | 
| 936 | 
            +
                    print('adaptive solver nfe', nfe)
         | 
| 937 | 
            +
                    return x
         | 
| 938 | 
            +
             | 
| 939 | 
            +
                def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
         | 
| 940 | 
            +
                           method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
         | 
| 941 | 
            +
                           atol=0.0078, rtol=0.05,
         | 
| 942 | 
            +
                           ):
         | 
| 943 | 
            +
                    """
         | 
| 944 | 
            +
                    Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
         | 
| 945 | 
            +
                    =====================================================
         | 
| 946 | 
            +
                    We support the following algorithms for both noise prediction model and data prediction model:
         | 
| 947 | 
            +
                        - 'singlestep':
         | 
| 948 | 
            +
                            Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
         | 
| 949 | 
            +
                            We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
         | 
| 950 | 
            +
                            The total number of function evaluations (NFE) == `steps`.
         | 
| 951 | 
            +
                            Given a fixed NFE == `steps`, the sampling procedure is:
         | 
| 952 | 
            +
                                - If `order` == 1:
         | 
| 953 | 
            +
                                    - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
         | 
| 954 | 
            +
                                - If `order` == 2:
         | 
| 955 | 
            +
                                    - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
         | 
| 956 | 
            +
                                    - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
         | 
| 957 | 
            +
                                    - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
         | 
| 958 | 
            +
                                - If `order` == 3:
         | 
| 959 | 
            +
                                    - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
         | 
| 960 | 
            +
                                    - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
         | 
| 961 | 
            +
                                    - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
         | 
| 962 | 
            +
                                    - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
         | 
| 963 | 
            +
                        - 'multistep':
         | 
| 964 | 
            +
                            Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
         | 
| 965 | 
            +
                            We initialize the first `order` values by lower order multistep solvers.
         | 
| 966 | 
            +
                            Given a fixed NFE == `steps`, the sampling procedure is:
         | 
| 967 | 
            +
                                Denote K = steps.
         | 
| 968 | 
            +
                                - If `order` == 1:
         | 
| 969 | 
            +
                                    - We use K steps of DPM-Solver-1 (i.e. DDIM).
         | 
| 970 | 
            +
                                - If `order` == 2:
         | 
| 971 | 
            +
                                    - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
         | 
| 972 | 
            +
                                - If `order` == 3:
         | 
| 973 | 
            +
                                    - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
         | 
| 974 | 
            +
                        - 'singlestep_fixed':
         | 
| 975 | 
            +
                            Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
         | 
| 976 | 
            +
                            We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
         | 
| 977 | 
            +
                        - 'adaptive':
         | 
| 978 | 
            +
                            Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
         | 
| 979 | 
            +
                            We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
         | 
| 980 | 
            +
                            You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
         | 
| 981 | 
            +
                            (NFE) and the sample quality.
         | 
| 982 | 
            +
                                - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
         | 
| 983 | 
            +
                                - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
         | 
| 984 | 
            +
                    =====================================================
         | 
| 985 | 
            +
                    Some advices for choosing the algorithm:
         | 
| 986 | 
            +
                        - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
         | 
| 987 | 
            +
                            Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
         | 
| 988 | 
            +
                            e.g.
         | 
| 989 | 
            +
                                >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
         | 
| 990 | 
            +
                                >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
         | 
| 991 | 
            +
                                        skip_type='time_uniform', method='singlestep')
         | 
| 992 | 
            +
                        - For **guided sampling with large guidance scale** by DPMs:
         | 
| 993 | 
            +
                            Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
         | 
| 994 | 
            +
                            e.g.
         | 
| 995 | 
            +
                                >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
         | 
| 996 | 
            +
                                >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
         | 
| 997 | 
            +
                                        skip_type='time_uniform', method='multistep')
         | 
| 998 | 
            +
                    We support three types of `skip_type`:
         | 
| 999 | 
            +
                        - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
         | 
| 1000 | 
            +
                        - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
         | 
| 1001 | 
            +
                        - 'time_quadratic': quadratic time for the time steps.
         | 
| 1002 | 
            +
                    =====================================================
         | 
| 1003 | 
            +
                    Args:
         | 
| 1004 | 
            +
                        x: A pytorch tensor. The initial value at time `t_start`
         | 
| 1005 | 
            +
                            e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
         | 
| 1006 | 
            +
                        steps: A `int`. The total number of function evaluations (NFE).
         | 
| 1007 | 
            +
                        t_start: A `float`. The starting time of the sampling.
         | 
| 1008 | 
            +
                            If `T` is None, we use self.noise_schedule.T (default is 1.0).
         | 
| 1009 | 
            +
                        t_end: A `float`. The ending time of the sampling.
         | 
| 1010 | 
            +
                            If `t_end` is None, we use 1. / self.noise_schedule.total_N.
         | 
| 1011 | 
            +
                            e.g. if total_N == 1000, we have `t_end` == 1e-3.
         | 
| 1012 | 
            +
                            For discrete-time DPMs:
         | 
| 1013 | 
            +
                                - We recommend `t_end` == 1. / self.noise_schedule.total_N.
         | 
| 1014 | 
            +
                            For continuous-time DPMs:
         | 
| 1015 | 
            +
                                - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
         | 
| 1016 | 
            +
                        order: A `int`. The order of DPM-Solver.
         | 
| 1017 | 
            +
                        skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
         | 
| 1018 | 
            +
                        method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
         | 
| 1019 | 
            +
                        denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
         | 
| 1020 | 
            +
                            Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
         | 
| 1021 | 
            +
                            This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
         | 
| 1022 | 
            +
                            score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
         | 
| 1023 | 
            +
                            for diffusion models sampling by diffusion SDEs for low-resolutional images
         | 
| 1024 | 
            +
                            (such as CIFAR-10). However, we observed that such trick does not matter for
         | 
| 1025 | 
            +
                            high-resolutional images. As it needs an additional NFE, we do not recommend
         | 
| 1026 | 
            +
                            it for high-resolutional images.
         | 
| 1027 | 
            +
                        lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
         | 
| 1028 | 
            +
                            Only valid for `method=multistep` and `steps < 15`. We empirically find that
         | 
| 1029 | 
            +
                            this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
         | 
| 1030 | 
            +
                            (especially for steps <= 10). So we recommend to set it to be `True`.
         | 
| 1031 | 
            +
                        solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
         | 
| 1032 | 
            +
                        atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
         | 
| 1033 | 
            +
                        rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
         | 
| 1034 | 
            +
                    Returns:
         | 
| 1035 | 
            +
                        x_end: A pytorch tensor. The approximated solution at time `t_end`.
         | 
| 1036 | 
            +
                    """
         | 
| 1037 | 
            +
                    t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
         | 
| 1038 | 
            +
                    t_T = self.noise_schedule.T if t_start is None else t_start
         | 
| 1039 | 
            +
                    device = x.device
         | 
| 1040 | 
            +
                    if method == 'adaptive':
         | 
| 1041 | 
            +
                        with torch.no_grad():
         | 
| 1042 | 
            +
                            x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
         | 
| 1043 | 
            +
                                                         solver_type=solver_type)
         | 
| 1044 | 
            +
                    elif method == 'multistep':
         | 
| 1045 | 
            +
                        assert steps >= order
         | 
| 1046 | 
            +
                        timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
         | 
| 1047 | 
            +
                        assert timesteps.shape[0] - 1 == steps
         | 
| 1048 | 
            +
                        with torch.no_grad():
         | 
| 1049 | 
            +
                            vec_t = timesteps[0].expand((x.shape[0]))
         | 
| 1050 | 
            +
                            model_prev_list = [self.model_fn(x, vec_t)]
         | 
| 1051 | 
            +
                            t_prev_list = [vec_t]
         | 
| 1052 | 
            +
                            # Init the first `order` values by lower order multistep DPM-Solver.
         | 
| 1053 | 
            +
                            for init_order in tqdm(range(1, order), desc="DPM init order"):
         | 
| 1054 | 
            +
                                vec_t = timesteps[init_order].expand(x.shape[0])
         | 
| 1055 | 
            +
                                x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
         | 
| 1056 | 
            +
                                                                     solver_type=solver_type)
         | 
| 1057 | 
            +
                                model_prev_list.append(self.model_fn(x, vec_t))
         | 
| 1058 | 
            +
                                t_prev_list.append(vec_t)
         | 
| 1059 | 
            +
                            # Compute the remaining values by `order`-th order multistep DPM-Solver.
         | 
| 1060 | 
            +
                            for step in tqdm(range(order, steps + 1), desc="DPM multistep"):
         | 
| 1061 | 
            +
                                vec_t = timesteps[step].expand(x.shape[0])
         | 
| 1062 | 
            +
                                if lower_order_final and steps < 15:
         | 
| 1063 | 
            +
                                    step_order = min(order, steps + 1 - step)
         | 
| 1064 | 
            +
                                else:
         | 
| 1065 | 
            +
                                    step_order = order
         | 
| 1066 | 
            +
                                x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order,
         | 
| 1067 | 
            +
                                                                     solver_type=solver_type)
         | 
| 1068 | 
            +
                                for i in range(order - 1):
         | 
| 1069 | 
            +
                                    t_prev_list[i] = t_prev_list[i + 1]
         | 
| 1070 | 
            +
                                    model_prev_list[i] = model_prev_list[i + 1]
         | 
| 1071 | 
            +
                                t_prev_list[-1] = vec_t
         | 
| 1072 | 
            +
                                # We do not need to evaluate the final model value.
         | 
| 1073 | 
            +
                                if step < steps:
         | 
| 1074 | 
            +
                                    model_prev_list[-1] = self.model_fn(x, vec_t)
         | 
| 1075 | 
            +
                    elif method in ['singlestep', 'singlestep_fixed']:
         | 
| 1076 | 
            +
                        if method == 'singlestep':
         | 
| 1077 | 
            +
                            timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
         | 
| 1078 | 
            +
                                                                                                          skip_type=skip_type,
         | 
| 1079 | 
            +
                                                                                                          t_T=t_T, t_0=t_0,
         | 
| 1080 | 
            +
                                                                                                          device=device)
         | 
| 1081 | 
            +
                        elif method == 'singlestep_fixed':
         | 
| 1082 | 
            +
                            K = steps // order
         | 
| 1083 | 
            +
                            orders = [order, ] * K
         | 
| 1084 | 
            +
                            timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
         | 
| 1085 | 
            +
                        for i, order in enumerate(orders):
         | 
| 1086 | 
            +
                            t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
         | 
| 1087 | 
            +
                            timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
         | 
| 1088 | 
            +
                                                                  N=order, device=device)
         | 
| 1089 | 
            +
                            lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
         | 
| 1090 | 
            +
                            vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
         | 
| 1091 | 
            +
                            h = lambda_inner[-1] - lambda_inner[0]
         | 
| 1092 | 
            +
                            r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
         | 
| 1093 | 
            +
                            r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
         | 
| 1094 | 
            +
                            x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
         | 
| 1095 | 
            +
                    if denoise_to_zero:
         | 
| 1096 | 
            +
                        x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
         | 
| 1097 | 
            +
                    return x
         | 
| 1098 | 
            +
             | 
| 1099 | 
            +
             | 
| 1100 | 
            +
            #############################################################
         | 
| 1101 | 
            +
            # other utility functions
         | 
| 1102 | 
            +
            #############################################################
         | 
| 1103 | 
            +
             | 
| 1104 | 
            +
            def interpolate_fn(x, xp, yp):
         | 
| 1105 | 
            +
                """
         | 
| 1106 | 
            +
                A piecewise linear function y = f(x), using xp and yp as keypoints.
         | 
| 1107 | 
            +
                We implement f(x) in a differentiable way (i.e. applicable for autograd).
         | 
| 1108 | 
            +
                The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
         | 
| 1109 | 
            +
                Args:
         | 
| 1110 | 
            +
                    x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
         | 
| 1111 | 
            +
                    xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
         | 
| 1112 | 
            +
                    yp: PyTorch tensor with shape [C, K].
         | 
| 1113 | 
            +
                Returns:
         | 
| 1114 | 
            +
                    The function values f(x), with shape [N, C].
         | 
| 1115 | 
            +
                """
         | 
| 1116 | 
            +
                N, K = x.shape[0], xp.shape[1]
         | 
| 1117 | 
            +
                all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
         | 
| 1118 | 
            +
                sorted_all_x, x_indices = torch.sort(all_x, dim=2)
         | 
| 1119 | 
            +
                x_idx = torch.argmin(x_indices, dim=2)
         | 
| 1120 | 
            +
                cand_start_idx = x_idx - 1
         | 
| 1121 | 
            +
                start_idx = torch.where(
         | 
| 1122 | 
            +
                    torch.eq(x_idx, 0),
         | 
| 1123 | 
            +
                    torch.tensor(1, device=x.device),
         | 
| 1124 | 
            +
                    torch.where(
         | 
| 1125 | 
            +
                        torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
         | 
| 1126 | 
            +
                    ),
         | 
| 1127 | 
            +
                )
         | 
| 1128 | 
            +
                end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
         | 
| 1129 | 
            +
                start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
         | 
| 1130 | 
            +
                end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
         | 
| 1131 | 
            +
                start_idx2 = torch.where(
         | 
| 1132 | 
            +
                    torch.eq(x_idx, 0),
         | 
| 1133 | 
            +
                    torch.tensor(0, device=x.device),
         | 
| 1134 | 
            +
                    torch.where(
         | 
| 1135 | 
            +
                        torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
         | 
| 1136 | 
            +
                    ),
         | 
| 1137 | 
            +
                )
         | 
| 1138 | 
            +
                y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
         | 
| 1139 | 
            +
                start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
         | 
| 1140 | 
            +
                end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
         | 
| 1141 | 
            +
                cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
         | 
| 1142 | 
            +
                return cand
         | 
| 1143 | 
            +
             | 
| 1144 | 
            +
             | 
| 1145 | 
            +
            def expand_dims(v, dims):
         | 
| 1146 | 
            +
                """
         | 
| 1147 | 
            +
                Expand the tensor `v` to the dim `dims`.
         | 
| 1148 | 
            +
                Args:
         | 
| 1149 | 
            +
                    `v`: a PyTorch tensor with shape [N].
         | 
| 1150 | 
            +
                    `dim`: a `int`.
         | 
| 1151 | 
            +
                Returns:
         | 
| 1152 | 
            +
                    a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
         | 
| 1153 | 
            +
                """
         | 
| 1154 | 
            +
                return v[(...,) + (None,) * (dims - 1)]
         | 
    	
        ldm/models/diffusion/dpm_solver/sampler.py
    ADDED
    
    | @@ -0,0 +1,87 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """SAMPLING ONLY."""
         | 
| 2 | 
            +
            import torch
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
         | 
| 5 | 
            +
             | 
| 6 | 
            +
             | 
| 7 | 
            +
            MODEL_TYPES = {
         | 
| 8 | 
            +
                "eps": "noise",
         | 
| 9 | 
            +
                "v": "v"
         | 
| 10 | 
            +
            }
         | 
| 11 | 
            +
             | 
| 12 | 
            +
             | 
| 13 | 
            +
            class DPMSolverSampler(object):
         | 
| 14 | 
            +
                def __init__(self, model, **kwargs):
         | 
| 15 | 
            +
                    super().__init__()
         | 
| 16 | 
            +
                    self.model = model
         | 
| 17 | 
            +
                    to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
         | 
| 18 | 
            +
                    self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
         | 
| 19 | 
            +
             | 
| 20 | 
            +
                def register_buffer(self, name, attr):
         | 
| 21 | 
            +
                    if type(attr) == torch.Tensor:
         | 
| 22 | 
            +
                        if attr.device != torch.device("cuda"):
         | 
| 23 | 
            +
                            attr = attr.to(torch.device("cuda"))
         | 
| 24 | 
            +
                    setattr(self, name, attr)
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                @torch.no_grad()
         | 
| 27 | 
            +
                def sample(self,
         | 
| 28 | 
            +
                           S,
         | 
| 29 | 
            +
                           batch_size,
         | 
| 30 | 
            +
                           shape,
         | 
| 31 | 
            +
                           conditioning=None,
         | 
| 32 | 
            +
                           callback=None,
         | 
| 33 | 
            +
                           normals_sequence=None,
         | 
| 34 | 
            +
                           img_callback=None,
         | 
| 35 | 
            +
                           quantize_x0=False,
         | 
| 36 | 
            +
                           eta=0.,
         | 
| 37 | 
            +
                           mask=None,
         | 
| 38 | 
            +
                           x0=None,
         | 
| 39 | 
            +
                           temperature=1.,
         | 
| 40 | 
            +
                           noise_dropout=0.,
         | 
| 41 | 
            +
                           score_corrector=None,
         | 
| 42 | 
            +
                           corrector_kwargs=None,
         | 
| 43 | 
            +
                           verbose=True,
         | 
| 44 | 
            +
                           x_T=None,
         | 
| 45 | 
            +
                           log_every_t=100,
         | 
| 46 | 
            +
                           unconditional_guidance_scale=1.,
         | 
| 47 | 
            +
                           unconditional_conditioning=None,
         | 
| 48 | 
            +
                           # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
         | 
| 49 | 
            +
                           **kwargs
         | 
| 50 | 
            +
                           ):
         | 
| 51 | 
            +
                    if conditioning is not None:
         | 
| 52 | 
            +
                        if isinstance(conditioning, dict):
         | 
| 53 | 
            +
                            cbs = conditioning[list(conditioning.keys())[0]].shape[0]
         | 
| 54 | 
            +
                            if cbs != batch_size:
         | 
| 55 | 
            +
                                print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
         | 
| 56 | 
            +
                        else:
         | 
| 57 | 
            +
                            if conditioning.shape[0] != batch_size:
         | 
| 58 | 
            +
                                print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                    # sampling
         | 
| 61 | 
            +
                    C, H, W = shape
         | 
| 62 | 
            +
                    size = (batch_size, C, H, W)
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                    print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                    device = self.model.betas.device
         | 
| 67 | 
            +
                    if x_T is None:
         | 
| 68 | 
            +
                        img = torch.randn(size, device=device)
         | 
| 69 | 
            +
                    else:
         | 
| 70 | 
            +
                        img = x_T
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                    ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                    model_fn = model_wrapper(
         | 
| 75 | 
            +
                        lambda x, t, c: self.model.apply_model(x, t, c),
         | 
| 76 | 
            +
                        ns,
         | 
| 77 | 
            +
                        model_type=MODEL_TYPES[self.model.parameterization],
         | 
| 78 | 
            +
                        guidance_type="classifier-free",
         | 
| 79 | 
            +
                        condition=conditioning,
         | 
| 80 | 
            +
                        unconditional_condition=unconditional_conditioning,
         | 
| 81 | 
            +
                        guidance_scale=unconditional_guidance_scale,
         | 
| 82 | 
            +
                    )
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                    dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
         | 
| 85 | 
            +
                    x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True)
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                    return x.to(device), None
         | 
    	
        ldm/models/diffusion/plms.py
    ADDED
    
    | @@ -0,0 +1,244 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """SAMPLING ONLY."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            import numpy as np
         | 
| 5 | 
            +
            from tqdm import tqdm
         | 
| 6 | 
            +
            from functools import partial
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
         | 
| 9 | 
            +
            from ldm.models.diffusion.sampling_util import norm_thresholding
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            class PLMSSampler(object):
         | 
| 13 | 
            +
                def __init__(self, model, schedule="linear", **kwargs):
         | 
| 14 | 
            +
                    super().__init__()
         | 
| 15 | 
            +
                    self.model = model
         | 
| 16 | 
            +
                    self.ddpm_num_timesteps = model.num_timesteps
         | 
| 17 | 
            +
                    self.schedule = schedule
         | 
| 18 | 
            +
             | 
| 19 | 
            +
                def register_buffer(self, name, attr):
         | 
| 20 | 
            +
                    if type(attr) == torch.Tensor:
         | 
| 21 | 
            +
                        if attr.device != torch.device("cuda"):
         | 
| 22 | 
            +
                            attr = attr.to(torch.device("cuda"))
         | 
| 23 | 
            +
                    setattr(self, name, attr)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
         | 
| 26 | 
            +
                    if ddim_eta != 0:
         | 
| 27 | 
            +
                        raise ValueError('ddim_eta must be 0 for PLMS')
         | 
| 28 | 
            +
                    self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
         | 
| 29 | 
            +
                                                              num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
         | 
| 30 | 
            +
                    alphas_cumprod = self.model.alphas_cumprod
         | 
| 31 | 
            +
                    assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
         | 
| 32 | 
            +
                    to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                    self.register_buffer('betas', to_torch(self.model.betas))
         | 
| 35 | 
            +
                    self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
         | 
| 36 | 
            +
                    self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                    # calculations for diffusion q(x_t | x_{t-1}) and others
         | 
| 39 | 
            +
                    self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
         | 
| 40 | 
            +
                    self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
         | 
| 41 | 
            +
                    self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
         | 
| 42 | 
            +
                    self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
         | 
| 43 | 
            +
                    self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                    # ddim sampling parameters
         | 
| 46 | 
            +
                    ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
         | 
| 47 | 
            +
                                                                                               ddim_timesteps=self.ddim_timesteps,
         | 
| 48 | 
            +
                                                                                               eta=ddim_eta,verbose=verbose)
         | 
| 49 | 
            +
                    self.register_buffer('ddim_sigmas', ddim_sigmas)
         | 
| 50 | 
            +
                    self.register_buffer('ddim_alphas', ddim_alphas)
         | 
| 51 | 
            +
                    self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
         | 
| 52 | 
            +
                    self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
         | 
| 53 | 
            +
                    sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
         | 
| 54 | 
            +
                        (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
         | 
| 55 | 
            +
                                    1 - self.alphas_cumprod / self.alphas_cumprod_prev))
         | 
| 56 | 
            +
                    self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                @torch.no_grad()
         | 
| 59 | 
            +
                def sample(self,
         | 
| 60 | 
            +
                           S,
         | 
| 61 | 
            +
                           batch_size,
         | 
| 62 | 
            +
                           shape,
         | 
| 63 | 
            +
                           conditioning=None,
         | 
| 64 | 
            +
                           callback=None,
         | 
| 65 | 
            +
                           normals_sequence=None,
         | 
| 66 | 
            +
                           img_callback=None,
         | 
| 67 | 
            +
                           quantize_x0=False,
         | 
| 68 | 
            +
                           eta=0.,
         | 
| 69 | 
            +
                           mask=None,
         | 
| 70 | 
            +
                           x0=None,
         | 
| 71 | 
            +
                           temperature=1.,
         | 
| 72 | 
            +
                           noise_dropout=0.,
         | 
| 73 | 
            +
                           score_corrector=None,
         | 
| 74 | 
            +
                           corrector_kwargs=None,
         | 
| 75 | 
            +
                           verbose=True,
         | 
| 76 | 
            +
                           x_T=None,
         | 
| 77 | 
            +
                           log_every_t=100,
         | 
| 78 | 
            +
                           unconditional_guidance_scale=1.,
         | 
| 79 | 
            +
                           unconditional_conditioning=None,
         | 
| 80 | 
            +
                           # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
         | 
| 81 | 
            +
                           dynamic_threshold=None,
         | 
| 82 | 
            +
                           **kwargs
         | 
| 83 | 
            +
                           ):
         | 
| 84 | 
            +
                    if conditioning is not None:
         | 
| 85 | 
            +
                        if isinstance(conditioning, dict):
         | 
| 86 | 
            +
                            cbs = conditioning[list(conditioning.keys())[0]].shape[0]
         | 
| 87 | 
            +
                            if cbs != batch_size:
         | 
| 88 | 
            +
                                print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
         | 
| 89 | 
            +
                        else:
         | 
| 90 | 
            +
                            if conditioning.shape[0] != batch_size:
         | 
| 91 | 
            +
                                print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                    self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
         | 
| 94 | 
            +
                    # sampling
         | 
| 95 | 
            +
                    C, H, W = shape
         | 
| 96 | 
            +
                    size = (batch_size, C, H, W)
         | 
| 97 | 
            +
                    print(f'Data shape for PLMS sampling is {size}')
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                    samples, intermediates = self.plms_sampling(conditioning, size,
         | 
| 100 | 
            +
                                                                callback=callback,
         | 
| 101 | 
            +
                                                                img_callback=img_callback,
         | 
| 102 | 
            +
                                                                quantize_denoised=quantize_x0,
         | 
| 103 | 
            +
                                                                mask=mask, x0=x0,
         | 
| 104 | 
            +
                                                                ddim_use_original_steps=False,
         | 
| 105 | 
            +
                                                                noise_dropout=noise_dropout,
         | 
| 106 | 
            +
                                                                temperature=temperature,
         | 
| 107 | 
            +
                                                                score_corrector=score_corrector,
         | 
| 108 | 
            +
                                                                corrector_kwargs=corrector_kwargs,
         | 
| 109 | 
            +
                                                                x_T=x_T,
         | 
| 110 | 
            +
                                                                log_every_t=log_every_t,
         | 
| 111 | 
            +
                                                                unconditional_guidance_scale=unconditional_guidance_scale,
         | 
| 112 | 
            +
                                                                unconditional_conditioning=unconditional_conditioning,
         | 
| 113 | 
            +
                                                                dynamic_threshold=dynamic_threshold,
         | 
| 114 | 
            +
                                                                )
         | 
| 115 | 
            +
                    return samples, intermediates
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                @torch.no_grad()
         | 
| 118 | 
            +
                def plms_sampling(self, cond, shape,
         | 
| 119 | 
            +
                                  x_T=None, ddim_use_original_steps=False,
         | 
| 120 | 
            +
                                  callback=None, timesteps=None, quantize_denoised=False,
         | 
| 121 | 
            +
                                  mask=None, x0=None, img_callback=None, log_every_t=100,
         | 
| 122 | 
            +
                                  temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
         | 
| 123 | 
            +
                                  unconditional_guidance_scale=1., unconditional_conditioning=None,
         | 
| 124 | 
            +
                                  dynamic_threshold=None):
         | 
| 125 | 
            +
                    device = self.model.betas.device
         | 
| 126 | 
            +
                    b = shape[0]
         | 
| 127 | 
            +
                    if x_T is None:
         | 
| 128 | 
            +
                        img = torch.randn(shape, device=device)
         | 
| 129 | 
            +
                    else:
         | 
| 130 | 
            +
                        img = x_T
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                    if timesteps is None:
         | 
| 133 | 
            +
                        timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
         | 
| 134 | 
            +
                    elif timesteps is not None and not ddim_use_original_steps:
         | 
| 135 | 
            +
                        subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
         | 
| 136 | 
            +
                        timesteps = self.ddim_timesteps[:subset_end]
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                    intermediates = {'x_inter': [img], 'pred_x0': [img]}
         | 
| 139 | 
            +
                    time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
         | 
| 140 | 
            +
                    total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
         | 
| 141 | 
            +
                    print(f"Running PLMS Sampling with {total_steps} timesteps")
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                    iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
         | 
| 144 | 
            +
                    old_eps = []
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                    for i, step in enumerate(iterator):
         | 
| 147 | 
            +
                        index = total_steps - i - 1
         | 
| 148 | 
            +
                        ts = torch.full((b,), step, device=device, dtype=torch.long)
         | 
| 149 | 
            +
                        ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                        if mask is not None:
         | 
| 152 | 
            +
                            assert x0 is not None
         | 
| 153 | 
            +
                            img_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass?
         | 
| 154 | 
            +
                            img = img_orig * mask + (1. - mask) * img
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                        outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
         | 
| 157 | 
            +
                                                  quantize_denoised=quantize_denoised, temperature=temperature,
         | 
| 158 | 
            +
                                                  noise_dropout=noise_dropout, score_corrector=score_corrector,
         | 
| 159 | 
            +
                                                  corrector_kwargs=corrector_kwargs,
         | 
| 160 | 
            +
                                                  unconditional_guidance_scale=unconditional_guidance_scale,
         | 
| 161 | 
            +
                                                  unconditional_conditioning=unconditional_conditioning,
         | 
| 162 | 
            +
                                                  old_eps=old_eps, t_next=ts_next,
         | 
| 163 | 
            +
                                                  dynamic_threshold=dynamic_threshold)
         | 
| 164 | 
            +
                        img, pred_x0, e_t = outs
         | 
| 165 | 
            +
                        old_eps.append(e_t)
         | 
| 166 | 
            +
                        if len(old_eps) >= 4:
         | 
| 167 | 
            +
                            old_eps.pop(0)
         | 
| 168 | 
            +
                        if callback: callback(i)
         | 
| 169 | 
            +
                        if img_callback: img_callback(pred_x0, i)
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                        if index % log_every_t == 0 or index == total_steps - 1:
         | 
| 172 | 
            +
                            intermediates['x_inter'].append(img)
         | 
| 173 | 
            +
                            intermediates['pred_x0'].append(pred_x0)
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                    return img, intermediates
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                @torch.no_grad()
         | 
| 178 | 
            +
                def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
         | 
| 179 | 
            +
                                  temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
         | 
| 180 | 
            +
                                  unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
         | 
| 181 | 
            +
                                  dynamic_threshold=None):
         | 
| 182 | 
            +
                    b, *_, device = *x.shape, x.device
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                    def get_model_output(x, t):
         | 
| 185 | 
            +
                        if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
         | 
| 186 | 
            +
                            e_t = self.model.apply_model(x, t, c)
         | 
| 187 | 
            +
                        else:
         | 
| 188 | 
            +
                            x_in = torch.cat([x] * 2)
         | 
| 189 | 
            +
                            t_in = torch.cat([t] * 2)
         | 
| 190 | 
            +
                            c_in = torch.cat([unconditional_conditioning, c])
         | 
| 191 | 
            +
                            e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
         | 
| 192 | 
            +
                            e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                        if score_corrector is not None:
         | 
| 195 | 
            +
                            assert self.model.parameterization == "eps"
         | 
| 196 | 
            +
                            e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                        return e_t
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
         | 
| 201 | 
            +
                    alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
         | 
| 202 | 
            +
                    sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
         | 
| 203 | 
            +
                    sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                    def get_x_prev_and_pred_x0(e_t, index):
         | 
| 206 | 
            +
                        # select parameters corresponding to the currently considered timestep
         | 
| 207 | 
            +
                        a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
         | 
| 208 | 
            +
                        a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
         | 
| 209 | 
            +
                        sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
         | 
| 210 | 
            +
                        sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                        # current prediction for x_0
         | 
| 213 | 
            +
                        pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
         | 
| 214 | 
            +
                        if quantize_denoised:
         | 
| 215 | 
            +
                            pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
         | 
| 216 | 
            +
                        if dynamic_threshold is not None:
         | 
| 217 | 
            +
                            pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
         | 
| 218 | 
            +
                        # direction pointing to x_t
         | 
| 219 | 
            +
                        dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
         | 
| 220 | 
            +
                        noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
         | 
| 221 | 
            +
                        if noise_dropout > 0.:
         | 
| 222 | 
            +
                            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
         | 
| 223 | 
            +
                        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
         | 
| 224 | 
            +
                        return x_prev, pred_x0
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                    e_t = get_model_output(x, t)
         | 
| 227 | 
            +
                    if len(old_eps) == 0:
         | 
| 228 | 
            +
                        # Pseudo Improved Euler (2nd order)
         | 
| 229 | 
            +
                        x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
         | 
| 230 | 
            +
                        e_t_next = get_model_output(x_prev, t_next)
         | 
| 231 | 
            +
                        e_t_prime = (e_t + e_t_next) / 2
         | 
| 232 | 
            +
                    elif len(old_eps) == 1:
         | 
| 233 | 
            +
                        # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
         | 
| 234 | 
            +
                        e_t_prime = (3 * e_t - old_eps[-1]) / 2
         | 
| 235 | 
            +
                    elif len(old_eps) == 2:
         | 
| 236 | 
            +
                        # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
         | 
| 237 | 
            +
                        e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
         | 
| 238 | 
            +
                    elif len(old_eps) >= 3:
         | 
| 239 | 
            +
                        # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
         | 
| 240 | 
            +
                        e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
         | 
| 241 | 
            +
             | 
| 242 | 
            +
                    x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                    return x_prev, pred_x0, e_t
         | 
    	
        ldm/models/diffusion/sampling_util.py
    ADDED
    
    | @@ -0,0 +1,22 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            import numpy as np
         | 
| 3 | 
            +
             | 
| 4 | 
            +
             | 
| 5 | 
            +
            def append_dims(x, target_dims):
         | 
| 6 | 
            +
                """Appends dimensions to the end of a tensor until it has target_dims dimensions.
         | 
| 7 | 
            +
                From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
         | 
| 8 | 
            +
                dims_to_append = target_dims - x.ndim
         | 
| 9 | 
            +
                if dims_to_append < 0:
         | 
| 10 | 
            +
                    raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
         | 
| 11 | 
            +
                return x[(...,) + (None,) * dims_to_append]
         | 
| 12 | 
            +
             | 
| 13 | 
            +
             | 
| 14 | 
            +
            def norm_thresholding(x0, value):
         | 
| 15 | 
            +
                s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
         | 
| 16 | 
            +
                return x0 * (value / s)
         | 
| 17 | 
            +
             | 
| 18 | 
            +
             | 
| 19 | 
            +
            def spatial_norm_thresholding(x0, value):
         | 
| 20 | 
            +
                # b c h w
         | 
| 21 | 
            +
                s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
         | 
| 22 | 
            +
                return x0 * (value / s)
         | 
    	
        ldm/modules/__pycache__/attention.cpython-310.pyc
    ADDED
    
    | Binary file (10.3 kB). View file | 
|  | 
    	
        ldm/modules/__pycache__/attention.cpython-38.pyc
    ADDED
    
    | Binary file (10.4 kB). View file | 
|  | 
    	
        ldm/modules/__pycache__/attention.cpython-39.pyc
    ADDED
    
    | Binary file (10.4 kB). View file | 
|  | 
    	
        ldm/modules/__pycache__/ema.cpython-310.pyc
    ADDED
    
    | Binary file (3.19 kB). View file | 
|  | 
    	
        ldm/modules/__pycache__/ema.cpython-38.pyc
    ADDED
    
    | Binary file (3.18 kB). View file | 
|  | 
    	
        ldm/modules/__pycache__/ema.cpython-39.pyc
    ADDED
    
    | Binary file (3.18 kB). View file | 
|  | 
    	
        ldm/modules/attention.py
    ADDED
    
    | @@ -0,0 +1,341 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from inspect import isfunction
         | 
| 2 | 
            +
            import math
         | 
| 3 | 
            +
            import torch
         | 
| 4 | 
            +
            import torch.nn.functional as F
         | 
| 5 | 
            +
            from torch import nn, einsum
         | 
| 6 | 
            +
            from einops import rearrange, repeat
         | 
| 7 | 
            +
            from typing import Optional, Any
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from ldm.modules.diffusionmodules.util import checkpoint
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            try:
         | 
| 13 | 
            +
                import xformers
         | 
| 14 | 
            +
                import xformers.ops
         | 
| 15 | 
            +
                XFORMERS_IS_AVAILBLE = True
         | 
| 16 | 
            +
            except:
         | 
| 17 | 
            +
                XFORMERS_IS_AVAILBLE = False
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            # CrossAttn precision handling
         | 
| 20 | 
            +
            import os
         | 
| 21 | 
            +
            _ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            def exists(val):
         | 
| 24 | 
            +
                return val is not None
         | 
| 25 | 
            +
             | 
| 26 | 
            +
             | 
| 27 | 
            +
            def uniq(arr):
         | 
| 28 | 
            +
                return{el: True for el in arr}.keys()
         | 
| 29 | 
            +
             | 
| 30 | 
            +
             | 
| 31 | 
            +
            def default(val, d):
         | 
| 32 | 
            +
                if exists(val):
         | 
| 33 | 
            +
                    return val
         | 
| 34 | 
            +
                return d() if isfunction(d) else d
         | 
| 35 | 
            +
             | 
| 36 | 
            +
             | 
| 37 | 
            +
            def max_neg_value(t):
         | 
| 38 | 
            +
                return -torch.finfo(t.dtype).max
         | 
| 39 | 
            +
             | 
| 40 | 
            +
             | 
| 41 | 
            +
            def init_(tensor):
         | 
| 42 | 
            +
                dim = tensor.shape[-1]
         | 
| 43 | 
            +
                std = 1 / math.sqrt(dim)
         | 
| 44 | 
            +
                tensor.uniform_(-std, std)
         | 
| 45 | 
            +
                return tensor
         | 
| 46 | 
            +
             | 
| 47 | 
            +
             | 
| 48 | 
            +
            # feedforward
         | 
| 49 | 
            +
            class GEGLU(nn.Module):
         | 
| 50 | 
            +
                def __init__(self, dim_in, dim_out):
         | 
| 51 | 
            +
                    super().__init__()
         | 
| 52 | 
            +
                    self.proj = nn.Linear(dim_in, dim_out * 2)
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                def forward(self, x):
         | 
| 55 | 
            +
                    x, gate = self.proj(x).chunk(2, dim=-1)
         | 
| 56 | 
            +
                    return x * F.gelu(gate)
         | 
| 57 | 
            +
             | 
| 58 | 
            +
             | 
| 59 | 
            +
            class FeedForward(nn.Module):
         | 
| 60 | 
            +
                def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
         | 
| 61 | 
            +
                    super().__init__()
         | 
| 62 | 
            +
                    inner_dim = int(dim * mult)
         | 
| 63 | 
            +
                    dim_out = default(dim_out, dim)
         | 
| 64 | 
            +
                    project_in = nn.Sequential(
         | 
| 65 | 
            +
                        nn.Linear(dim, inner_dim),
         | 
| 66 | 
            +
                        nn.GELU()
         | 
| 67 | 
            +
                    ) if not glu else GEGLU(dim, inner_dim)
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                    self.net = nn.Sequential(
         | 
| 70 | 
            +
                        project_in,
         | 
| 71 | 
            +
                        nn.Dropout(dropout),
         | 
| 72 | 
            +
                        nn.Linear(inner_dim, dim_out)
         | 
| 73 | 
            +
                    )
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                def forward(self, x):
         | 
| 76 | 
            +
                    return self.net(x)
         | 
| 77 | 
            +
             | 
| 78 | 
            +
             | 
| 79 | 
            +
            def zero_module(module):
         | 
| 80 | 
            +
                """
         | 
| 81 | 
            +
                Zero out the parameters of a module and return it.
         | 
| 82 | 
            +
                """
         | 
| 83 | 
            +
                for p in module.parameters():
         | 
| 84 | 
            +
                    p.detach().zero_()
         | 
| 85 | 
            +
                return module
         | 
| 86 | 
            +
             | 
| 87 | 
            +
             | 
| 88 | 
            +
            def Normalize(in_channels):
         | 
| 89 | 
            +
                return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
         | 
| 90 | 
            +
             | 
| 91 | 
            +
             | 
| 92 | 
            +
            class SpatialSelfAttention(nn.Module):
         | 
| 93 | 
            +
                def __init__(self, in_channels):
         | 
| 94 | 
            +
                    super().__init__()
         | 
| 95 | 
            +
                    self.in_channels = in_channels
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                    self.norm = Normalize(in_channels)
         | 
| 98 | 
            +
                    self.q = torch.nn.Conv2d(in_channels,
         | 
| 99 | 
            +
                                             in_channels,
         | 
| 100 | 
            +
                                             kernel_size=1,
         | 
| 101 | 
            +
                                             stride=1,
         | 
| 102 | 
            +
                                             padding=0)
         | 
| 103 | 
            +
                    self.k = torch.nn.Conv2d(in_channels,
         | 
| 104 | 
            +
                                             in_channels,
         | 
| 105 | 
            +
                                             kernel_size=1,
         | 
| 106 | 
            +
                                             stride=1,
         | 
| 107 | 
            +
                                             padding=0)
         | 
| 108 | 
            +
                    self.v = torch.nn.Conv2d(in_channels,
         | 
| 109 | 
            +
                                             in_channels,
         | 
| 110 | 
            +
                                             kernel_size=1,
         | 
| 111 | 
            +
                                             stride=1,
         | 
| 112 | 
            +
                                             padding=0)
         | 
| 113 | 
            +
                    self.proj_out = torch.nn.Conv2d(in_channels,
         | 
| 114 | 
            +
                                                    in_channels,
         | 
| 115 | 
            +
                                                    kernel_size=1,
         | 
| 116 | 
            +
                                                    stride=1,
         | 
| 117 | 
            +
                                                    padding=0)
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                def forward(self, x):
         | 
| 120 | 
            +
                    h_ = x
         | 
| 121 | 
            +
                    h_ = self.norm(h_)
         | 
| 122 | 
            +
                    q = self.q(h_)
         | 
| 123 | 
            +
                    k = self.k(h_)
         | 
| 124 | 
            +
                    v = self.v(h_)
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                    # compute attention
         | 
| 127 | 
            +
                    b,c,h,w = q.shape
         | 
| 128 | 
            +
                    q = rearrange(q, 'b c h w -> b (h w) c')
         | 
| 129 | 
            +
                    k = rearrange(k, 'b c h w -> b c (h w)')
         | 
| 130 | 
            +
                    w_ = torch.einsum('bij,bjk->bik', q, k)
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                    w_ = w_ * (int(c)**(-0.5))
         | 
| 133 | 
            +
                    w_ = torch.nn.functional.softmax(w_, dim=2)
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                    # attend to values
         | 
| 136 | 
            +
                    v = rearrange(v, 'b c h w -> b c (h w)')
         | 
| 137 | 
            +
                    w_ = rearrange(w_, 'b i j -> b j i')
         | 
| 138 | 
            +
                    h_ = torch.einsum('bij,bjk->bik', v, w_)
         | 
| 139 | 
            +
                    h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
         | 
| 140 | 
            +
                    h_ = self.proj_out(h_)
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                    return x+h_
         | 
| 143 | 
            +
             | 
| 144 | 
            +
             | 
| 145 | 
            +
            class CrossAttention(nn.Module):
         | 
| 146 | 
            +
                def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
         | 
| 147 | 
            +
                    super().__init__()
         | 
| 148 | 
            +
                    inner_dim = dim_head * heads
         | 
| 149 | 
            +
                    context_dim = default(context_dim, query_dim)
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                    self.scale = dim_head ** -0.5
         | 
| 152 | 
            +
                    self.heads = heads
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                    self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
         | 
| 155 | 
            +
                    self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 156 | 
            +
                    self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                    self.to_out = nn.Sequential(
         | 
| 159 | 
            +
                        nn.Linear(inner_dim, query_dim),
         | 
| 160 | 
            +
                        nn.Dropout(dropout)
         | 
| 161 | 
            +
                    )
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                def forward(self, x, context=None, mask=None):
         | 
| 164 | 
            +
                    h = self.heads
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                    q = self.to_q(x)
         | 
| 167 | 
            +
                    context = default(context, x)
         | 
| 168 | 
            +
                    k = self.to_k(context)
         | 
| 169 | 
            +
                    v = self.to_v(context)
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                    q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                    # force cast to fp32 to avoid overflowing
         | 
| 174 | 
            +
                    if _ATTN_PRECISION =="fp32":
         | 
| 175 | 
            +
                        with torch.autocast(enabled=False, device_type = 'cuda'):
         | 
| 176 | 
            +
                            q, k = q.float(), k.float()
         | 
| 177 | 
            +
                            sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
         | 
| 178 | 
            +
                    else:
         | 
| 179 | 
            +
                        sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
         | 
| 180 | 
            +
                    
         | 
| 181 | 
            +
                    del q, k
         | 
| 182 | 
            +
                
         | 
| 183 | 
            +
                    if exists(mask):
         | 
| 184 | 
            +
                        mask = rearrange(mask, 'b ... -> b (...)')
         | 
| 185 | 
            +
                        max_neg_value = -torch.finfo(sim.dtype).max
         | 
| 186 | 
            +
                        mask = repeat(mask, 'b j -> (b h) () j', h=h)
         | 
| 187 | 
            +
                        sim.masked_fill_(~mask, max_neg_value)
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                    # attention, what we cannot get enough of
         | 
| 190 | 
            +
                    sim = sim.softmax(dim=-1)
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                    out = einsum('b i j, b j d -> b i d', sim, v)
         | 
| 193 | 
            +
                    out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
         | 
| 194 | 
            +
                    return self.to_out(out)
         | 
| 195 | 
            +
             | 
| 196 | 
            +
             | 
| 197 | 
            +
            class MemoryEfficientCrossAttention(nn.Module):
         | 
| 198 | 
            +
                # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
         | 
| 199 | 
            +
                def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
         | 
| 200 | 
            +
                    super().__init__()
         | 
| 201 | 
            +
                    print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
         | 
| 202 | 
            +
                          f"{heads} heads.")
         | 
| 203 | 
            +
                    inner_dim = dim_head * heads
         | 
| 204 | 
            +
                    context_dim = default(context_dim, query_dim)
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                    self.heads = heads
         | 
| 207 | 
            +
                    self.dim_head = dim_head
         | 
| 208 | 
            +
             | 
| 209 | 
            +
                    self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
         | 
| 210 | 
            +
                    self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 211 | 
            +
                    self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                    self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
         | 
| 214 | 
            +
                    self.attention_op: Optional[Any] = None
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                def forward(self, x, context=None, mask=None):
         | 
| 217 | 
            +
                    q = self.to_q(x)
         | 
| 218 | 
            +
                    context = default(context, x)
         | 
| 219 | 
            +
                    k = self.to_k(context)
         | 
| 220 | 
            +
                    v = self.to_v(context)
         | 
| 221 | 
            +
             | 
| 222 | 
            +
                    b, _, _ = q.shape
         | 
| 223 | 
            +
                    q, k, v = map(
         | 
| 224 | 
            +
                        lambda t: t.unsqueeze(3)
         | 
| 225 | 
            +
                        .reshape(b, t.shape[1], self.heads, self.dim_head)
         | 
| 226 | 
            +
                        .permute(0, 2, 1, 3)
         | 
| 227 | 
            +
                        .reshape(b * self.heads, t.shape[1], self.dim_head)
         | 
| 228 | 
            +
                        .contiguous(),
         | 
| 229 | 
            +
                        (q, k, v),
         | 
| 230 | 
            +
                    )
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                    # actually compute the attention, what we cannot get enough of
         | 
| 233 | 
            +
                    out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
         | 
| 234 | 
            +
             | 
| 235 | 
            +
                    if exists(mask):
         | 
| 236 | 
            +
                        raise NotImplementedError
         | 
| 237 | 
            +
                    out = (
         | 
| 238 | 
            +
                        out.unsqueeze(0)
         | 
| 239 | 
            +
                        .reshape(b, self.heads, out.shape[1], self.dim_head)
         | 
| 240 | 
            +
                        .permute(0, 2, 1, 3)
         | 
| 241 | 
            +
                        .reshape(b, out.shape[1], self.heads * self.dim_head)
         | 
| 242 | 
            +
                    )
         | 
| 243 | 
            +
                    return self.to_out(out)
         | 
| 244 | 
            +
             | 
| 245 | 
            +
             | 
| 246 | 
            +
            class BasicTransformerBlock(nn.Module):
         | 
| 247 | 
            +
                ATTENTION_MODES = {
         | 
| 248 | 
            +
                    "softmax": CrossAttention,  # vanilla attention
         | 
| 249 | 
            +
                    "softmax-xformers": MemoryEfficientCrossAttention
         | 
| 250 | 
            +
                }
         | 
| 251 | 
            +
                def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
         | 
| 252 | 
            +
                             disable_self_attn=False):
         | 
| 253 | 
            +
                    super().__init__()
         | 
| 254 | 
            +
                    attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
         | 
| 255 | 
            +
                    assert attn_mode in self.ATTENTION_MODES
         | 
| 256 | 
            +
                    attn_cls = self.ATTENTION_MODES[attn_mode]
         | 
| 257 | 
            +
                    self.disable_self_attn = disable_self_attn
         | 
| 258 | 
            +
                    self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
         | 
| 259 | 
            +
                                          context_dim=context_dim if self.disable_self_attn else None)  # is a self-attention if not self.disable_self_attn
         | 
| 260 | 
            +
                    self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
         | 
| 261 | 
            +
                    self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim,
         | 
| 262 | 
            +
                                          heads=n_heads, dim_head=d_head, dropout=dropout)  # is self-attn if context is none
         | 
| 263 | 
            +
                    self.norm1 = nn.LayerNorm(dim)
         | 
| 264 | 
            +
                    self.norm2 = nn.LayerNorm(dim)
         | 
| 265 | 
            +
                    self.norm3 = nn.LayerNorm(dim)
         | 
| 266 | 
            +
                    self.checkpoint = checkpoint
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                def forward(self, x, context=None):
         | 
| 269 | 
            +
                    return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
         | 
| 270 | 
            +
             | 
| 271 | 
            +
                def _forward(self, x, context=None):
         | 
| 272 | 
            +
                    x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
         | 
| 273 | 
            +
                    x = self.attn2(self.norm2(x), context=context) + x
         | 
| 274 | 
            +
                    x = self.ff(self.norm3(x)) + x
         | 
| 275 | 
            +
                    return x
         | 
| 276 | 
            +
             | 
| 277 | 
            +
             | 
| 278 | 
            +
            class SpatialTransformer(nn.Module):
         | 
| 279 | 
            +
                """
         | 
| 280 | 
            +
                Transformer block for image-like data.
         | 
| 281 | 
            +
                First, project the input (aka embedding)
         | 
| 282 | 
            +
                and reshape to b, t, d.
         | 
| 283 | 
            +
                Then apply standard transformer action.
         | 
| 284 | 
            +
                Finally, reshape to image
         | 
| 285 | 
            +
                NEW: use_linear for more efficiency instead of the 1x1 convs
         | 
| 286 | 
            +
                """
         | 
| 287 | 
            +
                def __init__(self, in_channels, n_heads, d_head,
         | 
| 288 | 
            +
                             depth=1, dropout=0., context_dim=None,
         | 
| 289 | 
            +
                             disable_self_attn=False, use_linear=False,
         | 
| 290 | 
            +
                             use_checkpoint=True):
         | 
| 291 | 
            +
                    super().__init__()
         | 
| 292 | 
            +
                    if exists(context_dim) and not isinstance(context_dim, list):
         | 
| 293 | 
            +
                        context_dim = [context_dim]
         | 
| 294 | 
            +
                    self.in_channels = in_channels
         | 
| 295 | 
            +
                    inner_dim = n_heads * d_head
         | 
| 296 | 
            +
                    self.norm = Normalize(in_channels)
         | 
| 297 | 
            +
                    if not use_linear:
         | 
| 298 | 
            +
                        self.proj_in = nn.Conv2d(in_channels,
         | 
| 299 | 
            +
                                                 inner_dim,
         | 
| 300 | 
            +
                                                 kernel_size=1,
         | 
| 301 | 
            +
                                                 stride=1,
         | 
| 302 | 
            +
                                                 padding=0)
         | 
| 303 | 
            +
                    else:
         | 
| 304 | 
            +
                        self.proj_in = nn.Linear(in_channels, inner_dim)
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                    self.transformer_blocks = nn.ModuleList(
         | 
| 307 | 
            +
                        [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
         | 
| 308 | 
            +
                                               disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
         | 
| 309 | 
            +
                            for d in range(depth)]
         | 
| 310 | 
            +
                    )
         | 
| 311 | 
            +
                    if not use_linear:
         | 
| 312 | 
            +
                        self.proj_out = zero_module(nn.Conv2d(inner_dim,
         | 
| 313 | 
            +
                                                              in_channels,
         | 
| 314 | 
            +
                                                              kernel_size=1,
         | 
| 315 | 
            +
                                                              stride=1,
         | 
| 316 | 
            +
                                                              padding=0))
         | 
| 317 | 
            +
                    else:
         | 
| 318 | 
            +
                        self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
         | 
| 319 | 
            +
                    self.use_linear = use_linear
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                def forward(self, x, context=None):
         | 
| 322 | 
            +
                    # note: if no context is given, cross-attention defaults to self-attention
         | 
| 323 | 
            +
                    if not isinstance(context, list):
         | 
| 324 | 
            +
                        context = [context]
         | 
| 325 | 
            +
                    b, c, h, w = x.shape
         | 
| 326 | 
            +
                    x_in = x
         | 
| 327 | 
            +
                    x = self.norm(x)
         | 
| 328 | 
            +
                    if not self.use_linear:
         | 
| 329 | 
            +
                        x = self.proj_in(x)
         | 
| 330 | 
            +
                    x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
         | 
| 331 | 
            +
                    if self.use_linear:
         | 
| 332 | 
            +
                        x = self.proj_in(x)
         | 
| 333 | 
            +
                    for i, block in enumerate(self.transformer_blocks):
         | 
| 334 | 
            +
                        x = block(x, context=context[i])
         | 
| 335 | 
            +
                    if self.use_linear:
         | 
| 336 | 
            +
                        x = self.proj_out(x)
         | 
| 337 | 
            +
                    x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
         | 
| 338 | 
            +
                    if not self.use_linear:
         | 
| 339 | 
            +
                        x = self.proj_out(x)
         | 
| 340 | 
            +
                    return x + x_in
         | 
| 341 | 
            +
             | 
