Spaces:
Runtime error
Runtime error
Commit
·
170fd5f
1
Parent(s):
8710b70
Add MCP server for Hugging Face semantic search
Browse files- Implement MCP server with 8 tools for searching HF datasets and models
- Add semantic search tools: search_datasets, search_models
- Add similarity search tools: find_similar_datasets, find_similar_models
- Add trending tools: get_trending_datasets, get_trending_models
- Add card download tools: download_model_card, download_dataset_card
- Configure backend API connection (default: http://localhost:8000)
- Include httpx for async HTTP requests and MCP dependencies
- app.py +654 -0
- requirements.in +2 -0
- requirements.txt +175 -0
app.py
ADDED
|
@@ -0,0 +1,654 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
MCP Server for Hugging Face Dataset and Model Search API
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import asyncio
|
| 7 |
+
import logging
|
| 8 |
+
from typing import Any, Dict, Optional
|
| 9 |
+
|
| 10 |
+
import httpx
|
| 11 |
+
from mcp.server import Server
|
| 12 |
+
from mcp.server.stdio import stdio_server
|
| 13 |
+
from mcp.types import (
|
| 14 |
+
Tool,
|
| 15 |
+
TextContent,
|
| 16 |
+
CallToolResult,
|
| 17 |
+
CallToolRequest,
|
| 18 |
+
ListToolsResult,
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
# Configure logging
|
| 22 |
+
logging.basicConfig(level=logging.INFO)
|
| 23 |
+
logger = logging.getLogger(__name__)
|
| 24 |
+
|
| 25 |
+
class HFSearchServer:
|
| 26 |
+
def __init__(self, base_url: str = "http://localhost:8000"):
|
| 27 |
+
self.base_url = base_url
|
| 28 |
+
self.client = httpx.AsyncClient(timeout=30.0)
|
| 29 |
+
|
| 30 |
+
async def close(self):
|
| 31 |
+
await self.client.aclose()
|
| 32 |
+
|
| 33 |
+
async def search_datasets(
|
| 34 |
+
self,
|
| 35 |
+
query: str,
|
| 36 |
+
k: int = 5,
|
| 37 |
+
sort_by: str = "similarity",
|
| 38 |
+
min_likes: int = 0,
|
| 39 |
+
min_downloads: int = 0
|
| 40 |
+
) -> Dict[str, Any]:
|
| 41 |
+
"""Search for datasets based on a text query"""
|
| 42 |
+
params = {
|
| 43 |
+
"query": query,
|
| 44 |
+
"k": k,
|
| 45 |
+
"sort_by": sort_by,
|
| 46 |
+
"min_likes": min_likes,
|
| 47 |
+
"min_downloads": min_downloads
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
response = await self.client.get(
|
| 51 |
+
f"{self.base_url}/search/datasets",
|
| 52 |
+
params=params
|
| 53 |
+
)
|
| 54 |
+
response.raise_for_status()
|
| 55 |
+
return response.json()
|
| 56 |
+
|
| 57 |
+
async def find_similar_datasets(
|
| 58 |
+
self,
|
| 59 |
+
dataset_id: str,
|
| 60 |
+
k: int = 5,
|
| 61 |
+
sort_by: str = "similarity",
|
| 62 |
+
min_likes: int = 0,
|
| 63 |
+
min_downloads: int = 0
|
| 64 |
+
) -> Dict[str, Any]:
|
| 65 |
+
"""Find similar datasets to a specified dataset"""
|
| 66 |
+
params = {
|
| 67 |
+
"dataset_id": dataset_id,
|
| 68 |
+
"k": k,
|
| 69 |
+
"sort_by": sort_by,
|
| 70 |
+
"min_likes": min_likes,
|
| 71 |
+
"min_downloads": min_downloads
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
response = await self.client.get(
|
| 75 |
+
f"{self.base_url}/similarity/datasets",
|
| 76 |
+
params=params
|
| 77 |
+
)
|
| 78 |
+
response.raise_for_status()
|
| 79 |
+
return response.json()
|
| 80 |
+
|
| 81 |
+
async def search_models(
|
| 82 |
+
self,
|
| 83 |
+
query: str,
|
| 84 |
+
k: int = 5,
|
| 85 |
+
sort_by: str = "similarity",
|
| 86 |
+
min_likes: int = 0,
|
| 87 |
+
min_downloads: int = 0,
|
| 88 |
+
min_param_count: int = 0,
|
| 89 |
+
max_param_count: Optional[int] = None
|
| 90 |
+
) -> Dict[str, Any]:
|
| 91 |
+
"""Search for models based on a text query"""
|
| 92 |
+
params = {
|
| 93 |
+
"query": query,
|
| 94 |
+
"k": k,
|
| 95 |
+
"sort_by": sort_by,
|
| 96 |
+
"min_likes": min_likes,
|
| 97 |
+
"min_downloads": min_downloads,
|
| 98 |
+
"min_param_count": min_param_count
|
| 99 |
+
}
|
| 100 |
+
if max_param_count is not None:
|
| 101 |
+
params["max_param_count"] = max_param_count
|
| 102 |
+
|
| 103 |
+
response = await self.client.get(
|
| 104 |
+
f"{self.base_url}/search/models",
|
| 105 |
+
params=params
|
| 106 |
+
)
|
| 107 |
+
response.raise_for_status()
|
| 108 |
+
return response.json()
|
| 109 |
+
|
| 110 |
+
async def find_similar_models(
|
| 111 |
+
self,
|
| 112 |
+
model_id: str,
|
| 113 |
+
k: int = 5,
|
| 114 |
+
sort_by: str = "similarity",
|
| 115 |
+
min_likes: int = 0,
|
| 116 |
+
min_downloads: int = 0,
|
| 117 |
+
min_param_count: int = 0,
|
| 118 |
+
max_param_count: Optional[int] = None
|
| 119 |
+
) -> Dict[str, Any]:
|
| 120 |
+
"""Find similar models to a specified model"""
|
| 121 |
+
params = {
|
| 122 |
+
"model_id": model_id,
|
| 123 |
+
"k": k,
|
| 124 |
+
"sort_by": sort_by,
|
| 125 |
+
"min_likes": min_likes,
|
| 126 |
+
"min_downloads": min_downloads,
|
| 127 |
+
"min_param_count": min_param_count
|
| 128 |
+
}
|
| 129 |
+
if max_param_count is not None:
|
| 130 |
+
params["max_param_count"] = max_param_count
|
| 131 |
+
|
| 132 |
+
response = await self.client.get(
|
| 133 |
+
f"{self.base_url}/similarity/models",
|
| 134 |
+
params=params
|
| 135 |
+
)
|
| 136 |
+
response.raise_for_status()
|
| 137 |
+
return response.json()
|
| 138 |
+
|
| 139 |
+
async def get_trending_models(
|
| 140 |
+
self,
|
| 141 |
+
limit: int = 10,
|
| 142 |
+
min_likes: int = 0,
|
| 143 |
+
min_downloads: int = 0,
|
| 144 |
+
min_param_count: int = 0,
|
| 145 |
+
max_param_count: Optional[int] = None
|
| 146 |
+
) -> Dict[str, Any]:
|
| 147 |
+
"""Get trending models with their summaries"""
|
| 148 |
+
params = {
|
| 149 |
+
"limit": limit,
|
| 150 |
+
"min_likes": min_likes,
|
| 151 |
+
"min_downloads": min_downloads,
|
| 152 |
+
"min_param_count": min_param_count
|
| 153 |
+
}
|
| 154 |
+
if max_param_count is not None:
|
| 155 |
+
params["max_param_count"] = max_param_count
|
| 156 |
+
|
| 157 |
+
response = await self.client.get(
|
| 158 |
+
f"{self.base_url}/trending/models",
|
| 159 |
+
params=params
|
| 160 |
+
)
|
| 161 |
+
response.raise_for_status()
|
| 162 |
+
return response.json()
|
| 163 |
+
|
| 164 |
+
async def get_trending_datasets(
|
| 165 |
+
self,
|
| 166 |
+
limit: int = 10,
|
| 167 |
+
min_likes: int = 0,
|
| 168 |
+
min_downloads: int = 0
|
| 169 |
+
) -> Dict[str, Any]:
|
| 170 |
+
"""Get trending datasets with their summaries"""
|
| 171 |
+
params = {
|
| 172 |
+
"limit": limit,
|
| 173 |
+
"min_likes": min_likes,
|
| 174 |
+
"min_downloads": min_downloads
|
| 175 |
+
}
|
| 176 |
+
|
| 177 |
+
response = await self.client.get(
|
| 178 |
+
f"{self.base_url}/trending/datasets",
|
| 179 |
+
params=params
|
| 180 |
+
)
|
| 181 |
+
response.raise_for_status()
|
| 182 |
+
return response.json()
|
| 183 |
+
|
| 184 |
+
async def download_model_card(self, model_id: str) -> str:
|
| 185 |
+
"""
|
| 186 |
+
Download the README card for a HuggingFace model.
|
| 187 |
+
|
| 188 |
+
Args:
|
| 189 |
+
model_id (str): The model ID (e.g., 'username/model-name')
|
| 190 |
+
|
| 191 |
+
Returns:
|
| 192 |
+
str: The content of the model card (README.md)
|
| 193 |
+
"""
|
| 194 |
+
url = f"https://huggingface.co/{model_id}/raw/main/README.md"
|
| 195 |
+
response = await self.client.get(url)
|
| 196 |
+
response.raise_for_status()
|
| 197 |
+
return response.text
|
| 198 |
+
|
| 199 |
+
async def download_dataset_card(self, dataset_id: str) -> str:
|
| 200 |
+
"""
|
| 201 |
+
Download the README card for a HuggingFace dataset.
|
| 202 |
+
|
| 203 |
+
Args:
|
| 204 |
+
dataset_id (str): The dataset ID (e.g., 'username/dataset-name')
|
| 205 |
+
|
| 206 |
+
Returns:
|
| 207 |
+
str: The content of the dataset card (README.md)
|
| 208 |
+
"""
|
| 209 |
+
url = f"https://huggingface.co/datasets/{dataset_id}/raw/main/README.md"
|
| 210 |
+
response = await self.client.get(url)
|
| 211 |
+
response.raise_for_status()
|
| 212 |
+
return response.text
|
| 213 |
+
|
| 214 |
+
# Initialize server and API client
|
| 215 |
+
server = Server("hf-search")
|
| 216 |
+
api_client: Optional[HFSearchServer] = None
|
| 217 |
+
|
| 218 |
+
@server.list_tools()
|
| 219 |
+
async def list_tools() -> ListToolsResult:
|
| 220 |
+
"""List available tools"""
|
| 221 |
+
return ListToolsResult(
|
| 222 |
+
tools=[
|
| 223 |
+
Tool(
|
| 224 |
+
name="search_datasets",
|
| 225 |
+
description="Search for datasets based on a text query",
|
| 226 |
+
inputSchema={
|
| 227 |
+
"type": "object",
|
| 228 |
+
"properties": {
|
| 229 |
+
"query": {
|
| 230 |
+
"type": "string",
|
| 231 |
+
"description": "Search query text"
|
| 232 |
+
},
|
| 233 |
+
"k": {
|
| 234 |
+
"type": "integer",
|
| 235 |
+
"description": "Number of results to return (1-100)",
|
| 236 |
+
"minimum": 1,
|
| 237 |
+
"maximum": 100,
|
| 238 |
+
"default": 5
|
| 239 |
+
},
|
| 240 |
+
"sort_by": {
|
| 241 |
+
"type": "string",
|
| 242 |
+
"description": "Sort method for results",
|
| 243 |
+
"enum": ["similarity", "likes", "downloads", "trending"],
|
| 244 |
+
"default": "similarity"
|
| 245 |
+
},
|
| 246 |
+
"min_likes": {
|
| 247 |
+
"type": "integer",
|
| 248 |
+
"description": "Minimum likes filter",
|
| 249 |
+
"minimum": 0,
|
| 250 |
+
"default": 0
|
| 251 |
+
},
|
| 252 |
+
"min_downloads": {
|
| 253 |
+
"type": "integer",
|
| 254 |
+
"description": "Minimum downloads filter",
|
| 255 |
+
"minimum": 0,
|
| 256 |
+
"default": 0
|
| 257 |
+
}
|
| 258 |
+
},
|
| 259 |
+
"required": ["query"]
|
| 260 |
+
}
|
| 261 |
+
),
|
| 262 |
+
Tool(
|
| 263 |
+
name="find_similar_datasets",
|
| 264 |
+
description="Find datasets similar to a specified dataset",
|
| 265 |
+
inputSchema={
|
| 266 |
+
"type": "object",
|
| 267 |
+
"properties": {
|
| 268 |
+
"dataset_id": {
|
| 269 |
+
"type": "string",
|
| 270 |
+
"description": "Dataset ID to find similar datasets for"
|
| 271 |
+
},
|
| 272 |
+
"k": {
|
| 273 |
+
"type": "integer",
|
| 274 |
+
"description": "Number of results to return (1-100)",
|
| 275 |
+
"minimum": 1,
|
| 276 |
+
"maximum": 100,
|
| 277 |
+
"default": 5
|
| 278 |
+
},
|
| 279 |
+
"sort_by": {
|
| 280 |
+
"type": "string",
|
| 281 |
+
"description": "Sort method for results",
|
| 282 |
+
"enum": ["similarity", "likes", "downloads", "trending"],
|
| 283 |
+
"default": "similarity"
|
| 284 |
+
},
|
| 285 |
+
"min_likes": {
|
| 286 |
+
"type": "integer",
|
| 287 |
+
"description": "Minimum likes filter",
|
| 288 |
+
"minimum": 0,
|
| 289 |
+
"default": 0
|
| 290 |
+
},
|
| 291 |
+
"min_downloads": {
|
| 292 |
+
"type": "integer",
|
| 293 |
+
"description": "Minimum downloads filter",
|
| 294 |
+
"minimum": 0,
|
| 295 |
+
"default": 0
|
| 296 |
+
}
|
| 297 |
+
},
|
| 298 |
+
"required": ["dataset_id"]
|
| 299 |
+
}
|
| 300 |
+
),
|
| 301 |
+
Tool(
|
| 302 |
+
name="search_models",
|
| 303 |
+
description="Search for models based on a text query with optional parameter count filtering",
|
| 304 |
+
inputSchema={
|
| 305 |
+
"type": "object",
|
| 306 |
+
"properties": {
|
| 307 |
+
"query": {
|
| 308 |
+
"type": "string",
|
| 309 |
+
"description": "Search query text"
|
| 310 |
+
},
|
| 311 |
+
"k": {
|
| 312 |
+
"type": "integer",
|
| 313 |
+
"description": "Number of results to return (1-100)",
|
| 314 |
+
"minimum": 1,
|
| 315 |
+
"maximum": 100,
|
| 316 |
+
"default": 5
|
| 317 |
+
},
|
| 318 |
+
"sort_by": {
|
| 319 |
+
"type": "string",
|
| 320 |
+
"description": "Sort method for results",
|
| 321 |
+
"enum": ["similarity", "likes", "downloads", "trending"],
|
| 322 |
+
"default": "similarity"
|
| 323 |
+
},
|
| 324 |
+
"min_likes": {
|
| 325 |
+
"type": "integer",
|
| 326 |
+
"description": "Minimum likes filter",
|
| 327 |
+
"minimum": 0,
|
| 328 |
+
"default": 0
|
| 329 |
+
},
|
| 330 |
+
"min_downloads": {
|
| 331 |
+
"type": "integer",
|
| 332 |
+
"description": "Minimum downloads filter",
|
| 333 |
+
"minimum": 0,
|
| 334 |
+
"default": 0
|
| 335 |
+
},
|
| 336 |
+
"min_param_count": {
|
| 337 |
+
"type": "integer",
|
| 338 |
+
"description": "Minimum parameter count (excludes models with unknown params)",
|
| 339 |
+
"minimum": 0,
|
| 340 |
+
"default": 0
|
| 341 |
+
},
|
| 342 |
+
"max_param_count": {
|
| 343 |
+
"type": ["integer", "null"],
|
| 344 |
+
"description": "Maximum parameter count (null for no limit)",
|
| 345 |
+
"minimum": 0,
|
| 346 |
+
"default": None
|
| 347 |
+
}
|
| 348 |
+
},
|
| 349 |
+
"required": ["query"]
|
| 350 |
+
}
|
| 351 |
+
),
|
| 352 |
+
Tool(
|
| 353 |
+
name="find_similar_models",
|
| 354 |
+
description="Find models similar to a specified model",
|
| 355 |
+
inputSchema={
|
| 356 |
+
"type": "object",
|
| 357 |
+
"properties": {
|
| 358 |
+
"model_id": {
|
| 359 |
+
"type": "string",
|
| 360 |
+
"description": "Model ID to find similar models for"
|
| 361 |
+
},
|
| 362 |
+
"k": {
|
| 363 |
+
"type": "integer",
|
| 364 |
+
"description": "Number of results to return (1-100)",
|
| 365 |
+
"minimum": 1,
|
| 366 |
+
"maximum": 100,
|
| 367 |
+
"default": 5
|
| 368 |
+
},
|
| 369 |
+
"sort_by": {
|
| 370 |
+
"type": "string",
|
| 371 |
+
"description": "Sort method for results",
|
| 372 |
+
"enum": ["similarity", "likes", "downloads", "trending"],
|
| 373 |
+
"default": "similarity"
|
| 374 |
+
},
|
| 375 |
+
"min_likes": {
|
| 376 |
+
"type": "integer",
|
| 377 |
+
"description": "Minimum likes filter",
|
| 378 |
+
"minimum": 0,
|
| 379 |
+
"default": 0
|
| 380 |
+
},
|
| 381 |
+
"min_downloads": {
|
| 382 |
+
"type": "integer",
|
| 383 |
+
"description": "Minimum downloads filter",
|
| 384 |
+
"minimum": 0,
|
| 385 |
+
"default": 0
|
| 386 |
+
},
|
| 387 |
+
"min_param_count": {
|
| 388 |
+
"type": "integer",
|
| 389 |
+
"description": "Minimum parameter count (excludes models with unknown params)",
|
| 390 |
+
"minimum": 0,
|
| 391 |
+
"default": 0
|
| 392 |
+
},
|
| 393 |
+
"max_param_count": {
|
| 394 |
+
"type": ["integer", "null"],
|
| 395 |
+
"description": "Maximum parameter count (null for no limit)",
|
| 396 |
+
"minimum": 0,
|
| 397 |
+
"default": None
|
| 398 |
+
}
|
| 399 |
+
},
|
| 400 |
+
"required": ["model_id"]
|
| 401 |
+
}
|
| 402 |
+
),
|
| 403 |
+
Tool(
|
| 404 |
+
name="get_trending_models",
|
| 405 |
+
description="Get trending models with their summaries and optional filtering",
|
| 406 |
+
inputSchema={
|
| 407 |
+
"type": "object",
|
| 408 |
+
"properties": {
|
| 409 |
+
"limit": {
|
| 410 |
+
"type": "integer",
|
| 411 |
+
"description": "Number of results to return (1-100)",
|
| 412 |
+
"minimum": 1,
|
| 413 |
+
"maximum": 100,
|
| 414 |
+
"default": 10
|
| 415 |
+
},
|
| 416 |
+
"min_likes": {
|
| 417 |
+
"type": "integer",
|
| 418 |
+
"description": "Minimum likes filter",
|
| 419 |
+
"minimum": 0,
|
| 420 |
+
"default": 0
|
| 421 |
+
},
|
| 422 |
+
"min_downloads": {
|
| 423 |
+
"type": "integer",
|
| 424 |
+
"description": "Minimum downloads filter",
|
| 425 |
+
"minimum": 0,
|
| 426 |
+
"default": 0
|
| 427 |
+
},
|
| 428 |
+
"min_param_count": {
|
| 429 |
+
"type": "integer",
|
| 430 |
+
"description": "Minimum parameter count (excludes models with unknown params)",
|
| 431 |
+
"minimum": 0,
|
| 432 |
+
"default": 0
|
| 433 |
+
},
|
| 434 |
+
"max_param_count": {
|
| 435 |
+
"type": ["integer", "null"],
|
| 436 |
+
"description": "Maximum parameter count (null for no limit)",
|
| 437 |
+
"minimum": 0,
|
| 438 |
+
"default": None
|
| 439 |
+
}
|
| 440 |
+
}
|
| 441 |
+
}
|
| 442 |
+
),
|
| 443 |
+
Tool(
|
| 444 |
+
name="get_trending_datasets",
|
| 445 |
+
description="Get trending datasets with their summaries",
|
| 446 |
+
inputSchema={
|
| 447 |
+
"type": "object",
|
| 448 |
+
"properties": {
|
| 449 |
+
"limit": {
|
| 450 |
+
"type": "integer",
|
| 451 |
+
"description": "Number of results to return (1-100)",
|
| 452 |
+
"minimum": 1,
|
| 453 |
+
"maximum": 100,
|
| 454 |
+
"default": 10
|
| 455 |
+
},
|
| 456 |
+
"min_likes": {
|
| 457 |
+
"type": "integer",
|
| 458 |
+
"description": "Minimum likes filter",
|
| 459 |
+
"minimum": 0,
|
| 460 |
+
"default": 0
|
| 461 |
+
},
|
| 462 |
+
"min_downloads": {
|
| 463 |
+
"type": "integer",
|
| 464 |
+
"description": "Minimum downloads filter",
|
| 465 |
+
"minimum": 0,
|
| 466 |
+
"default": 0
|
| 467 |
+
}
|
| 468 |
+
}
|
| 469 |
+
}
|
| 470 |
+
),
|
| 471 |
+
Tool(
|
| 472 |
+
name="download_model_card",
|
| 473 |
+
description="Download the README card for a HuggingFace model",
|
| 474 |
+
inputSchema={
|
| 475 |
+
"type": "object",
|
| 476 |
+
"properties": {
|
| 477 |
+
"model_id": {
|
| 478 |
+
"type": "string",
|
| 479 |
+
"description": "The model ID (e.g., 'username/model-name')"
|
| 480 |
+
}
|
| 481 |
+
},
|
| 482 |
+
"required": ["model_id"]
|
| 483 |
+
}
|
| 484 |
+
),
|
| 485 |
+
Tool(
|
| 486 |
+
name="download_dataset_card",
|
| 487 |
+
description="Download the README card for a HuggingFace dataset",
|
| 488 |
+
inputSchema={
|
| 489 |
+
"type": "object",
|
| 490 |
+
"properties": {
|
| 491 |
+
"dataset_id": {
|
| 492 |
+
"type": "string",
|
| 493 |
+
"description": "The dataset ID (e.g., 'username/dataset-name')"
|
| 494 |
+
}
|
| 495 |
+
},
|
| 496 |
+
"required": ["dataset_id"]
|
| 497 |
+
}
|
| 498 |
+
)
|
| 499 |
+
]
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
@server.call_tool()
|
| 503 |
+
async def call_tool(request: CallToolRequest) -> CallToolResult:
|
| 504 |
+
"""Handle tool calls"""
|
| 505 |
+
global api_client
|
| 506 |
+
|
| 507 |
+
if api_client is None:
|
| 508 |
+
# Initialize API client with base URL from environment or default
|
| 509 |
+
import os
|
| 510 |
+
base_url = os.getenv("HF_SEARCH_API_URL", "http://localhost:8000")
|
| 511 |
+
api_client = HFSearchServer(base_url)
|
| 512 |
+
|
| 513 |
+
try:
|
| 514 |
+
# Parse arguments
|
| 515 |
+
args = request.params.arguments if hasattr(request.params, 'arguments') else {}
|
| 516 |
+
|
| 517 |
+
# Format results helper
|
| 518 |
+
def format_dataset_results(data: Dict[str, Any]) -> str:
|
| 519 |
+
results = data.get("results", [])
|
| 520 |
+
if not results:
|
| 521 |
+
return "No datasets found."
|
| 522 |
+
|
| 523 |
+
output = []
|
| 524 |
+
for i, result in enumerate(results, 1):
|
| 525 |
+
output.append(f"{i}. **{result['dataset_id']}**")
|
| 526 |
+
output.append(f" - Summary: {result['summary']}")
|
| 527 |
+
output.append(f" - Similarity: {result['similarity']:.3f}")
|
| 528 |
+
output.append(f" - Likes: {result['likes']:,} | Downloads: {result['downloads']:,}")
|
| 529 |
+
output.append("")
|
| 530 |
+
|
| 531 |
+
return "\n".join(output)
|
| 532 |
+
|
| 533 |
+
def format_model_results(data: Dict[str, Any]) -> str:
|
| 534 |
+
results = data.get("results", [])
|
| 535 |
+
if not results:
|
| 536 |
+
return "No models found."
|
| 537 |
+
|
| 538 |
+
output = []
|
| 539 |
+
for i, result in enumerate(results, 1):
|
| 540 |
+
output.append(f"{i}. **{result['model_id']}**")
|
| 541 |
+
output.append(f" - Summary: {result['summary']}")
|
| 542 |
+
output.append(f" - Similarity: {result['similarity']:.3f}")
|
| 543 |
+
output.append(f" - Likes: {result['likes']:,} | Downloads: {result['downloads']:,}")
|
| 544 |
+
if result.get('param_count') is not None and result['param_count'] > 0:
|
| 545 |
+
# Format parameter count nicely
|
| 546 |
+
param_count = result['param_count']
|
| 547 |
+
if param_count >= 1_000_000_000:
|
| 548 |
+
param_str = f"{param_count / 1_000_000_000:.1f}B"
|
| 549 |
+
elif param_count >= 1_000_000:
|
| 550 |
+
param_str = f"{param_count / 1_000_000:.1f}M"
|
| 551 |
+
elif param_count >= 1_000:
|
| 552 |
+
param_str = f"{param_count / 1_000:.1f}K"
|
| 553 |
+
else:
|
| 554 |
+
param_str = str(param_count)
|
| 555 |
+
output.append(f" - Parameters: {param_str}")
|
| 556 |
+
output.append("")
|
| 557 |
+
|
| 558 |
+
return "\n".join(output)
|
| 559 |
+
|
| 560 |
+
# Route to appropriate method
|
| 561 |
+
if request.params.name == "search_datasets":
|
| 562 |
+
result = await api_client.search_datasets(**args)
|
| 563 |
+
formatted = format_dataset_results(result)
|
| 564 |
+
return CallToolResult(
|
| 565 |
+
content=[TextContent(text=formatted)],
|
| 566 |
+
isError=False
|
| 567 |
+
)
|
| 568 |
+
|
| 569 |
+
elif request.params.name == "find_similar_datasets":
|
| 570 |
+
result = await api_client.find_similar_datasets(**args)
|
| 571 |
+
formatted = format_dataset_results(result)
|
| 572 |
+
return CallToolResult(
|
| 573 |
+
content=[TextContent(text=formatted)],
|
| 574 |
+
isError=False
|
| 575 |
+
)
|
| 576 |
+
|
| 577 |
+
elif request.params.name == "search_models":
|
| 578 |
+
result = await api_client.search_models(**args)
|
| 579 |
+
formatted = format_model_results(result)
|
| 580 |
+
return CallToolResult(
|
| 581 |
+
content=[TextContent(text=formatted)],
|
| 582 |
+
isError=False
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
elif request.params.name == "find_similar_models":
|
| 586 |
+
result = await api_client.find_similar_models(**args)
|
| 587 |
+
formatted = format_model_results(result)
|
| 588 |
+
return CallToolResult(
|
| 589 |
+
content=[TextContent(text=formatted)],
|
| 590 |
+
isError=False
|
| 591 |
+
)
|
| 592 |
+
|
| 593 |
+
elif request.params.name == "get_trending_models":
|
| 594 |
+
result = await api_client.get_trending_models(**args)
|
| 595 |
+
formatted = format_model_results(result)
|
| 596 |
+
return CallToolResult(
|
| 597 |
+
content=[TextContent(text=formatted)],
|
| 598 |
+
isError=False
|
| 599 |
+
)
|
| 600 |
+
|
| 601 |
+
elif request.params.name == "get_trending_datasets":
|
| 602 |
+
result = await api_client.get_trending_datasets(**args)
|
| 603 |
+
formatted = format_dataset_results(result)
|
| 604 |
+
return CallToolResult(
|
| 605 |
+
content=[TextContent(text=formatted)],
|
| 606 |
+
isError=False
|
| 607 |
+
)
|
| 608 |
+
|
| 609 |
+
elif request.params.name == "download_model_card":
|
| 610 |
+
result = await api_client.download_model_card(**args)
|
| 611 |
+
return CallToolResult(
|
| 612 |
+
content=[TextContent(text=result)],
|
| 613 |
+
isError=False
|
| 614 |
+
)
|
| 615 |
+
|
| 616 |
+
elif request.params.name == "download_dataset_card":
|
| 617 |
+
result = await api_client.download_dataset_card(**args)
|
| 618 |
+
return CallToolResult(
|
| 619 |
+
content=[TextContent(text=result)],
|
| 620 |
+
isError=False
|
| 621 |
+
)
|
| 622 |
+
|
| 623 |
+
else:
|
| 624 |
+
return CallToolResult(
|
| 625 |
+
content=[TextContent(text=f"Unknown tool: {request.params.name}")],
|
| 626 |
+
isError=True
|
| 627 |
+
)
|
| 628 |
+
|
| 629 |
+
except httpx.HTTPStatusError as e:
|
| 630 |
+
error_msg = f"API request failed with status {e.response.status_code}: {e.response.text}"
|
| 631 |
+
logger.error(error_msg)
|
| 632 |
+
return CallToolResult(
|
| 633 |
+
content=[TextContent(text=error_msg)],
|
| 634 |
+
isError=True
|
| 635 |
+
)
|
| 636 |
+
except Exception as e:
|
| 637 |
+
error_msg = f"Error calling tool {request.params.name}: {str(e)}"
|
| 638 |
+
logger.error(error_msg, exc_info=True)
|
| 639 |
+
return CallToolResult(
|
| 640 |
+
content=[TextContent(text=error_msg)],
|
| 641 |
+
isError=True
|
| 642 |
+
)
|
| 643 |
+
|
| 644 |
+
async def main():
|
| 645 |
+
"""Main entry point"""
|
| 646 |
+
async with stdio_server() as (read_stream, write_stream):
|
| 647 |
+
await server.run(read_stream, write_stream)
|
| 648 |
+
|
| 649 |
+
# Cleanup
|
| 650 |
+
if api_client:
|
| 651 |
+
await api_client.close()
|
| 652 |
+
|
| 653 |
+
if __name__ == "__main__":
|
| 654 |
+
asyncio.run(main())
|
requirements.in
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio[mcp]
|
| 2 |
+
httpx
|
requirements.txt
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This file was autogenerated by uv via the following command:
|
| 2 |
+
# uv pip compile requirements.in -o requirements.txt
|
| 3 |
+
aiofiles==24.1.0
|
| 4 |
+
# via gradio
|
| 5 |
+
annotated-types==0.7.0
|
| 6 |
+
# via pydantic
|
| 7 |
+
anyio==4.9.0
|
| 8 |
+
# via
|
| 9 |
+
# gradio
|
| 10 |
+
# httpx
|
| 11 |
+
# mcp
|
| 12 |
+
# sse-starlette
|
| 13 |
+
# starlette
|
| 14 |
+
certifi==2025.4.26
|
| 15 |
+
# via
|
| 16 |
+
# httpcore
|
| 17 |
+
# httpx
|
| 18 |
+
# requests
|
| 19 |
+
charset-normalizer==3.4.2
|
| 20 |
+
# via requests
|
| 21 |
+
click==8.2.1
|
| 22 |
+
# via
|
| 23 |
+
# typer
|
| 24 |
+
# uvicorn
|
| 25 |
+
fastapi==0.115.12
|
| 26 |
+
# via gradio
|
| 27 |
+
ffmpy==0.6.0
|
| 28 |
+
# via gradio
|
| 29 |
+
filelock==3.18.0
|
| 30 |
+
# via huggingface-hub
|
| 31 |
+
fsspec==2025.5.1
|
| 32 |
+
# via
|
| 33 |
+
# gradio-client
|
| 34 |
+
# huggingface-hub
|
| 35 |
+
gradio==5.33.0
|
| 36 |
+
# via -r requirements.in
|
| 37 |
+
gradio-client==1.10.2
|
| 38 |
+
# via gradio
|
| 39 |
+
groovy==0.1.2
|
| 40 |
+
# via gradio
|
| 41 |
+
h11==0.16.0
|
| 42 |
+
# via
|
| 43 |
+
# httpcore
|
| 44 |
+
# uvicorn
|
| 45 |
+
hf-xet==1.1.3
|
| 46 |
+
# via huggingface-hub
|
| 47 |
+
httpcore==1.0.9
|
| 48 |
+
# via httpx
|
| 49 |
+
httpx==0.28.1
|
| 50 |
+
# via
|
| 51 |
+
# -r requirements.in
|
| 52 |
+
# gradio
|
| 53 |
+
# gradio-client
|
| 54 |
+
# mcp
|
| 55 |
+
# safehttpx
|
| 56 |
+
httpx-sse==0.4.0
|
| 57 |
+
# via mcp
|
| 58 |
+
huggingface-hub==0.32.4
|
| 59 |
+
# via
|
| 60 |
+
# gradio
|
| 61 |
+
# gradio-client
|
| 62 |
+
idna==3.10
|
| 63 |
+
# via
|
| 64 |
+
# anyio
|
| 65 |
+
# httpx
|
| 66 |
+
# requests
|
| 67 |
+
jinja2==3.1.6
|
| 68 |
+
# via gradio
|
| 69 |
+
markdown-it-py==3.0.0
|
| 70 |
+
# via rich
|
| 71 |
+
markupsafe==3.0.2
|
| 72 |
+
# via
|
| 73 |
+
# gradio
|
| 74 |
+
# jinja2
|
| 75 |
+
mcp==1.9.0
|
| 76 |
+
# via gradio
|
| 77 |
+
mdurl==0.1.2
|
| 78 |
+
# via markdown-it-py
|
| 79 |
+
numpy==2.3.0
|
| 80 |
+
# via
|
| 81 |
+
# gradio
|
| 82 |
+
# pandas
|
| 83 |
+
orjson==3.10.18
|
| 84 |
+
# via gradio
|
| 85 |
+
packaging==25.0
|
| 86 |
+
# via
|
| 87 |
+
# gradio
|
| 88 |
+
# gradio-client
|
| 89 |
+
# huggingface-hub
|
| 90 |
+
pandas==2.3.0
|
| 91 |
+
# via gradio
|
| 92 |
+
pillow==11.2.1
|
| 93 |
+
# via gradio
|
| 94 |
+
pydantic==2.11.5
|
| 95 |
+
# via
|
| 96 |
+
# fastapi
|
| 97 |
+
# gradio
|
| 98 |
+
# mcp
|
| 99 |
+
# pydantic-settings
|
| 100 |
+
pydantic-core==2.33.2
|
| 101 |
+
# via pydantic
|
| 102 |
+
pydantic-settings==2.9.1
|
| 103 |
+
# via mcp
|
| 104 |
+
pydub==0.25.1
|
| 105 |
+
# via gradio
|
| 106 |
+
pygments==2.19.1
|
| 107 |
+
# via rich
|
| 108 |
+
python-dateutil==2.9.0.post0
|
| 109 |
+
# via pandas
|
| 110 |
+
python-dotenv==1.1.0
|
| 111 |
+
# via pydantic-settings
|
| 112 |
+
python-multipart==0.0.20
|
| 113 |
+
# via
|
| 114 |
+
# gradio
|
| 115 |
+
# mcp
|
| 116 |
+
pytz==2025.2
|
| 117 |
+
# via pandas
|
| 118 |
+
pyyaml==6.0.2
|
| 119 |
+
# via
|
| 120 |
+
# gradio
|
| 121 |
+
# huggingface-hub
|
| 122 |
+
requests==2.32.3
|
| 123 |
+
# via huggingface-hub
|
| 124 |
+
rich==14.0.0
|
| 125 |
+
# via typer
|
| 126 |
+
ruff==0.11.13
|
| 127 |
+
# via gradio
|
| 128 |
+
safehttpx==0.1.6
|
| 129 |
+
# via gradio
|
| 130 |
+
semantic-version==2.10.0
|
| 131 |
+
# via gradio
|
| 132 |
+
shellingham==1.5.4
|
| 133 |
+
# via typer
|
| 134 |
+
six==1.17.0
|
| 135 |
+
# via python-dateutil
|
| 136 |
+
sniffio==1.3.1
|
| 137 |
+
# via anyio
|
| 138 |
+
sse-starlette==2.3.6
|
| 139 |
+
# via mcp
|
| 140 |
+
starlette==0.46.2
|
| 141 |
+
# via
|
| 142 |
+
# fastapi
|
| 143 |
+
# gradio
|
| 144 |
+
# mcp
|
| 145 |
+
tomlkit==0.13.3
|
| 146 |
+
# via gradio
|
| 147 |
+
tqdm==4.67.1
|
| 148 |
+
# via huggingface-hub
|
| 149 |
+
typer==0.16.0
|
| 150 |
+
# via gradio
|
| 151 |
+
typing-extensions==4.14.0
|
| 152 |
+
# via
|
| 153 |
+
# anyio
|
| 154 |
+
# fastapi
|
| 155 |
+
# gradio
|
| 156 |
+
# gradio-client
|
| 157 |
+
# huggingface-hub
|
| 158 |
+
# pydantic
|
| 159 |
+
# pydantic-core
|
| 160 |
+
# typer
|
| 161 |
+
# typing-inspection
|
| 162 |
+
typing-inspection==0.4.1
|
| 163 |
+
# via
|
| 164 |
+
# pydantic
|
| 165 |
+
# pydantic-settings
|
| 166 |
+
tzdata==2025.2
|
| 167 |
+
# via pandas
|
| 168 |
+
urllib3==2.4.0
|
| 169 |
+
# via requests
|
| 170 |
+
uvicorn==0.34.3
|
| 171 |
+
# via
|
| 172 |
+
# gradio
|
| 173 |
+
# mcp
|
| 174 |
+
websockets==15.0.1
|
| 175 |
+
# via gradio-client
|