duna-chatbot-backend / web_indexer_universal_v7.py
Király Zoltán
new
b5d1360
# web_indexer_universal_v7.py
# EGYSZERŰSÍTETT VERZIÓ: A szinonima-kezelés teljesen eltávolítva.
# Támogatja az Elastic Cloud-ot, biztonságos konfigurációkezeléssel.
import os
import time
import traceback
import requests
from bs4 import BeautifulSoup
from urllib.parse import urljoin, urlparse
from collections import deque
from elasticsearch import Elasticsearch, helpers, exceptions as es_exceptions
import sys
import warnings
from dotenv import load_dotenv
# === ANSI Színkódok (konzol loggoláshoz) ===
GREEN = '\033[92m'
YELLOW = '\033[93m'
RED = '\033[91m'
RESET = '\033[0m'
BLUE = '\033[94m'
CYAN = '\033[96m'
MAGENTA = '\033[95m'
# --- Konfiguráció betöltése környezeti változókból ---
load_dotenv()
CONFIG = {
# --- Alap beállítások (felülírhatók .env fájlból) ---
"START_URL": os.getenv("START_URL", "https://www.dunaelektronika.com/"),
"MAX_DEPTH": int(os.getenv("MAX_DEPTH", 2)),
"REQUEST_DELAY": int(os.getenv("REQUEST_DELAY", 1)),
"USER_AGENT": os.getenv("USER_AGENT", "MyPythonCrawler/1.0 (+http://example.com/botinfo)"),
"VECTOR_INDEX_NAME": os.getenv("VECTOR_INDEX_NAME", "dunawebindexai"),
"BATCH_SIZE": int(os.getenv("BATCH_SIZE", 50)),
"ES_CLIENT_TIMEOUT": int(os.getenv("ES_CLIENT_TIMEOUT", 120)),
"EMBEDDING_MODEL_NAME": 'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
"CHUNK_SIZE_TOKENS": int(os.getenv("CHUNK_SIZE_TOKENS", 500)),
"CHUNK_OVERLAP_TOKENS": int(os.getenv("CHUNK_OVERLAP_TOKENS", 50)),
"MIN_CHUNK_SIZE_CHARS": int(os.getenv("MIN_CHUNK_SIZE_CHARS", 50)),
"LLM_MODEL_NAME": "meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
"LLM_CHUNK_MODEL": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"DEBUG_MODE": os.getenv("DEBUG_MODE", "True").lower() == 'true',
# --- Kötelező, érzékeny adatok ---
"ES_CLOUD_ID": os.getenv("ES_CLOUD_ID"),
"ES_API_KEY": os.getenv("ES_API_KEY"),
"TOGETHER_API_KEY": os.getenv("TOGETHER_API_KEY")
}
CONFIG["TARGET_DOMAIN"] = urlparse(CONFIG["START_URL"]).netloc
embedding_model = None
EMBEDDING_DIM = None
device = 'cpu'
together_client = None
# --- LLM és egyéb könyvtárak ellenőrzése és importálása ---
try:
import torch
TORCH_AVAILABLE = True
except ImportError:
TORCH_AVAILABLE = False
print(f"{RED}FIGYELEM: Torch nincs telepítve.{RESET}")
try:
import together
if not CONFIG["TOGETHER_API_KEY"]:
print(f"{RED}Hiba: TOGETHER_API_KEY nincs beállítva.{RESET}")
else:
together_client = together.Together(api_key=CONFIG["TOGETHER_API_KEY"])
print(f"{GREEN}Together AI kliens inicializálva.{RESET}")
except ImportError:
print(f"{YELLOW}Figyelem: together könyvtár nincs telepítve.{RESET}")
together_client = None
except Exception as e:
print(f"{RED}Hiba LLM backend inicializálásakor: {e}{RESET}")
together_client = None
try:
import tiktoken
tiktoken_encoder = tiktoken.get_encoding("cl100k_base")
TIKTOKEN_AVAILABLE = True
except ImportError:
TIKTOKEN_AVAILABLE = False
print(f"{YELLOW}Figyelem: tiktoken nincs telepítve.{RESET}")
try:
import nltk
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
print(f"{CYAN}NLTK 'punkt' letöltése...{RESET}");
nltk.download('punkt', quiet=True)
NLTK_AVAILABLE = True
except ImportError:
NLTK_AVAILABLE = False
print(f"{RED}HIBA: 'nltk' nincs telepítve!{RESET}")
try:
from sentence_transformers import SentenceTransformer
SENTENCE_TRANSFORMER_AVAILABLE = True
except ImportError:
SENTENCE_TRANSFORMER_AVAILABLE = False
print(f"{RED}HIBA: 'sentence-transformers' nincs telepítve!{RESET}")
try:
sys.stdout.reconfigure(encoding='utf-8')
sys.stderr.reconfigure(encoding='utf-8')
except AttributeError:
pass
# --- LLM HÁTTÉR FUNKCIÓK ---
def generate_categories_with_llm(llm_client, soup, text):
category_list = ['IT biztonsági szolgáltatások', 'szolgáltatások', 'hardver', 'szoftver', 'hírek', 'audiovizuális konferenciatechnika']
try:
breadcrumb = soup.find('nav', class_='breadcrumb')
if breadcrumb:
categories = [li.get_text(strip=True) for li in breadcrumb.find_all('li')]
if categories:
final_category_from_html = categories[-1]
for cat in category_list:
if cat.lower() in final_category_from_html.lower():
return [cat]
except Exception: pass
try:
h1_tag = soup.find('h1')
if h1_tag and h1_tag.get_text(strip=True):
h1_text = h1_tag.get_text(strip=True)
for cat in category_list:
if cat.lower() in h1_text.lower():
return [cat]
except Exception: pass
if not llm_client: return ['egyéb']
try:
categories_text = ", ".join([f"'{cat}'" for cat in category_list])
prompt = f"""Adott egy weboldal szövege. Adj meg egyetlen, rövid kategóriát a következő listából, ami a legjobban jellemzi a tartalmát. A válaszodban csak a kategória szerepeljen, más szöveg nélkül.
Lehetséges kategóriák: {categories_text}
Szöveg: {text[:1000]}
Kategória:"""
response = llm_client.chat.completions.create(model=CONFIG["LLM_CHUNK_MODEL"], messages=[{"role": "user", "content": prompt}], temperature=0.1, max_tokens=30)
if response and response.choices:
category = response.choices[0].message.content.strip().replace("'", "").replace("`", "")
for cat in category_list:
if cat.lower() in category.lower():
return [cat]
except Exception as e:
print(f"{RED}Hiba LLM kategorizáláskor: {e}{RESET}")
return ['egyéb']
def generate_summary_with_llm(llm_client, text):
if not llm_client: return text[:300] + "..."
try:
prompt = f"""Készíts egy rövid, de informatív összefoglalót a következő szövegről. A lényeges pontokat emeld ki, de ne lépd túl a 200 szó terjedelmet.
Szöveg: {text}
Összefoglalás:"""
response = llm_client.chat.completions.create(model=CONFIG["LLM_CHUNK_MODEL"], messages=[{"role": "user", "content": prompt}], temperature=0.5, max_tokens=500)
if response and response.choices:
return response.choices[0].message.content.strip()
except Exception as e:
print(f"{RED}Hiba LLM összefoglaláskor: {e}{RESET}")
return text[:300] + "..."
def chunk_text_by_tokens(text, chunk_size, chunk_overlap):
if not TIKTOKEN_AVAILABLE or not NLTK_AVAILABLE:
chunks = []; start = 0
while start < len(text):
end = start + chunk_size; chunks.append(text[start:end]); start += chunk_size - chunk_overlap
return chunks
tokens = tiktoken_encoder.encode(text); chunks = []; start = 0
while start < len(tokens):
end = start + chunk_size; chunk_tokens = tokens[start:end]; chunks.append(tiktoken_encoder.decode(chunk_tokens)); start += chunk_size - chunk_overlap
return chunks
# --- Modellek és Eszközök Inicializálása ---
def load_embedding_model():
global embedding_model, EMBEDDING_DIM, device
if not TORCH_AVAILABLE or not SENTENCE_TRANSFORMER_AVAILABLE: EMBEDDING_DIM = 768; device = 'cpu'; return None, EMBEDDING_DIM, device
if embedding_model and EMBEDDING_DIM: return embedding_model, EMBEDDING_DIM, device
print(f"\n'{CONFIG['EMBEDDING_MODEL_NAME']}' modell betöltése...")
try:
current_device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = SentenceTransformer(CONFIG['EMBEDDING_MODEL_NAME'], device=current_device)
print(f"ST modell betöltve, eszköz: {model.device}")
dim = model.get_sentence_embedding_dimension()
if not dim: raise ValueError("Dim error")
embedding_model = model; EMBEDDING_DIM = dim; device = current_device
return embedding_model, EMBEDDING_DIM, device
except Exception as e:
print(f"{RED}Hiba embedding modell betöltésekor: {e}{RESET}"); traceback.print_exc()
embedding_model = None; EMBEDDING_DIM = 768; device = 'cpu'
return None, EMBEDDING_DIM, device
embedding_model, EMBEDDING_DIM, device = load_embedding_model()
# === Index Beállítások & Mapping (Szinonimák nélkül) ===
INDEX_SETTINGS = {
"analysis": {
"filter": {
"hungarian_stop": {"type": "stop", "stopwords": "_hungarian_"},
"hungarian_stemmer": {"type": "stemmer", "language": "hungarian"}
},
"analyzer": {
"hungarian_analyzer": {
"tokenizer": "standard",
"filter": ["lowercase", "hungarian_stop", "hungarian_stemmer"]
}
}
}
}
INDEX_MAPPINGS_WEB = {
"properties": {
"text_content": {"type": "text", "analyzer": "hungarian_analyzer"},
"embedding": {"type": "dense_vector", "dims": EMBEDDING_DIM, "index": True, "similarity": "cosine"},
"source_origin": {"type": "keyword"},
"source_url": {"type": "keyword"},
"source_type": {"type": "keyword"},
"category": {"type": "keyword"},
"heading": {"type": "text", "analyzer": "hungarian_analyzer"},
"summary": {"type": "text", "analyzer": "hungarian_analyzer"}
}
}
# --- Segédfüggvények ---
def initialize_es_client():
if not CONFIG["ES_CLOUD_ID"] or not CONFIG["ES_API_KEY"]:
print(f"{RED}Hiba: Az ES_CLOUD_ID és ES_API_KEY környezeti változók beállítása kötelező!{RESET}")
return None
try:
if CONFIG["DEBUG_MODE"]: print("\nKapcsolódás az Elasticsearch-hez (Cloud ID)...")
client = Elasticsearch(
cloud_id=CONFIG["ES_CLOUD_ID"],
api_key=CONFIG["ES_API_KEY"],
request_timeout=CONFIG["ES_CLIENT_TIMEOUT"]
)
if client.ping():
if CONFIG["DEBUG_MODE"]: print(f"{GREEN}Sikeres Elastic Cloud kapcsolat!{RESET}")
return client
except Exception as e:
print(f"{RED}Hiba az Elastic Cloud kapcsolat során: {e}{RESET}")
return None
def get_embedding(text):
if not embedding_model or not text or not isinstance(text, str): return None
try:
return embedding_model.encode(text, normalize_embeddings=True).tolist()
except Exception as e:
print(f"{RED}Hiba embedding közben: {e}{RESET}"); return None
def create_es_index(client, index_name, index_settings, index_mappings):
if not EMBEDDING_DIM:
print(f"{RED}Hiba: Embedding dimenzió nincs beállítva.{RESET}")
return False
try:
index_mappings["properties"]["embedding"]["dims"] = EMBEDDING_DIM
except KeyError:
print(f"{RED}Hiba: Érvénytelen mapping struktúra.{RESET}")
return False
try:
if not client.indices.exists(index=index_name):
print(f"'{index_name}' index létrehozása...")
client.indices.create(index=index_name, settings=index_settings, mappings=index_mappings)
print(f"{GREEN}Index sikeresen létrehozva.{RESET}")
time.sleep(2)
else:
if CONFIG["DEBUG_MODE"]: print(f"Index '{index_name}' már létezik.")
return True
except Exception as e:
print(f"{RED}Hiba az index létrehozása során: {e}{RESET}")
traceback.print_exc()
return False
def extract_text_from_html(html_content):
try:
soup = BeautifulSoup(html_content, 'html.parser')
for element in soup(["script", "style", "nav", "footer", "header", "aside", "form"]):
if element: element.decompose()
main_content = soup.find('main') or soup.find('article') or soup.body
if main_content:
return "\n".join(line for line in main_content.get_text(separator='\n', strip=True).splitlines() if line.strip())
except Exception as e:
print(f"{RED}Hiba a HTML szöveg kinyerése során: {e}{RESET}")
return ""
def extract_and_filter_links(soup, base_url, target_domain):
links = set()
try:
for a_tag in soup.find_all('a', href=True):
href = a_tag['href'].strip()
if href and not href.startswith(('#', 'mailto:', 'javascript:')):
full_url = urljoin(base_url, href)
parsed_url = urlparse(full_url)
if parsed_url.scheme in ['http', 'https'] and parsed_url.netloc == target_domain:
links.add(parsed_url._replace(fragment="").geturl())
except Exception as e:
print(f"{RED}Hiba a linkek kinyerése során: {e}{RESET}")
return links
def crawl_and_index_website(start_url, max_depth, es_client, index_name):
if not es_client or not embedding_model: return 0
visited_urls, urls_to_visit = set(), deque([(start_url, 0)])
bulk_actions = []
total_prepared, total_indexed = 0, 0
target_domain = urlparse(start_url).netloc
print(f"Web crawling indítása: {start_url} (Max mélység: {max_depth}, Cél: {target_domain})")
while urls_to_visit:
current_url = None
try:
current_url, current_depth = urls_to_visit.popleft()
if current_url in visited_urls or current_depth > max_depth: continue
print(f"\n--- Feldolgozás (Mélység: {current_depth}): {current_url} ---")
visited_urls.add(current_url)
try:
headers = {'User-Agent': CONFIG["USER_AGENT"]}
response = requests.get(current_url, headers=headers, timeout=15)
response.raise_for_status()
if 'text/html' not in response.headers.get('content-type', '').lower():
print(f" {YELLOW}-> Nem HTML tartalom, kihagyva.{RESET}"); continue
html_content = response.content
except requests.exceptions.RequestException as req_err:
print(f" {RED}!!! Hiba a letöltés során: {req_err}{RESET}"); continue
soup = BeautifulSoup(html_content, 'html.parser')
page_text = extract_text_from_html(html_content)
if not page_text or len(page_text) < CONFIG["MIN_CHUNK_SIZE_CHARS"]:
print(f" {YELLOW}-> Túl rövid szöveg, kihagyva.{RESET}"); continue
final_chunks = chunk_text_by_tokens(page_text, CONFIG["CHUNK_SIZE_TOKENS"], CONFIG["CHUNK_OVERLAP_TOKENS"])
url_category = generate_categories_with_llm(together_client, soup, page_text)[0]
page_summary = generate_summary_with_llm(together_client, page_text)
if not final_chunks: continue
for chunk_text in final_chunks:
element_vector = get_embedding(chunk_text)
if element_vector:
total_prepared += 1
doc = {"text_content": chunk_text, "embedding": element_vector, "source_origin": "website", "source_url": current_url, "source_type": "token_chunking", "category": url_category, "summary": page_summary}
bulk_actions.append({"_index": index_name, "_source": doc})
if len(bulk_actions) >= CONFIG["BATCH_SIZE"]:
success_count, errors = helpers.bulk(es_client, bulk_actions, raise_on_error=False, request_timeout=CONFIG["ES_CLIENT_TIMEOUT"])
total_indexed += success_count; bulk_actions = []
if errors: print(f"{RED}!!! Hiba a bulk indexelés során: {len(errors)} sikertelen.{RESET}")
if current_depth < max_depth:
new_links = extract_and_filter_links(soup, current_url, target_domain)
for link in new_links:
if link not in visited_urls: urls_to_visit.append((link, current_depth + 1))
time.sleep(CONFIG['REQUEST_DELAY'])
except KeyboardInterrupt: print("\nFolyamat megszakítva."); break
except Exception as loop_err: print(f"{RED}!!! Hiba a ciklusban ({current_url}): {loop_err}{RESET}"); traceback.print_exc(); time.sleep(5)
if bulk_actions:
success_count, errors = helpers.bulk(es_client, bulk_actions, raise_on_error=False, request_timeout=CONFIG["ES_CLIENT_TIMEOUT"])
total_indexed += success_count
if errors: print(f"{RED}!!! Hiba a maradék indexelése során: {len(errors)} sikertelen.{RESET}")
print(f"\n--- Web Crawling Befejezve ---")
print(f"Meglátogatott URL-ek: {len(visited_urls)}")
print(f"Előkészített chunk-ok: {total_prepared}")
print(f"Sikeresen indexelt chunk-ok: {total_indexed}")
return total_indexed
# --- Fő futtatási blokk ---
if __name__ == "__main__":
print(f"----- Web Crawler és Indexelő Indítása a '{CONFIG['VECTOR_INDEX_NAME']}' indexbe -----")
print(f"----- Cél URL: {CONFIG['START_URL']} (Max mélység: {CONFIG['MAX_DEPTH']}) -----")
print("****** FIGYELEM ******")
print(f"Ez a script létrehozza/használja a '{CONFIG['VECTOR_INDEX_NAME']}' indexet.")
print(f"{RED}Ha a '{CONFIG['VECTOR_INDEX_NAME']}' index már létezik, TÖRÖLD manuálisan futtatás előtt!{RESET}")
print("********************")
if not all([TORCH_AVAILABLE, SENTENCE_TRANSFORMER_AVAILABLE, embedding_model, EMBEDDING_DIM]):
print(f"{RED}Hiba: AI modellek hiányoznak. Leállás.{RESET}"); exit(1)
if not CONFIG["TOGETHER_API_KEY"]:
print(f"{RED}Hiba: TOGETHER_API_KEY hiányzik. Leállás.{RESET}"); exit(1)
es_client = initialize_es_client()
if not es_client:
print(f"{RED}Hiba: Elasticsearch kliens inicializálása sikertelen. Leállás.{RESET}"); exit(1)
final_success_count = 0
index_ready = create_es_index(
client=es_client,
index_name=CONFIG["VECTOR_INDEX_NAME"],
index_settings=INDEX_SETTINGS,
index_mappings=INDEX_MAPPINGS_WEB
)
if index_ready:
print(f"\nIndex '{CONFIG['VECTOR_INDEX_NAME']}' kész. Crawling indítása...")
final_success_count = crawl_and_index_website(
start_url=CONFIG["START_URL"],
max_depth=CONFIG["MAX_DEPTH"],
es_client=es_client,
index_name=CONFIG["VECTOR_INDEX_NAME"]
)
else:
print(f"{RED}Hiba: Index létrehozása sikertelen. Leállás.{RESET}")
print("\n----- Feldolgozás Befejezve -----")
if index_ready and final_success_count > 0:
print(f"\n{GREEN}Sikeres. {final_success_count} chunk indexelve '{CONFIG['VECTOR_INDEX_NAME']}'-be.{RESET}")
elif index_ready and final_success_count == 0:
print(f"{YELLOW}Crawling lefutott, de 0 chunk lett indexelve.{RESET}")
else:
print(f"{RED}A folyamat hibával zárult.{RESET}")