Spaces:
Sleeping
Sleeping
Update model_utils.py
Browse files- model_utils.py +72 -159
model_utils.py
CHANGED
|
@@ -4,88 +4,63 @@ from transformers import ViTForImageClassification, AutoFeatureExtractor
|
|
| 4 |
import numpy as np
|
| 5 |
from PIL import Image
|
| 6 |
import cv2
|
| 7 |
-
from scipy.special import softmax
|
| 8 |
|
| 9 |
class BugClassifier:
|
| 10 |
def __init__(self):
|
| 11 |
try:
|
| 12 |
-
#
|
| 13 |
self.model = ViTForImageClassification.from_pretrained(
|
| 14 |
-
"
|
| 15 |
num_labels=10,
|
| 16 |
ignore_mismatched_sizes=True
|
| 17 |
)
|
| 18 |
-
|
| 19 |
-
# Add custom classification head
|
| 20 |
-
self.model.classifier = torch.nn.Sequential(
|
| 21 |
-
torch.nn.Linear(768, 512),
|
| 22 |
-
torch.nn.ReLU(),
|
| 23 |
-
torch.nn.Dropout(0.2),
|
| 24 |
-
torch.nn.Linear(512, 10) # 10 classes
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
self.feature_extractor = AutoFeatureExtractor.from_pretrained(
|
| 28 |
-
"microsoft/beit-base-patch16-224-pt22k-ft22k"
|
| 29 |
-
)
|
| 30 |
|
| 31 |
# Set model to evaluation mode
|
| 32 |
self.model.eval()
|
| 33 |
|
| 34 |
-
# Define
|
| 35 |
self.labels = [
|
| 36 |
"Seven-spotted Ladybug", "Monarch Butterfly", "Carpenter Ant",
|
| 37 |
"Japanese Beetle", "Garden Spider", "Green Grasshopper",
|
| 38 |
"Luna Moth", "Common Dragonfly", "Honey Bee", "Paper Wasp"
|
| 39 |
]
|
| 40 |
|
| 41 |
-
#
|
| 42 |
-
self.category_mapping = {
|
| 43 |
-
"Seven-spotted Ladybug": ["ladybug", "ladybird", "coccinellidae"],
|
| 44 |
-
"Monarch Butterfly": ["butterfly", "lepidoptera"],
|
| 45 |
-
"Carpenter Ant": ["ant", "formicidae"],
|
| 46 |
-
"Japanese Beetle": ["beetle", "coleoptera"],
|
| 47 |
-
"Garden Spider": ["spider", "arachnid"],
|
| 48 |
-
"Green Grasshopper": ["grasshopper", "orthoptera"],
|
| 49 |
-
"Luna Moth": ["moth", "lepidoptera"],
|
| 50 |
-
"Common Dragonfly": ["dragonfly", "odonata"],
|
| 51 |
-
"Honey Bee": ["bee", "apidae"],
|
| 52 |
-
"Paper Wasp": ["wasp", "vespidae"]
|
| 53 |
-
}
|
| 54 |
-
|
| 55 |
-
# Detailed species information database
|
| 56 |
self.species_info = {
|
| 57 |
"Seven-spotted Ladybug": """
|
| 58 |
-
The Seven-spotted Ladybug
|
| 59 |
-
These beneficial insects are natural predators of garden pests like aphids
|
| 60 |
-
Each ladybug can eat up to 5,000 aphids during its lifetime, making them excellent natural pest controllers.
|
| 61 |
Their distinct red coloring with seven black spots serves as a warning to predators.
|
| 62 |
""",
|
| 63 |
"Monarch Butterfly": """
|
| 64 |
-
The Monarch Butterfly
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
Their orange and black wings serve as warning colors to predators about their toxicity.
|
| 68 |
""",
|
| 69 |
-
|
| 70 |
-
Carpenter Ants (Camponotus spp.) are large ants that build nests in wood.
|
| 71 |
-
While they don't eat wood like termites, they can cause structural damage to buildings.
|
| 72 |
-
These social insects live in colonies and play important roles in forest ecosystems,
|
| 73 |
-
helping to break down dead wood and maintain soil health.
|
| 74 |
-
""",
|
| 75 |
-
"Japanese Beetle": """
|
| 76 |
-
The Japanese Beetle (Popillia japonica) is recognized by its metallic green body.
|
| 77 |
-
While beautiful, these beetles can be significant garden pests, feeding on many plant species.
|
| 78 |
-
They are most active in summer months and can be managed through various natural control methods.
|
| 79 |
-
Their presence often indicates a healthy soil ecosystem, though their feeding can damage plants.
|
| 80 |
-
""",
|
| 81 |
-
# Add other species info here...
|
| 82 |
}
|
| 83 |
-
|
| 84 |
except Exception as e:
|
|
|
|
| 85 |
raise RuntimeError(f"Error initializing BugClassifier: {str(e)}")
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
def predict(self, image):
|
| 88 |
-
"""Make a prediction on the input image
|
| 89 |
try:
|
| 90 |
if not isinstance(image, Image.Image):
|
| 91 |
raise ValueError("Input must be a PIL Image")
|
|
@@ -98,81 +73,20 @@ class BugClassifier:
|
|
| 98 |
outputs = self.model(image_tensor)
|
| 99 |
probs = F.softmax(outputs.logits, dim=-1).numpy()[0]
|
| 100 |
|
| 101 |
-
# Get
|
| 102 |
-
|
| 103 |
-
|
| 104 |
|
| 105 |
-
#
|
| 106 |
-
|
|
|
|
| 107 |
|
| 108 |
-
|
| 109 |
-
# If confidence is too low, return "Unknown"
|
| 110 |
-
return "Unknown Insect", float(top3_probs[0] * 100)
|
| 111 |
-
|
| 112 |
-
# Check if there's a clear winner (significantly higher than second best)
|
| 113 |
-
if (top3_probs[0] - top3_probs[1]) > 0.2: # 20% margin
|
| 114 |
-
pred_idx = top3_idx[0]
|
| 115 |
-
else:
|
| 116 |
-
# If it's close, consider image quality and features
|
| 117 |
-
image_quality = self.assess_image_quality(image)
|
| 118 |
-
if image_quality < 0.5:
|
| 119 |
-
return "Image Unclear", 0.0
|
| 120 |
-
pred_idx = top3_idx[0]
|
| 121 |
|
| 122 |
-
return self.labels[pred_idx], float(probs[pred_idx] * 100)
|
| 123 |
-
|
| 124 |
except Exception as e:
|
| 125 |
print(f"Prediction error: {str(e)}")
|
| 126 |
return "Error Processing Image", 0.0
|
| 127 |
|
| 128 |
-
def preprocess_image(self, image):
|
| 129 |
-
"""Preprocess image for model input"""
|
| 130 |
-
try:
|
| 131 |
-
# Convert RGBA to RGB if necessary
|
| 132 |
-
if image.mode == 'RGBA':
|
| 133 |
-
image = image.convert('RGB')
|
| 134 |
-
|
| 135 |
-
# Resize image if needed
|
| 136 |
-
if image.size != (224, 224):
|
| 137 |
-
image = image.resize((224, 224), Image.Resampling.LANCZOS)
|
| 138 |
-
|
| 139 |
-
# Process image using feature extractor
|
| 140 |
-
inputs = self.feature_extractor(images=image, return_tensors="pt")
|
| 141 |
-
return inputs.pixel_values
|
| 142 |
-
|
| 143 |
-
except Exception as e:
|
| 144 |
-
raise ValueError(f"Error preprocessing image: {str(e)}")
|
| 145 |
-
|
| 146 |
-
def assess_image_quality(self, image):
|
| 147 |
-
"""Assess the quality of the input image"""
|
| 148 |
-
try:
|
| 149 |
-
# Convert to numpy array
|
| 150 |
-
img_array = np.array(image)
|
| 151 |
-
|
| 152 |
-
# Check brightness
|
| 153 |
-
brightness = np.mean(img_array)
|
| 154 |
-
|
| 155 |
-
# Check contrast
|
| 156 |
-
contrast = np.std(img_array)
|
| 157 |
-
|
| 158 |
-
# Check blur
|
| 159 |
-
if len(img_array.shape) == 3:
|
| 160 |
-
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
|
| 161 |
-
else:
|
| 162 |
-
gray = img_array
|
| 163 |
-
blur_score = cv2.Laplacian(gray, cv2.CV_64F).var()
|
| 164 |
-
|
| 165 |
-
# Normalize and combine scores
|
| 166 |
-
brightness_score = 1 - abs(brightness - 128) / 128
|
| 167 |
-
contrast_score = min(contrast / 50, 1)
|
| 168 |
-
blur_score = min(blur_score / 1000, 1)
|
| 169 |
-
|
| 170 |
-
return (brightness_score + contrast_score + blur_score) / 3
|
| 171 |
-
|
| 172 |
-
except Exception as e:
|
| 173 |
-
print(f"Error assessing image quality: {str(e)}")
|
| 174 |
-
return 0.5 # Return middle value if assessment fails
|
| 175 |
-
|
| 176 |
def get_species_info(self, species):
|
| 177 |
"""Return information about a species"""
|
| 178 |
default_info = f"""
|
|
@@ -182,59 +96,58 @@ class BugClassifier:
|
|
| 182 |
"""
|
| 183 |
return self.species_info.get(species, default_info)
|
| 184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
def get_gradcam(self, image):
|
| 186 |
-
"""Generate
|
| 187 |
try:
|
| 188 |
-
#
|
| 189 |
image_tensor = self.preprocess_image(image)
|
| 190 |
|
| 191 |
-
# Get model attention weights
|
| 192 |
with torch.no_grad():
|
| 193 |
outputs = self.model(image_tensor, output_attentions=True)
|
| 194 |
-
attention
|
|
|
|
| 195 |
|
| 196 |
-
# Convert attention to
|
| 197 |
-
attention_map = attention.
|
| 198 |
-
|
| 199 |
-
# Resize attention map to image size
|
| 200 |
attention_map = cv2.resize(attention_map, (224, 224))
|
| 201 |
|
| 202 |
-
# Normalize attention map
|
| 203 |
attention_map = (attention_map - attention_map.min()) / (attention_map.max() - attention_map.min())
|
| 204 |
|
| 205 |
-
#
|
| 206 |
-
heatmap =
|
|
|
|
| 207 |
|
| 208 |
-
#
|
| 209 |
-
original_image =
|
| 210 |
-
|
| 211 |
-
|
| 212 |
|
| 213 |
# Overlay heatmap on original image
|
| 214 |
-
|
| 215 |
|
| 216 |
-
return Image.fromarray(
|
| 217 |
|
| 218 |
except Exception as e:
|
| 219 |
-
print(f"
|
| 220 |
-
return image
|
| 221 |
-
|
| 222 |
-
def compare_species(self, species1, species2):
|
| 223 |
-
"""Generate comparison information between two species"""
|
| 224 |
-
info1 = self.get_species_info(species1)
|
| 225 |
-
info2 = self.get_species_info(species2)
|
| 226 |
-
|
| 227 |
-
return f"""
|
| 228 |
-
**Comparing {species1} and {species2}:**
|
| 229 |
-
|
| 230 |
-
{species1}:
|
| 231 |
-
{info1}
|
| 232 |
-
|
| 233 |
-
{species2}:
|
| 234 |
-
{info2}
|
| 235 |
-
|
| 236 |
-
Both species contribute to their ecosystems in unique ways.
|
| 237 |
-
"""
|
| 238 |
|
| 239 |
def get_severity_prediction(species):
|
| 240 |
"""Predict ecological severity/impact based on species"""
|
|
@@ -250,6 +163,6 @@ def get_severity_prediction(species):
|
|
| 250 |
"Honey Bee": "Low",
|
| 251 |
"Paper Wasp": "Medium",
|
| 252 |
"Unknown Insect": "Unknown",
|
| 253 |
-
"Image
|
| 254 |
}
|
| 255 |
-
return severity_map.get(species, "
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
from PIL import Image
|
| 6 |
import cv2
|
|
|
|
| 7 |
|
| 8 |
class BugClassifier:
|
| 9 |
def __init__(self):
|
| 10 |
try:
|
| 11 |
+
# Use standard ViT model without modifications
|
| 12 |
self.model = ViTForImageClassification.from_pretrained(
|
| 13 |
+
"google/vit-base-patch16-224",
|
| 14 |
num_labels=10,
|
| 15 |
ignore_mismatched_sizes=True
|
| 16 |
)
|
| 17 |
+
self.feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# Set model to evaluation mode
|
| 20 |
self.model.eval()
|
| 21 |
|
| 22 |
+
# Define class labels
|
| 23 |
self.labels = [
|
| 24 |
"Seven-spotted Ladybug", "Monarch Butterfly", "Carpenter Ant",
|
| 25 |
"Japanese Beetle", "Garden Spider", "Green Grasshopper",
|
| 26 |
"Luna Moth", "Common Dragonfly", "Honey Bee", "Paper Wasp"
|
| 27 |
]
|
| 28 |
|
| 29 |
+
# Species information database
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
self.species_info = {
|
| 31 |
"Seven-spotted Ladybug": """
|
| 32 |
+
The Seven-spotted Ladybug is one of the most common ladybug species.
|
| 33 |
+
These beneficial insects are natural predators of garden pests like aphids.
|
|
|
|
| 34 |
Their distinct red coloring with seven black spots serves as a warning to predators.
|
| 35 |
""",
|
| 36 |
"Monarch Butterfly": """
|
| 37 |
+
The Monarch Butterfly is known for its spectacular annual migration.
|
| 38 |
+
They play a crucial role in pollination and are indicators of ecosystem health.
|
| 39 |
+
Their orange and black wings serve as warning colors to predators.
|
|
|
|
| 40 |
""",
|
| 41 |
+
# Add other species info as needed...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
}
|
|
|
|
| 43 |
except Exception as e:
|
| 44 |
+
print(f"Error initializing model: {str(e)}")
|
| 45 |
raise RuntimeError(f"Error initializing BugClassifier: {str(e)}")
|
| 46 |
|
| 47 |
+
def preprocess_image(self, image):
|
| 48 |
+
"""Preprocess image for model input"""
|
| 49 |
+
try:
|
| 50 |
+
# Convert RGBA to RGB if necessary
|
| 51 |
+
if image.mode == 'RGBA':
|
| 52 |
+
image = image.convert('RGB')
|
| 53 |
+
|
| 54 |
+
# Use feature extractor to handle resizing and normalization
|
| 55 |
+
inputs = self.feature_extractor(images=image, return_tensors="pt")
|
| 56 |
+
return inputs.pixel_values
|
| 57 |
+
|
| 58 |
+
except Exception as e:
|
| 59 |
+
print(f"Preprocessing error: {str(e)}")
|
| 60 |
+
raise ValueError(f"Error preprocessing image: {str(e)}")
|
| 61 |
+
|
| 62 |
def predict(self, image):
|
| 63 |
+
"""Make a prediction on the input image"""
|
| 64 |
try:
|
| 65 |
if not isinstance(image, Image.Image):
|
| 66 |
raise ValueError("Input must be a PIL Image")
|
|
|
|
| 73 |
outputs = self.model(image_tensor)
|
| 74 |
probs = F.softmax(outputs.logits, dim=-1).numpy()[0]
|
| 75 |
|
| 76 |
+
# Get prediction with highest confidence
|
| 77 |
+
pred_idx = np.argmax(probs)
|
| 78 |
+
confidence = float(probs[pred_idx] * 100)
|
| 79 |
|
| 80 |
+
# Check confidence threshold
|
| 81 |
+
if confidence < 40: # 40% threshold
|
| 82 |
+
return "Unknown Insect", confidence
|
| 83 |
|
| 84 |
+
return self.labels[pred_idx], confidence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
|
|
|
|
|
|
| 86 |
except Exception as e:
|
| 87 |
print(f"Prediction error: {str(e)}")
|
| 88 |
return "Error Processing Image", 0.0
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
def get_species_info(self, species):
|
| 91 |
"""Return information about a species"""
|
| 92 |
default_info = f"""
|
|
|
|
| 96 |
"""
|
| 97 |
return self.species_info.get(species, default_info)
|
| 98 |
|
| 99 |
+
def compare_species(self, species1, species2):
|
| 100 |
+
"""Generate comparison information between two species"""
|
| 101 |
+
info1 = self.get_species_info(species1)
|
| 102 |
+
info2 = self.get_species_info(species2)
|
| 103 |
+
|
| 104 |
+
return f"""
|
| 105 |
+
**Comparing {species1} and {species2}:**
|
| 106 |
+
|
| 107 |
+
{species1}:
|
| 108 |
+
{info1}
|
| 109 |
+
|
| 110 |
+
{species2}:
|
| 111 |
+
{info2}
|
| 112 |
+
|
| 113 |
+
Both species contribute to their ecosystems in unique ways.
|
| 114 |
+
"""
|
| 115 |
+
|
| 116 |
def get_gradcam(self, image):
|
| 117 |
+
"""Generate a simple attention visualization"""
|
| 118 |
try:
|
| 119 |
+
# Create a basic heatmap using model outputs
|
| 120 |
image_tensor = self.preprocess_image(image)
|
| 121 |
|
|
|
|
| 122 |
with torch.no_grad():
|
| 123 |
outputs = self.model(image_tensor, output_attentions=True)
|
| 124 |
+
# Get attention weights from last layer
|
| 125 |
+
attention = outputs.attentions[-1].mean(dim=1).mean(dim=1)
|
| 126 |
|
| 127 |
+
# Convert attention to numpy and resize
|
| 128 |
+
attention_map = attention.numpy()[0]
|
|
|
|
|
|
|
| 129 |
attention_map = cv2.resize(attention_map, (224, 224))
|
| 130 |
|
| 131 |
+
# Normalize the attention map
|
| 132 |
attention_map = (attention_map - attention_map.min()) / (attention_map.max() - attention_map.min())
|
| 133 |
|
| 134 |
+
# Create heatmap
|
| 135 |
+
heatmap = np.uint8(255 * attention_map)
|
| 136 |
+
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
|
| 137 |
|
| 138 |
+
# Prepare original image
|
| 139 |
+
original_image = image.copy()
|
| 140 |
+
original_image = original_image.resize((224, 224))
|
| 141 |
+
original_array = np.array(original_image)
|
| 142 |
|
| 143 |
# Overlay heatmap on original image
|
| 144 |
+
output = cv2.addWeighted(original_array, 0.7, heatmap, 0.3, 0)
|
| 145 |
|
| 146 |
+
return Image.fromarray(output)
|
| 147 |
|
| 148 |
except Exception as e:
|
| 149 |
+
print(f"Grad-CAM error: {str(e)}")
|
| 150 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
def get_severity_prediction(species):
|
| 153 |
"""Predict ecological severity/impact based on species"""
|
|
|
|
| 163 |
"Honey Bee": "Low",
|
| 164 |
"Paper Wasp": "Medium",
|
| 165 |
"Unknown Insect": "Unknown",
|
| 166 |
+
"Error Processing Image": "Unknown"
|
| 167 |
}
|
| 168 |
+
return severity_map.get(species, "Medium")
|