Update app.py
Browse files
app.py
CHANGED
|
@@ -8,53 +8,7 @@ model_path = "microsoft/git-base-vqav2"
|
|
| 8 |
dataset_name = "Multimodal-Fatima/OK-VQA_train"
|
| 9 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 10 |
|
| 11 |
-
|
| 12 |
-
"What was the machine beside the bowl used for?",
|
| 13 |
-
"What kind of cars are in the photo?",
|
| 14 |
-
"What is the hairstyle of the blond called?",
|
| 15 |
-
"How old do you have to be in canada to do this?",
|
| 16 |
-
"Can you guess the place where the man is playing?",
|
| 17 |
-
"What loony tune character is in this photo?",
|
| 18 |
-
"Whose birthday is being celebrated?",
|
| 19 |
-
"Where can that toilet seat be bought?",
|
| 20 |
-
"What do you call the kind of pants that the man on the right is wearing?"]
|
| 21 |
-
|
| 22 |
-
processor = AutoProcessor.from_pretrained(model_path)
|
| 23 |
-
model = AutoModelForVisualQuestionAnswering.from_pretrained(model_path)
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def main(select_exemple_num):
|
| 27 |
-
selectednum = select_exemple_num
|
| 28 |
-
exemple_img = f"image{selectednum}.jpg"
|
| 29 |
-
img = Image.open(exemple_img)
|
| 30 |
-
question = questions[selectednum - 1]
|
| 31 |
-
|
| 32 |
-
encoding = processor(img, question, return_tensors='pt')
|
| 33 |
-
|
| 34 |
-
outputs = model(**encoding)
|
| 35 |
-
logits = outputs.logits
|
| 36 |
-
|
| 37 |
-
# ---
|
| 38 |
-
output_str = 'pridicted : \n'
|
| 39 |
-
predicted_classes = torch.sigmoid(logits)
|
| 40 |
-
|
| 41 |
-
probs, classes = torch.topk(predicted_classes, 5)
|
| 42 |
-
ans = ''
|
| 43 |
-
|
| 44 |
-
for prob, class_idx in zip(probs.squeeze().tolist(), classes.squeeze().tolist()):
|
| 45 |
-
print(prob, model.config.id2label[class_idx])
|
| 46 |
-
output_str += str(prob)
|
| 47 |
-
output_str += " "
|
| 48 |
-
output_str += model.config.id2label[class_idx]
|
| 49 |
-
output_str += "\n"
|
| 50 |
-
if not ans:
|
| 51 |
-
ans = model.config.id2label[class_idx]
|
| 52 |
-
|
| 53 |
-
print(ans)
|
| 54 |
-
# ---
|
| 55 |
-
output_str += f"\nso I think it's answer is : \n{ans}"
|
| 56 |
-
|
| 57 |
-
return exemple_img, question, output_str
|
| 58 |
|
| 59 |
|
| 60 |
demo = gr.Interface(
|
|
|
|
| 8 |
dataset_name = "Multimodal-Fatima/OK-VQA_train"
|
| 9 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 10 |
|
| 11 |
+
def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
demo = gr.Interface(
|