- .gitignore +3 -1
- app.py +83 -29
- example/bear/00000.jpg +0 -0
- example/bear/00001.jpg +0 -0
- example/bear/00002.jpg +0 -0
- example/bear/00003.jpg +0 -0
- example/bear/00004.jpg +0 -0
- example/bear/00005.jpg +0 -0
- example/bear/00006.jpg +0 -0
- example/bear/00007.jpg +0 -0
- example/bear/00008.jpg +0 -0
- example/bear/00009.jpg +0 -0
- example/breakdance/00000.jpg +0 -0
- example/breakdance/00001.jpg +0 -0
- example/breakdance/00002.jpg +0 -0
- example/breakdance/00003.jpg +0 -0
- example/breakdance/00004.jpg +0 -0
- example/breakdance/00005.jpg +0 -0
- example/breakdance/00006.jpg +0 -0
- example/breakdance/00007.jpg +0 -0
- example/breakdance/00008.jpg +0 -0
- example/breakdance/00009.jpg +0 -0
- example/camel/00000.jpg +0 -0
- example/camel/00001.jpg +0 -0
- example/camel/00002.jpg +0 -0
- example/camel/00003.jpg +0 -0
- example/camel/00004.jpg +0 -0
- example/camel/00005.jpg +0 -0
- example/camel/00006.jpg +0 -0
- example/camel/00007.jpg +0 -0
- example/camel/00008.jpg +0 -0
- example/camel/00009.jpg +0 -0
- example/tennis/00000.jpg +0 -0
- example/tennis/00001.jpg +0 -0
- example/tennis/00002.jpg +0 -0
- example/tennis/00003.jpg +0 -0
- example/tennis/00004.jpg +0 -0
- example/tennis/00005.jpg +0 -0
- example/tennis/00006.jpg +0 -0
- example/tennis/00007.jpg +0 -0
- example/tennis/00008.jpg +0 -0
- example/tennis/00009.jpg +0 -0
- example/yellowman/frame_0003.png +0 -0
- example/yellowman/frame_0014.png +0 -0
.gitignore
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
*.pth
|
| 2 |
*.pt
|
| 3 |
.gitignore
|
| 4 |
-
*.glb
|
|
|
|
|
|
|
|
|
| 1 |
*.pth
|
| 2 |
*.pt
|
| 3 |
.gitignore
|
| 4 |
+
*.glb
|
| 5 |
+
output/*
|
| 6 |
+
app_test.py
|
app.py
CHANGED
|
@@ -17,6 +17,8 @@ import copy
|
|
| 17 |
from tqdm import tqdm
|
| 18 |
import cv2
|
| 19 |
from PIL import Image
|
|
|
|
|
|
|
| 20 |
|
| 21 |
from dust3r.inference import inference
|
| 22 |
from dust3r.model import AsymmetricCroCo3DStereo
|
|
@@ -32,16 +34,19 @@ import spaces
|
|
| 32 |
from huggingface_hub import hf_hub_download
|
| 33 |
pl.ion()
|
| 34 |
|
|
|
|
|
|
|
|
|
|
| 35 |
# for gpu >= Ampere and pytorch >= 1.12
|
| 36 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 37 |
batch_size = 1
|
| 38 |
|
| 39 |
tmpdirname = tempfile.mkdtemp(suffix='_align3r_gradio_demo')
|
| 40 |
image_size = 512
|
| 41 |
-
silent =
|
| 42 |
gradio_delete_cache = 7200
|
| 43 |
-
|
| 44 |
-
hf_hub_download(repo_id="apple/DepthPro", filename='depth_pro.pt', local_dir='third_party/ml-depth-pro/checkpoints/')
|
| 45 |
|
| 46 |
class FileState:
|
| 47 |
def __init__(self, outfile_name=None):
|
|
@@ -141,24 +146,16 @@ def local_get_reconstructed_scene(filelist, min_conf_thr, as_pointcloud, mask_sk
|
|
| 141 |
loss = scene.compute_global_alignment(init='mst', niter=300, schedule='linear', lr=lr)
|
| 142 |
# mode = GlobalAlignerMode.PairViewer
|
| 143 |
# scene = global_aligner(output, device=device, mode=mode, verbose=not silent)
|
| 144 |
-
|
|
|
|
| 145 |
os.makedirs(save_folder, exist_ok=True)
|
| 146 |
outfile = get_3D_model_from_scene(save_folder, silent, scene, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size)
|
| 147 |
|
| 148 |
return outfile
|
| 149 |
|
| 150 |
|
| 151 |
-
def run_example(snapshot,
|
| 152 |
-
return local_get_reconstructed_scene(
|
| 153 |
-
# filelist = ['/home/lipeng/ljh_code/Video_Depth_CVPR2025-main/Align3R/data/davis/DAVIS/JPEGImages/480p/bear/00000.jpg', '/home/lipeng/ljh_code/Video_Depth_CVPR2025-main/Align3R/data/davis/DAVIS/JPEGImages/480p/bear/00008.jpg','/home/lipeng/ljh_code/Video_Depth_CVPR2025-main/Align3R/data/davis/DAVIS/JPEGImages/480p/bear/00004.jpg', '/home/lipeng/ljh_code/Video_Depth_CVPR2025-main/Align3R/data/davis/DAVIS/JPEGImages/480p/bear/00010.jpg']
|
| 154 |
-
# min_conf_thr = 1.1
|
| 155 |
-
# as_pointcloud = True
|
| 156 |
-
# mask_sky = False
|
| 157 |
-
# clean_depth = True
|
| 158 |
-
# transparent_cams = False
|
| 159 |
-
# cam_size = 0.2
|
| 160 |
-
# depth_prior_name = 'Depth Anything V2'
|
| 161 |
-
# local_get_reconstructed_scene(filelist, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, depth_prior_name)
|
| 162 |
|
| 163 |
css = """.gradio-container {margin: 0 !important; min-width: 100%};"""
|
| 164 |
title = "Align3R Demo"
|
|
@@ -174,14 +171,14 @@ with gradio.Blocks(css=css, title=title, delete_cache=(gradio_delete_cache, grad
|
|
| 174 |
snapshot = gradio.Image(None, visible=False)
|
| 175 |
with gradio.Row():
|
| 176 |
# adjust the camera size in the output pointcloud
|
| 177 |
-
cam_size = gradio.Slider(label="cam_size", value=0.
|
| 178 |
|
| 179 |
depth_prior_name = gradio.Dropdown(
|
| 180 |
["Depth Pro", "Depth Anything V2"], label="monocular depth estimation model", info="Select the monocular depth estimation model.")
|
| 181 |
-
min_conf_thr = gradio.Slider(label="min_conf_thr", value=
|
| 182 |
with gradio.Row():
|
| 183 |
as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud")
|
| 184 |
-
mask_sky = gradio.Checkbox(value=
|
| 185 |
clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps")
|
| 186 |
transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras")
|
| 187 |
# not to show camera
|
|
@@ -189,17 +186,74 @@ with gradio.Blocks(css=css, title=title, delete_cache=(gradio_delete_cache, grad
|
|
| 189 |
run_btn = gradio.Button("Run")
|
| 190 |
outmodel = gradio.Model3D()
|
| 191 |
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
# events
|
| 205 |
run_btn.click(fn=local_get_reconstructed_scene,
|
|
|
|
| 17 |
from tqdm import tqdm
|
| 18 |
import cv2
|
| 19 |
from PIL import Image
|
| 20 |
+
import os.path as path
|
| 21 |
+
import sys
|
| 22 |
|
| 23 |
from dust3r.inference import inference
|
| 24 |
from dust3r.model import AsymmetricCroCo3DStereo
|
|
|
|
| 34 |
from huggingface_hub import hf_hub_download
|
| 35 |
pl.ion()
|
| 36 |
|
| 37 |
+
HERE_PATH = path.normpath(path.dirname(__file__)) # noqa
|
| 38 |
+
sys.path.insert(0, HERE_PATH) # noqa
|
| 39 |
+
|
| 40 |
# for gpu >= Ampere and pytorch >= 1.12
|
| 41 |
torch.backends.cuda.matmul.allow_tf32 = True
|
| 42 |
batch_size = 1
|
| 43 |
|
| 44 |
tmpdirname = tempfile.mkdtemp(suffix='_align3r_gradio_demo')
|
| 45 |
image_size = 512
|
| 46 |
+
silent = False
|
| 47 |
gradio_delete_cache = 7200
|
| 48 |
+
print(f'{HERE_PATH}/third_party/ml-depth-pro/checkpoints/')
|
| 49 |
+
hf_hub_download(repo_id="apple/DepthPro", filename='depth_pro.pt', local_dir=f'{HERE_PATH}/third_party/ml-depth-pro/checkpoints/')
|
| 50 |
|
| 51 |
class FileState:
|
| 52 |
def __init__(self, outfile_name=None):
|
|
|
|
| 146 |
loss = scene.compute_global_alignment(init='mst', niter=300, schedule='linear', lr=lr)
|
| 147 |
# mode = GlobalAlignerMode.PairViewer
|
| 148 |
# scene = global_aligner(output, device=device, mode=mode, verbose=not silent)
|
| 149 |
+
|
| 150 |
+
save_folder = './output/bear'
|
| 151 |
os.makedirs(save_folder, exist_ok=True)
|
| 152 |
outfile = get_3D_model_from_scene(save_folder, silent, scene, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size)
|
| 153 |
|
| 154 |
return outfile
|
| 155 |
|
| 156 |
|
| 157 |
+
def run_example(snapshot, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, depth_prior_name, inputfiles, **kw):
|
| 158 |
+
return local_get_reconstructed_scene(inputfiles, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, depth_prior_name, **kw)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
css = """.gradio-container {margin: 0 !important; min-width: 100%};"""
|
| 161 |
title = "Align3R Demo"
|
|
|
|
| 171 |
snapshot = gradio.Image(None, visible=False)
|
| 172 |
with gradio.Row():
|
| 173 |
# adjust the camera size in the output pointcloud
|
| 174 |
+
cam_size = gradio.Slider(label="cam_size", value=0.02, minimum=0.001, maximum=1.0, step=0.001)
|
| 175 |
|
| 176 |
depth_prior_name = gradio.Dropdown(
|
| 177 |
["Depth Pro", "Depth Anything V2"], label="monocular depth estimation model", info="Select the monocular depth estimation model.")
|
| 178 |
+
min_conf_thr = gradio.Slider(label="min_conf_thr", value=2, minimum=0.0, maximum=20, step=0.01)
|
| 179 |
with gradio.Row():
|
| 180 |
as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud")
|
| 181 |
+
mask_sky = gradio.Checkbox(value=True, label="Mask sky")
|
| 182 |
clean_depth = gradio.Checkbox(value=True, label="Clean-up depthmaps")
|
| 183 |
transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras")
|
| 184 |
# not to show camera
|
|
|
|
| 186 |
run_btn = gradio.Button("Run")
|
| 187 |
outmodel = gradio.Model3D()
|
| 188 |
|
| 189 |
+
examples = gradio.Examples(
|
| 190 |
+
examples=[
|
| 191 |
+
[
|
| 192 |
+
os.path.join(HERE_PATH, 'example/bear/00000.jpg'),
|
| 193 |
+
2, True, True, True, False, 0.02, "Depth Anything V2",
|
| 194 |
+
[os.path.join(HERE_PATH, 'example/bear/00000.jpg'),
|
| 195 |
+
os.path.join(HERE_PATH, 'example/bear/00001.jpg'),
|
| 196 |
+
os.path.join(HERE_PATH, 'example/bear/00002.jpg'),
|
| 197 |
+
os.path.join(HERE_PATH, 'example/bear/00003.jpg'),
|
| 198 |
+
os.path.join(HERE_PATH, 'example/bear/00004.jpg'),
|
| 199 |
+
os.path.join(HERE_PATH, 'example/bear/00005.jpg'),
|
| 200 |
+
os.path.join(HERE_PATH, 'example/bear/00006.jpg'),
|
| 201 |
+
os.path.join(HERE_PATH, 'example/bear/00007.jpg'),
|
| 202 |
+
os.path.join(HERE_PATH, 'example/bear/00008.jpg'),
|
| 203 |
+
os.path.join(HERE_PATH, 'example/bear/00009.jpg'),
|
| 204 |
+
]
|
| 205 |
+
],
|
| 206 |
+
[
|
| 207 |
+
os.path.join(HERE_PATH, 'example/breakdance/00000.jpg'),
|
| 208 |
+
2, True, True, True, False, 0.02, "Depth Anything V2",
|
| 209 |
+
[os.path.join(HERE_PATH, 'example/breakdance/00000.jpg'),
|
| 210 |
+
os.path.join(HERE_PATH, 'example/breakdance/00001.jpg'),
|
| 211 |
+
os.path.join(HERE_PATH, 'example/breakdance/00002.jpg'),
|
| 212 |
+
os.path.join(HERE_PATH, 'example/breakdance/00003.jpg'),
|
| 213 |
+
os.path.join(HERE_PATH, 'example/breakdance/00004.jpg'),
|
| 214 |
+
os.path.join(HERE_PATH, 'example/breakdance/00005.jpg'),
|
| 215 |
+
os.path.join(HERE_PATH, 'example/breakdance/00006.jpg'),
|
| 216 |
+
os.path.join(HERE_PATH, 'example/breakdance/00007.jpg'),
|
| 217 |
+
os.path.join(HERE_PATH, 'example/breakdance/00008.jpg'),
|
| 218 |
+
os.path.join(HERE_PATH, 'example/breakdance/00009.jpg'),
|
| 219 |
+
]
|
| 220 |
+
],
|
| 221 |
+
[
|
| 222 |
+
os.path.join(HERE_PATH, 'example/tennis/00000.jpg'),
|
| 223 |
+
2, True, True, True, False, 0.02, "Depth Anything V2",
|
| 224 |
+
[os.path.join(HERE_PATH, 'example/tennis/00000.jpg'),
|
| 225 |
+
os.path.join(HERE_PATH, 'example/tennis/00001.jpg'),
|
| 226 |
+
os.path.join(HERE_PATH, 'example/tennis/00002.jpg'),
|
| 227 |
+
os.path.join(HERE_PATH, 'example/tennis/00003.jpg'),
|
| 228 |
+
os.path.join(HERE_PATH, 'example/tennis/00004.jpg'),
|
| 229 |
+
os.path.join(HERE_PATH, 'example/tennis/00005.jpg'),
|
| 230 |
+
os.path.join(HERE_PATH, 'example/tennis/00006.jpg'),
|
| 231 |
+
os.path.join(HERE_PATH, 'example/tennis/00007.jpg'),
|
| 232 |
+
os.path.join(HERE_PATH, 'example/tennis/00008.jpg'),
|
| 233 |
+
os.path.join(HERE_PATH, 'example/tennis/00009.jpg'),
|
| 234 |
+
]
|
| 235 |
+
],
|
| 236 |
+
[
|
| 237 |
+
os.path.join(HERE_PATH, 'example/camel/00000.jpg'),
|
| 238 |
+
2, True, True, True, False, 0.02, "Depth Anything V2",
|
| 239 |
+
[os.path.join(HERE_PATH, 'example/camel/00000.jpg'),
|
| 240 |
+
os.path.join(HERE_PATH, 'example/camel/00001.jpg'),
|
| 241 |
+
os.path.join(HERE_PATH, 'example/camel/00002.jpg'),
|
| 242 |
+
os.path.join(HERE_PATH, 'example/camel/00003.jpg'),
|
| 243 |
+
os.path.join(HERE_PATH, 'example/camel/00004.jpg'),
|
| 244 |
+
os.path.join(HERE_PATH, 'example/camel/00005.jpg'),
|
| 245 |
+
os.path.join(HERE_PATH, 'example/camel/00006.jpg'),
|
| 246 |
+
os.path.join(HERE_PATH, 'example/camel/00007.jpg'),
|
| 247 |
+
os.path.join(HERE_PATH, 'example/camel/00008.jpg'),
|
| 248 |
+
os.path.join(HERE_PATH, 'example/camel/00009.jpg'),
|
| 249 |
+
]
|
| 250 |
+
],
|
| 251 |
+
],
|
| 252 |
+
inputs=[snapshot, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, depth_prior_name, inputfiles],
|
| 253 |
+
outputs=[outmodel],
|
| 254 |
+
fn=run_example,
|
| 255 |
+
cache_examples="lazy",
|
| 256 |
+
)
|
| 257 |
|
| 258 |
# events
|
| 259 |
run_btn.click(fn=local_get_reconstructed_scene,
|
example/bear/00000.jpg
ADDED
|
example/bear/00001.jpg
ADDED
|
example/bear/00002.jpg
ADDED
|
example/bear/00003.jpg
ADDED
|
example/bear/00004.jpg
ADDED
|
example/bear/00005.jpg
ADDED
|
example/bear/00006.jpg
ADDED
|
example/bear/00007.jpg
ADDED
|
example/bear/00008.jpg
ADDED
|
example/bear/00009.jpg
ADDED
|
example/breakdance/00000.jpg
ADDED
|
example/breakdance/00001.jpg
ADDED
|
example/breakdance/00002.jpg
ADDED
|
example/breakdance/00003.jpg
ADDED
|
example/breakdance/00004.jpg
ADDED
|
example/breakdance/00005.jpg
ADDED
|
example/breakdance/00006.jpg
ADDED
|
example/breakdance/00007.jpg
ADDED
|
example/breakdance/00008.jpg
ADDED
|
example/breakdance/00009.jpg
ADDED
|
example/camel/00000.jpg
ADDED
|
example/camel/00001.jpg
ADDED
|
example/camel/00002.jpg
ADDED
|
example/camel/00003.jpg
ADDED
|
example/camel/00004.jpg
ADDED
|
example/camel/00005.jpg
ADDED
|
example/camel/00006.jpg
ADDED
|
example/camel/00007.jpg
ADDED
|
example/camel/00008.jpg
ADDED
|
example/camel/00009.jpg
ADDED
|
example/tennis/00000.jpg
ADDED
|
example/tennis/00001.jpg
ADDED
|
example/tennis/00002.jpg
ADDED
|
example/tennis/00003.jpg
ADDED
|
example/tennis/00004.jpg
ADDED
|
example/tennis/00005.jpg
ADDED
|
example/tennis/00006.jpg
ADDED
|
example/tennis/00007.jpg
ADDED
|
example/tennis/00008.jpg
ADDED
|
example/tennis/00009.jpg
ADDED
|
example/yellowman/frame_0003.png
DELETED
|
Binary file (778 kB)
|
|
|
example/yellowman/frame_0014.png
DELETED
|
Binary file (826 kB)
|
|
|