Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -191,6 +191,9 @@ def transcribe_audio(input_source, pipeline_type, model_id, dtype, batch_size, d
|
|
| 191 |
logging.info(f"Transcription parameters: pipeline_type={pipeline_type}, model_id={model_id}, dtype={dtype}, batch_size={batch_size}, download_method={download_method}")
|
| 192 |
verbose_messages = f"Starting transcription with parameters:\nPipeline Type: {pipeline_type}\nModel ID: {model_id}\nData Type: {dtype}\nBatch Size: {batch_size}\nDownload Method: {download_method}\n"
|
| 193 |
|
|
|
|
|
|
|
|
|
|
| 194 |
if pipeline_type == "faster-batched":
|
| 195 |
model = WhisperModel(model_id, device="auto", compute_type=dtype)
|
| 196 |
pipeline = BatchedInferencePipeline(model=model)
|
|
@@ -221,7 +224,10 @@ def transcribe_audio(input_source, pipeline_type, model_id, dtype, batch_size, d
|
|
| 221 |
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
|
| 222 |
audio_path = download_audio(input_source, download_method)
|
| 223 |
verbose_messages += f"Audio file downloaded: {audio_path}\n"
|
| 224 |
-
if
|
|
|
|
|
|
|
|
|
|
| 225 |
yield f"Error: {audio_path}", "", None
|
| 226 |
return
|
| 227 |
else:
|
|
@@ -231,6 +237,8 @@ def transcribe_audio(input_source, pipeline_type, model_id, dtype, batch_size, d
|
|
| 231 |
trimmed_audio_path = trim_audio(audio_path, start_time or 0, end_time)
|
| 232 |
audio_path = trimmed_audio_path
|
| 233 |
verbose_messages += f"Audio trimmed from {start_time} to {end_time}\n"
|
|
|
|
|
|
|
| 234 |
|
| 235 |
start_time_perf = time.time()
|
| 236 |
if pipeline_type in ["faster-batched", "faster-sequenced"]:
|
|
@@ -285,8 +293,13 @@ def transcribe_audio(input_source, pipeline_type, model_id, dtype, batch_size, d
|
|
| 285 |
def update_model_dropdown(pipeline_type):
|
| 286 |
model_choices = get_model_options(pipeline_type)
|
| 287 |
logging.info(f"Model choices for {pipeline_type}: {model_choices}")
|
| 288 |
-
return gr.Dropdown.update(choices=model_choices, value=model_choices[0] if model_choices else None)
|
| 289 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
with gr.Blocks() as iface:
|
| 291 |
gr.Markdown("# Multi-Pipeline Transcription")
|
| 292 |
gr.Markdown("Transcribe audio using multiple pipelines and models.")
|
|
|
|
| 191 |
logging.info(f"Transcription parameters: pipeline_type={pipeline_type}, model_id={model_id}, dtype={dtype}, batch_size={batch_size}, download_method={download_method}")
|
| 192 |
verbose_messages = f"Starting transcription with parameters:\nPipeline Type: {pipeline_type}\nModel ID: {model_id}\nData Type: {dtype}\nBatch Size: {batch_size}\nDownload Method: {download_method}\n"
|
| 193 |
|
| 194 |
+
if verbose:
|
| 195 |
+
yield verbose_messages, "", None
|
| 196 |
+
|
| 197 |
if pipeline_type == "faster-batched":
|
| 198 |
model = WhisperModel(model_id, device="auto", compute_type=dtype)
|
| 199 |
pipeline = BatchedInferencePipeline(model=model)
|
|
|
|
| 224 |
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
|
| 225 |
audio_path = download_audio(input_source, download_method)
|
| 226 |
verbose_messages += f"Audio file downloaded: {audio_path}\n"
|
| 227 |
+
if verbose:
|
| 228 |
+
yield verbose_messages, "", None
|
| 229 |
+
|
| 230 |
+
if not audio_path or audio_path.startswith("Error"):
|
| 231 |
yield f"Error: {audio_path}", "", None
|
| 232 |
return
|
| 233 |
else:
|
|
|
|
| 237 |
trimmed_audio_path = trim_audio(audio_path, start_time or 0, end_time)
|
| 238 |
audio_path = trimmed_audio_path
|
| 239 |
verbose_messages += f"Audio trimmed from {start_time} to {end_time}\n"
|
| 240 |
+
if verbose:
|
| 241 |
+
yield verbose_messages, "", None
|
| 242 |
|
| 243 |
start_time_perf = time.time()
|
| 244 |
if pipeline_type in ["faster-batched", "faster-sequenced"]:
|
|
|
|
| 293 |
def update_model_dropdown(pipeline_type):
|
| 294 |
model_choices = get_model_options(pipeline_type)
|
| 295 |
logging.info(f"Model choices for {pipeline_type}: {model_choices}")
|
|
|
|
| 296 |
|
| 297 |
+
# Check if there are model choices available before setting the value
|
| 298 |
+
if model_choices:
|
| 299 |
+
return gr.Dropdown.update(choices=model_choices, value=model_choices[0])
|
| 300 |
+
else:
|
| 301 |
+
return gr.Dropdown.update(choices=[], value=None)
|
| 302 |
+
|
| 303 |
with gr.Blocks() as iface:
|
| 304 |
gr.Markdown("# Multi-Pipeline Transcription")
|
| 305 |
gr.Markdown("Transcribe audio using multiple pipelines and models.")
|