Update app.py
Browse files
app.py
CHANGED
|
@@ -1,142 +1,141 @@
|
|
| 1 |
import os
|
| 2 |
-
import
|
|
|
|
| 3 |
import json
|
| 4 |
import base64
|
| 5 |
-
|
|
|
|
| 6 |
|
| 7 |
# Configure logging
|
| 8 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
| 9 |
logger = logging.getLogger(__name__)
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
try:
|
| 13 |
-
import gradio as gr
|
| 14 |
-
except ImportError:
|
| 15 |
-
logger.error("Gradio not found. Please install with 'pip install gradio'")
|
| 16 |
-
raise
|
| 17 |
-
|
| 18 |
-
try:
|
| 19 |
-
import requests
|
| 20 |
-
except ImportError:
|
| 21 |
-
logger.error("Requests not found. Please install with 'pip install requests'")
|
| 22 |
-
raise
|
| 23 |
-
|
| 24 |
-
# Optional libraries with fallbacks
|
| 25 |
try:
|
| 26 |
from PIL import Image
|
| 27 |
-
PIL_AVAILABLE = True
|
| 28 |
except ImportError:
|
| 29 |
-
logger.warning("PIL not
|
| 30 |
-
|
| 31 |
|
| 32 |
-
# PDF processing
|
| 33 |
-
PDF_AVAILABLE = False
|
| 34 |
try:
|
| 35 |
import PyPDF2
|
| 36 |
-
PDF_AVAILABLE = True
|
| 37 |
except ImportError:
|
| 38 |
-
logger.warning("PyPDF2 not
|
| 39 |
-
|
| 40 |
-
from pdfminer.high_level import extract_text as pdf_extract_text
|
| 41 |
-
PDF_AVAILABLE = True
|
| 42 |
-
|
| 43 |
-
# Create a wrapper to mimic PyPDF2 functionality
|
| 44 |
-
def extract_text_from_pdf(file_path):
|
| 45 |
-
return pdf_extract_text(file_path)
|
| 46 |
-
except ImportError:
|
| 47 |
-
logger.warning("No PDF processing libraries found. PDF support will be disabled.")
|
| 48 |
|
| 49 |
-
# Markdown processing
|
| 50 |
-
MD_AVAILABLE = False
|
| 51 |
try:
|
| 52 |
import markdown
|
| 53 |
-
MD_AVAILABLE = True
|
| 54 |
except ImportError:
|
| 55 |
-
logger.warning("Markdown not
|
| 56 |
-
|
| 57 |
-
from markdownify import markdownify as md
|
| 58 |
-
MD_AVAILABLE = True
|
| 59 |
-
|
| 60 |
-
# Create a wrapper for markdown
|
| 61 |
-
def convert_markdown(text):
|
| 62 |
-
return md(text)
|
| 63 |
-
except ImportError:
|
| 64 |
-
logger.warning("No Markdown processing libraries found. Markdown support will be limited.")
|
| 65 |
|
| 66 |
# API key
|
| 67 |
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")
|
| 68 |
|
| 69 |
-
#
|
| 70 |
MODELS = [
|
| 71 |
-
#
|
| 72 |
-
{"category": "
|
| 73 |
("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
|
| 74 |
-
("Google: Gemini
|
| 75 |
-
("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
|
| 76 |
("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
|
|
|
|
| 77 |
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
|
| 78 |
-
("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp-1219:free", 40000),
|
| 79 |
-
("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
|
| 80 |
-
("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
|
| 81 |
-
("Qwen: Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
|
| 82 |
-
("Qwen: Qwen2.5 VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
|
| 83 |
-
("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
|
| 84 |
-
("Bytedance: UI-TARS 72B", "bytedance-research/ui-tars-72b:free", 32768),
|
| 85 |
]},
|
| 86 |
|
| 87 |
-
#
|
| 88 |
-
{"category": "
|
| 89 |
-
("
|
| 90 |
-
("
|
| 91 |
-
("
|
| 92 |
-
("
|
| 93 |
-
("Google:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
]},
|
| 95 |
|
| 96 |
-
#
|
| 97 |
-
{"category": "
|
| 98 |
-
("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
|
| 99 |
-
("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
|
| 100 |
-
("Google: Gemma 3 27B", "google/gemma-3-27b-it:free", 96000),
|
| 101 |
("Mistral: Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
|
| 102 |
-
("
|
|
|
|
|
|
|
|
|
|
| 103 |
]},
|
| 104 |
|
| 105 |
-
#
|
| 106 |
-
{"category": "
|
| 107 |
-
("Google: Gemma 3 12B", "google/gemma-3-12b-it:free", 131072),
|
| 108 |
-
("Google: Gemma 3 4B", "google/gemma-3-4b-it:free", 131072),
|
| 109 |
("Google: LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960),
|
| 110 |
-
("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
]},
|
| 112 |
|
| 113 |
-
#
|
| 114 |
-
{"category": "
|
| 115 |
-
("
|
| 116 |
-
("Qwen:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
("AllenAI: Molmo 7B D", "allenai/molmo-7b-d:free", 4096),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
]},
|
| 119 |
|
| 120 |
-
#
|
| 121 |
-
{"category": "
|
| 122 |
-
("
|
| 123 |
-
("
|
| 124 |
-
("
|
| 125 |
-
("
|
| 126 |
-
("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
]},
|
| 128 |
]
|
| 129 |
|
| 130 |
# Flatten model list for easy searching
|
| 131 |
ALL_MODELS = []
|
| 132 |
for category in MODELS:
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
ALL_MODELS.append(model)
|
| 137 |
-
|
| 138 |
-
# Sort models by context size (descending) by default
|
| 139 |
-
ALL_MODELS.sort(key=lambda x: x[2], reverse=True)
|
| 140 |
|
| 141 |
def format_to_message_dict(history):
|
| 142 |
"""Convert history to proper message format"""
|
|
@@ -151,72 +150,54 @@ def format_to_message_dict(history):
|
|
| 151 |
return messages
|
| 152 |
|
| 153 |
def encode_image_to_base64(image_path):
|
| 154 |
-
"""Encode an image file to base64 string
|
| 155 |
try:
|
| 156 |
if isinstance(image_path, str): # File path as string
|
| 157 |
with open(image_path, "rb") as image_file:
|
| 158 |
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
|
| 159 |
file_extension = image_path.split('.')[-1].lower()
|
| 160 |
mime_type = f"image/{file_extension}"
|
| 161 |
-
if file_extension
|
| 162 |
mime_type = "image/jpeg"
|
| 163 |
elif file_extension == "png":
|
| 164 |
mime_type = "image/png"
|
| 165 |
-
elif file_extension
|
| 166 |
-
mime_type =
|
| 167 |
-
else:
|
| 168 |
-
mime_type = "image/jpeg" # Default fallback
|
| 169 |
return f"data:{mime_type};base64,{encoded_string}"
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
try:
|
| 174 |
image_path.save(buffered, format="PNG")
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
raise
|
| 181 |
-
encoded_string = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
| 182 |
-
return f"data:image/png;base64,{encoded_string}"
|
| 183 |
-
else:
|
| 184 |
-
logger.error("Cannot process image: PIL not available and input is not a file path")
|
| 185 |
-
return None
|
| 186 |
except Exception as e:
|
| 187 |
logger.error(f"Error encoding image: {str(e)}")
|
| 188 |
return None
|
| 189 |
|
| 190 |
def extract_text_from_file(file_path):
|
| 191 |
-
"""Extract text from various file types
|
| 192 |
try:
|
| 193 |
file_extension = file_path.split('.')[-1].lower()
|
| 194 |
|
| 195 |
if file_extension == 'pdf':
|
| 196 |
-
if
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
return text
|
| 205 |
-
else:
|
| 206 |
-
# Use pdfminer fallback
|
| 207 |
-
return extract_text_from_pdf(file_path)
|
| 208 |
else:
|
| 209 |
-
return "PDF
|
| 210 |
|
| 211 |
elif file_extension == 'md':
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
return md_text
|
| 216 |
-
else:
|
| 217 |
-
# Simple fallback - just read the file
|
| 218 |
-
with open(file_path, 'r', encoding='utf-8') as file:
|
| 219 |
-
return file.read()
|
| 220 |
|
| 221 |
elif file_extension == 'txt':
|
| 222 |
with open(file_path, 'r', encoding='utf-8') as file:
|
|
@@ -260,7 +241,7 @@ def prepare_message_with_media(text, images=None, documents=None):
|
|
| 260 |
return text
|
| 261 |
|
| 262 |
# If we have images, create a multimodal content array
|
| 263 |
-
content = [{"type": "text", "text": text
|
| 264 |
|
| 265 |
# Add images if any
|
| 266 |
if images:
|
|
@@ -277,127 +258,6 @@ def prepare_message_with_media(text, images=None, documents=None):
|
|
| 277 |
|
| 278 |
return content
|
| 279 |
|
| 280 |
-
def ask_ai(message, chatbot, model_choice, temperature, max_tokens, top_p, frequency_penalty,
|
| 281 |
-
presence_penalty, images, documents, reasoning_effort):
|
| 282 |
-
"""Enhanced AI query function with comprehensive options and fallbacks"""
|
| 283 |
-
if not message.strip() and not images and not documents:
|
| 284 |
-
return chatbot, ""
|
| 285 |
-
|
| 286 |
-
# Check if this is a sorting option
|
| 287 |
-
if model_choice.startswith("Sort By"):
|
| 288 |
-
return chatbot + [[message, "Please select a model to chat with first."]], ""
|
| 289 |
-
|
| 290 |
-
# Get model ID and context size
|
| 291 |
-
model_id = None
|
| 292 |
-
context_size = 0
|
| 293 |
-
for name, model_id_value, ctx_size in ALL_MODELS:
|
| 294 |
-
if name == model_choice:
|
| 295 |
-
model_id = model_id_value
|
| 296 |
-
context_size = ctx_size
|
| 297 |
-
break
|
| 298 |
-
|
| 299 |
-
if model_id is None:
|
| 300 |
-
logger.error(f"Model not found: {model_choice}")
|
| 301 |
-
return chatbot + [[message, "Error: Model not found"]], ""
|
| 302 |
-
|
| 303 |
-
# Create messages from chatbot history
|
| 304 |
-
messages = format_to_message_dict(chatbot)
|
| 305 |
-
|
| 306 |
-
# Prepare message with images and documents if any
|
| 307 |
-
content = prepare_message_with_media(message, images, documents)
|
| 308 |
-
|
| 309 |
-
# Add current message
|
| 310 |
-
messages.append({"role": "user", "content": content})
|
| 311 |
-
|
| 312 |
-
# Call API
|
| 313 |
-
try:
|
| 314 |
-
logger.info(f"Sending request to model: {model_id}")
|
| 315 |
-
|
| 316 |
-
# Build the payload with all parameters
|
| 317 |
-
payload = {
|
| 318 |
-
"model": model_id,
|
| 319 |
-
"messages": messages,
|
| 320 |
-
"temperature": temperature,
|
| 321 |
-
"max_tokens": max_tokens,
|
| 322 |
-
}
|
| 323 |
-
|
| 324 |
-
# Add optional parameters if they have non-default values
|
| 325 |
-
if top_p < 1.0:
|
| 326 |
-
payload["top_p"] = top_p
|
| 327 |
-
|
| 328 |
-
if frequency_penalty != 0:
|
| 329 |
-
payload["frequency_penalty"] = frequency_penalty
|
| 330 |
-
|
| 331 |
-
if presence_penalty != 0:
|
| 332 |
-
payload["presence_penalty"] = presence_penalty
|
| 333 |
-
|
| 334 |
-
# Add reasoning if selected
|
| 335 |
-
if reasoning_effort != "none":
|
| 336 |
-
payload["reasoning"] = {
|
| 337 |
-
"effort": reasoning_effort
|
| 338 |
-
}
|
| 339 |
-
|
| 340 |
-
logger.info(f"Request payload: {json.dumps(payload, default=str)}")
|
| 341 |
-
|
| 342 |
-
response = requests.post(
|
| 343 |
-
"https://openrouter.ai/api/v1/chat/completions",
|
| 344 |
-
headers={
|
| 345 |
-
"Content-Type": "application/json",
|
| 346 |
-
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
|
| 347 |
-
"HTTP-Referer": "https://huggingface.co/spaces"
|
| 348 |
-
},
|
| 349 |
-
json=payload,
|
| 350 |
-
timeout=120 # Longer timeout for document processing
|
| 351 |
-
)
|
| 352 |
-
|
| 353 |
-
logger.info(f"Response status: {response.status_code}")
|
| 354 |
-
|
| 355 |
-
response_text = response.text
|
| 356 |
-
logger.debug(f"Response body: {response_text}")
|
| 357 |
-
|
| 358 |
-
if response.status_code == 200:
|
| 359 |
-
result = response.json()
|
| 360 |
-
ai_response = result.get("choices", [{}])[0].get("message", {}).get("content", "")
|
| 361 |
-
chatbot = chatbot + [[message, ai_response]]
|
| 362 |
-
|
| 363 |
-
# Log token usage if available
|
| 364 |
-
if "usage" in result:
|
| 365 |
-
logger.info(f"Token usage: {result['usage']}")
|
| 366 |
-
else:
|
| 367 |
-
error_message = f"Error: Status code {response.status_code}\n\nResponse: {response_text}"
|
| 368 |
-
chatbot = chatbot + [[message, error_message]]
|
| 369 |
-
except Exception as e:
|
| 370 |
-
logger.error(f"Exception during API call: {str(e)}")
|
| 371 |
-
chatbot = chatbot + [[message, f"Error: {str(e)}"]]
|
| 372 |
-
|
| 373 |
-
return chatbot, ""
|
| 374 |
-
|
| 375 |
-
def clear_chat():
|
| 376 |
-
return [], "", [], [], 0.7, 1000, 0.8, 0.0, 0.0, "none"
|
| 377 |
-
|
| 378 |
-
def apply_sort(sort_option):
|
| 379 |
-
"""Apply sorting option to models list"""
|
| 380 |
-
if sort_option == "sort_context_desc":
|
| 381 |
-
# Sort by context size (high to low)
|
| 382 |
-
sorted_models = sorted(ALL_MODELS, key=lambda x: x[2], reverse=True)
|
| 383 |
-
elif sort_option == "sort_context_asc":
|
| 384 |
-
# Sort by context size (low to high)
|
| 385 |
-
sorted_models = sorted(ALL_MODELS, key=lambda x: x[2])
|
| 386 |
-
elif sort_option == "sort_newest":
|
| 387 |
-
# This would need a proper timestamp, using a rough approximation
|
| 388 |
-
# Models with "Experimental" in the name come first as they're likely newer
|
| 389 |
-
sorted_models = sorted(ALL_MODELS, key=lambda x: "Experimental" not in x[0])
|
| 390 |
-
elif sort_option == "sort_throughput" or sort_option == "sort_latency":
|
| 391 |
-
# These would need actual performance metrics
|
| 392 |
-
# For now, use model size as a rough proxy (smaller models generally have higher throughput and lower latency)
|
| 393 |
-
# Rough heuristic: models with smaller numbers in their names might be smaller
|
| 394 |
-
sorted_models = sorted(ALL_MODELS, key=lambda x: sum(int(s) for s in x[0] if s.isdigit()))
|
| 395 |
-
else:
|
| 396 |
-
# Default to context size sorting
|
| 397 |
-
sorted_models = sorted(ALL_MODELS, key=lambda x: x[2], reverse=True)
|
| 398 |
-
|
| 399 |
-
return sorted_models
|
| 400 |
-
|
| 401 |
def filter_models(search_term):
|
| 402 |
"""Filter models based on search term"""
|
| 403 |
if not search_term:
|
|
@@ -426,308 +286,13 @@ def update_context_display(model_name):
|
|
| 426 |
return f"{context_formatted} tokens"
|
| 427 |
return "Unknown"
|
| 428 |
|
| 429 |
-
def update_models_from_sort(sort_option):
|
| 430 |
-
"""Update models list based on sorting option"""
|
| 431 |
-
for category in MODELS:
|
| 432 |
-
if category["category"] == "Sort By":
|
| 433 |
-
for option in category["models"]:
|
| 434 |
-
if option[0] == sort_option:
|
| 435 |
-
sort_key = option[1]
|
| 436 |
-
sorted_models = apply_sort(sort_key)
|
| 437 |
-
return gr.Dropdown.update(choices=[model[0] for model in sorted_models], value=sorted_models[0][0])
|
| 438 |
-
|
| 439 |
-
# Default sorting if option not found
|
| 440 |
-
return gr.Dropdown.update(choices=[model[0] for model in ALL_MODELS], value=ALL_MODELS[0][0])
|
| 441 |
-
|
| 442 |
-
# Create enhanced interface
|
| 443 |
-
with gr.Blocks(css="""
|
| 444 |
-
.context-size {
|
| 445 |
-
font-size: 0.9em;
|
| 446 |
-
color: #666;
|
| 447 |
-
margin-left: 10px;
|
| 448 |
-
}
|
| 449 |
-
footer { display: none !important; }
|
| 450 |
-
.model-selection-row {
|
| 451 |
-
display: flex;
|
| 452 |
-
align-items: center;
|
| 453 |
-
}
|
| 454 |
-
.parameter-grid {
|
| 455 |
-
display: grid;
|
| 456 |
-
grid-template-columns: 1fr 1fr;
|
| 457 |
-
gap: 10px;
|
| 458 |
-
}
|
| 459 |
-
""") as demo:
|
| 460 |
-
gr.Markdown("""
|
| 461 |
-
# Vision AI Chat
|
| 462 |
-
|
| 463 |
-
Chat with various AI vision models from OpenRouter with support for images and documents.
|
| 464 |
-
""")
|
| 465 |
-
|
| 466 |
-
with gr.Row():
|
| 467 |
-
with gr.Column(scale=2):
|
| 468 |
-
chatbot = gr.Chatbot(
|
| 469 |
-
height=500,
|
| 470 |
-
show_copy_button=True,
|
| 471 |
-
show_label=False,
|
| 472 |
-
avatar_images=(None, "https://upload.wikimedia.org/wikipedia/commons/0/04/ChatGPT_logo.svg")
|
| 473 |
-
)
|
| 474 |
-
|
| 475 |
-
with gr.Row():
|
| 476 |
-
message = gr.Textbox(
|
| 477 |
-
placeholder="Type your message here...",
|
| 478 |
-
label="Message",
|
| 479 |
-
lines=2
|
| 480 |
-
)
|
| 481 |
-
|
| 482 |
-
with gr.Row():
|
| 483 |
-
with gr.Column(scale=3):
|
| 484 |
-
submit_btn = gr.Button("Send", variant="primary")
|
| 485 |
-
|
| 486 |
-
with gr.Column(scale=1):
|
| 487 |
-
clear_btn = gr.Button("Clear Chat", variant="secondary")
|
| 488 |
-
|
| 489 |
-
with gr.Row():
|
| 490 |
-
# Image upload
|
| 491 |
-
with gr.Accordion("Upload Images", open=False):
|
| 492 |
-
images = gr.Gallery(
|
| 493 |
-
label="Uploaded Images",
|
| 494 |
-
show_label=True,
|
| 495 |
-
columns=4,
|
| 496 |
-
height="auto",
|
| 497 |
-
object_fit="contain"
|
| 498 |
-
)
|
| 499 |
-
|
| 500 |
-
image_upload_btn = gr.UploadButton(
|
| 501 |
-
label="Upload Images",
|
| 502 |
-
file_types=["image"],
|
| 503 |
-
file_count="multiple"
|
| 504 |
-
)
|
| 505 |
-
|
| 506 |
-
# Document upload
|
| 507 |
-
with gr.Accordion("Upload Documents (PDF, MD, TXT)", open=False):
|
| 508 |
-
documents = gr.File(
|
| 509 |
-
label="Uploaded Documents",
|
| 510 |
-
file_types=[".pdf", ".md", ".txt"],
|
| 511 |
-
file_count="multiple"
|
| 512 |
-
)
|
| 513 |
-
|
| 514 |
-
with gr.Column(scale=1):
|
| 515 |
-
with gr.Group():
|
| 516 |
-
gr.Markdown("### Model Selection")
|
| 517 |
-
|
| 518 |
-
with gr.Row(elem_classes="model-selection-row"):
|
| 519 |
-
model_search = gr.Textbox(
|
| 520 |
-
placeholder="Search models...",
|
| 521 |
-
label="",
|
| 522 |
-
show_label=False
|
| 523 |
-
)
|
| 524 |
-
|
| 525 |
-
with gr.Row(elem_classes="model-selection-row"):
|
| 526 |
-
model_choice = gr.Dropdown(
|
| 527 |
-
[model[0] for model in ALL_MODELS],
|
| 528 |
-
value=ALL_MODELS[0][0],
|
| 529 |
-
label="Model"
|
| 530 |
-
)
|
| 531 |
-
context_display = gr.Textbox(
|
| 532 |
-
value=update_context_display(ALL_MODELS[0][0]),
|
| 533 |
-
label="Context",
|
| 534 |
-
interactive=False,
|
| 535 |
-
elem_classes="context-size"
|
| 536 |
-
)
|
| 537 |
-
|
| 538 |
-
# Model category selection
|
| 539 |
-
with gr.Accordion("Browse by Category", open=False):
|
| 540 |
-
model_categories = gr.Radio(
|
| 541 |
-
[category["category"] for category in MODELS],
|
| 542 |
-
label="Categories",
|
| 543 |
-
value=MODELS[0]["category"]
|
| 544 |
-
)
|
| 545 |
-
|
| 546 |
-
category_models = gr.Radio(
|
| 547 |
-
[model[0] for model in MODELS[0]["models"]],
|
| 548 |
-
label="Models in Category"
|
| 549 |
-
)
|
| 550 |
-
|
| 551 |
-
# Sort options
|
| 552 |
-
with gr.Accordion("Sort Models", open=False):
|
| 553 |
-
sort_options = gr.Radio(
|
| 554 |
-
["Context: High to Low", "Context: Low to High", "Newest",
|
| 555 |
-
"Throughput: High to Low", "Latency: Low to High"],
|
| 556 |
-
label="Sort By",
|
| 557 |
-
value="Context: High to Low"
|
| 558 |
-
)
|
| 559 |
-
|
| 560 |
-
with gr.Accordion("Generation Parameters", open=False):
|
| 561 |
-
with gr.Group(elem_classes="parameter-grid"):
|
| 562 |
-
temperature = gr.Slider(
|
| 563 |
-
minimum=0.0,
|
| 564 |
-
maximum=2.0,
|
| 565 |
-
value=0.7,
|
| 566 |
-
step=0.1,
|
| 567 |
-
label="Temperature"
|
| 568 |
-
)
|
| 569 |
-
|
| 570 |
-
max_tokens = gr.Slider(
|
| 571 |
-
minimum=100,
|
| 572 |
-
maximum=4000,
|
| 573 |
-
value=1000,
|
| 574 |
-
step=100,
|
| 575 |
-
label="Max Tokens"
|
| 576 |
-
)
|
| 577 |
-
|
| 578 |
-
top_p = gr.Slider(
|
| 579 |
-
minimum=0.1,
|
| 580 |
-
maximum=1.0,
|
| 581 |
-
value=0.8,
|
| 582 |
-
step=0.1,
|
| 583 |
-
label="Top P"
|
| 584 |
-
)
|
| 585 |
-
|
| 586 |
-
frequency_penalty = gr.Slider(
|
| 587 |
-
minimum=-2.0,
|
| 588 |
-
maximum=2.0,
|
| 589 |
-
value=0.0,
|
| 590 |
-
step=0.1,
|
| 591 |
-
label="Frequency Penalty"
|
| 592 |
-
)
|
| 593 |
-
|
| 594 |
-
presence_penalty = gr.Slider(
|
| 595 |
-
minimum=-2.0,
|
| 596 |
-
maximum=2.0,
|
| 597 |
-
value=0.0,
|
| 598 |
-
step=0.1,
|
| 599 |
-
label="Presence Penalty"
|
| 600 |
-
)
|
| 601 |
-
|
| 602 |
-
reasoning_effort = gr.Radio(
|
| 603 |
-
["none", "low", "medium", "high"],
|
| 604 |
-
value="none",
|
| 605 |
-
label="Reasoning Effort"
|
| 606 |
-
)
|
| 607 |
-
|
| 608 |
-
with gr.Accordion("Advanced Options", open=False):
|
| 609 |
-
with gr.Row():
|
| 610 |
-
with gr.Column():
|
| 611 |
-
repetition_penalty = gr.Slider(
|
| 612 |
-
minimum=0.1,
|
| 613 |
-
maximum=2.0,
|
| 614 |
-
value=1.0,
|
| 615 |
-
step=0.1,
|
| 616 |
-
label="Repetition Penalty"
|
| 617 |
-
)
|
| 618 |
-
|
| 619 |
-
top_k = gr.Slider(
|
| 620 |
-
minimum=1,
|
| 621 |
-
maximum=100,
|
| 622 |
-
value=40,
|
| 623 |
-
step=1,
|
| 624 |
-
label="Top K"
|
| 625 |
-
)
|
| 626 |
-
|
| 627 |
-
min_p = gr.Slider(
|
| 628 |
-
minimum=0.0,
|
| 629 |
-
maximum=1.0,
|
| 630 |
-
value=0.1,
|
| 631 |
-
step=0.05,
|
| 632 |
-
label="Min P"
|
| 633 |
-
)
|
| 634 |
-
|
| 635 |
-
with gr.Column():
|
| 636 |
-
seed = gr.Number(
|
| 637 |
-
value=0,
|
| 638 |
-
label="Seed (0 for random)",
|
| 639 |
-
precision=0
|
| 640 |
-
)
|
| 641 |
-
|
| 642 |
-
top_a = gr.Slider(
|
| 643 |
-
minimum=0.0,
|
| 644 |
-
maximum=1.0,
|
| 645 |
-
value=0.0,
|
| 646 |
-
step=0.05,
|
| 647 |
-
label="Top A"
|
| 648 |
-
)
|
| 649 |
-
|
| 650 |
-
stream_output = gr.Checkbox(
|
| 651 |
-
label="Stream Output",
|
| 652 |
-
value=False
|
| 653 |
-
)
|
| 654 |
-
|
| 655 |
-
with gr.Row():
|
| 656 |
-
response_format = gr.Radio(
|
| 657 |
-
["default", "json_object"],
|
| 658 |
-
value="default",
|
| 659 |
-
label="Response Format"
|
| 660 |
-
)
|
| 661 |
-
|
| 662 |
-
gr.Markdown("""
|
| 663 |
-
* **json_object**: Forces the model to respond with valid JSON only.
|
| 664 |
-
* Only available on certain models - check model support on OpenRouter.
|
| 665 |
-
""")
|
| 666 |
-
|
| 667 |
-
# Custom instructing options
|
| 668 |
-
with gr.Accordion("Custom Instructions", open=False):
|
| 669 |
-
system_message = gr.Textbox(
|
| 670 |
-
placeholder="Enter a system message to guide the model's behavior...",
|
| 671 |
-
label="System Message",
|
| 672 |
-
lines=3
|
| 673 |
-
)
|
| 674 |
-
|
| 675 |
-
transforms = gr.CheckboxGroup(
|
| 676 |
-
["prompt_optimize", "prompt_distill", "prompt_compress"],
|
| 677 |
-
label="Prompt Transforms (OpenRouter specific)"
|
| 678 |
-
)
|
| 679 |
-
|
| 680 |
-
gr.Markdown("""
|
| 681 |
-
* **prompt_optimize**: Improve prompt for better responses.
|
| 682 |
-
* **prompt_distill**: Compress prompt to use fewer tokens without changing meaning.
|
| 683 |
-
* **prompt_compress**: Aggressively compress prompt to fit larger contexts.
|
| 684 |
-
""")
|
| 685 |
-
|
| 686 |
-
# Connect model search to dropdown filter
|
| 687 |
-
model_search.change(
|
| 688 |
-
fn=filter_models,
|
| 689 |
-
inputs=[model_search],
|
| 690 |
-
outputs=[model_choice]
|
| 691 |
-
)
|
| 692 |
-
|
| 693 |
-
# Update context display when model changes
|
| 694 |
-
model_choice.change(
|
| 695 |
-
fn=update_context_display,
|
| 696 |
-
inputs=[model_choice],
|
| 697 |
-
outputs=[context_display]
|
| 698 |
-
)
|
| 699 |
-
|
| 700 |
-
# Update model list when category changes
|
| 701 |
def update_category_models(category):
|
|
|
|
| 702 |
for cat in MODELS:
|
| 703 |
if cat["category"] == category:
|
| 704 |
return gr.Radio.update(choices=[model[0] for model in cat["models"]], value=cat["models"][0][0])
|
| 705 |
return gr.Radio.update(choices=[], value=None)
|
| 706 |
|
| 707 |
-
model_categories.change(
|
| 708 |
-
fn=update_category_models,
|
| 709 |
-
inputs=[model_categories],
|
| 710 |
-
outputs=[category_models]
|
| 711 |
-
)
|
| 712 |
-
|
| 713 |
-
# Update main model choice when category model is selected
|
| 714 |
-
category_models.change(
|
| 715 |
-
fn=lambda x: x,
|
| 716 |
-
inputs=[category_models],
|
| 717 |
-
outputs=[model_choice]
|
| 718 |
-
)
|
| 719 |
-
|
| 720 |
-
# Process uploaded images
|
| 721 |
-
def process_uploaded_images(files):
|
| 722 |
-
return [file.name for file in files]
|
| 723 |
-
|
| 724 |
-
image_upload_btn.upload(
|
| 725 |
-
fn=process_uploaded_images,
|
| 726 |
-
inputs=[image_upload_btn],
|
| 727 |
-
outputs=[images]
|
| 728 |
-
)
|
| 729 |
-
|
| 730 |
-
# Enhanced AI query function with all advanced parameters
|
| 731 |
def ask_ai(message, chatbot, model_choice, temperature, max_tokens, top_p,
|
| 732 |
frequency_penalty, presence_penalty, repetition_penalty, top_k,
|
| 733 |
min_p, seed, top_a, stream_output, response_format,
|
|
@@ -863,104 +428,392 @@ def ask_ai(message, chatbot, model_choice, temperature, max_tokens, top_p,
|
|
| 863 |
|
| 864 |
return chatbot, ""
|
| 865 |
|
| 866 |
-
|
|
|
|
|
|
|
|
|
|
| 867 |
def clear_chat():
|
|
|
|
| 868 |
return [], "", [], [], 0.7, 1000, 0.8, 0.0, 0.0, 1.0, 40, 0.1, 0, 0.0, False, "default", "none", "", []
|
| 869 |
|
| 870 |
-
#
|
| 871 |
-
|
| 872 |
-
|
| 873 |
-
|
| 874 |
-
|
| 875 |
-
|
| 876 |
-
|
| 877 |
-
|
| 878 |
-
|
| 879 |
-
|
| 880 |
-
)
|
| 881 |
-
|
| 882 |
-
|
| 883 |
-
|
| 884 |
-
|
| 885 |
-
|
| 886 |
-
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
|
| 890 |
-
|
| 891 |
-
|
| 892 |
-
|
| 893 |
-
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
|
| 897 |
-
|
| 898 |
-
|
| 899 |
-
|
| 900 |
-
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
|
| 904 |
-
)
|
| 905 |
-
|
| 906 |
-
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
|
| 913 |
-
|
| 914 |
-
|
| 915 |
-
|
| 916 |
-
|
| 917 |
-
|
| 918 |
-
|
| 919 |
-
|
| 920 |
-
|
| 921 |
-
|
| 922 |
-
|
| 923 |
-
|
| 924 |
-
|
| 925 |
-
|
| 926 |
-
|
| 927 |
-
|
| 928 |
-
|
| 929 |
-
|
| 930 |
-
|
| 931 |
-
|
| 932 |
-
|
| 933 |
-
|
| 934 |
-
|
| 935 |
-
|
| 936 |
-
|
| 937 |
-
|
| 938 |
-
|
| 939 |
-
|
| 940 |
-
|
| 941 |
-
|
| 942 |
-
|
| 943 |
-
|
| 944 |
-
|
| 945 |
-
|
| 946 |
-
|
| 947 |
-
|
| 948 |
-
|
| 949 |
-
|
| 950 |
-
|
| 951 |
-
|
| 952 |
-
|
| 953 |
-
|
| 954 |
-
|
| 955 |
-
|
| 956 |
-
|
| 957 |
-
|
| 958 |
-
|
| 959 |
-
|
| 960 |
-
|
| 961 |
-
|
| 962 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 963 |
|
| 964 |
-
# Launch
|
| 965 |
if __name__ == "__main__":
|
|
|
|
| 966 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 1 |
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import requests
|
| 4 |
import json
|
| 5 |
import base64
|
| 6 |
+
import logging
|
| 7 |
+
import io
|
| 8 |
|
| 9 |
# Configure logging
|
| 10 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
| 11 |
logger = logging.getLogger(__name__)
|
| 12 |
|
| 13 |
+
# Gracefully import libraries with fallbacks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
try:
|
| 15 |
from PIL import Image
|
|
|
|
| 16 |
except ImportError:
|
| 17 |
+
logger.warning("PIL not installed. Image processing will be limited.")
|
| 18 |
+
Image = None
|
| 19 |
|
|
|
|
|
|
|
| 20 |
try:
|
| 21 |
import PyPDF2
|
|
|
|
| 22 |
except ImportError:
|
| 23 |
+
logger.warning("PyPDF2 not installed. PDF processing will be limited.")
|
| 24 |
+
PyPDF2 = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
|
|
|
|
|
|
| 26 |
try:
|
| 27 |
import markdown
|
|
|
|
| 28 |
except ImportError:
|
| 29 |
+
logger.warning("Markdown not installed. Markdown processing will be limited.")
|
| 30 |
+
markdown = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
# API key
|
| 33 |
OPENROUTER_API_KEY = os.environ.get("OPENROUTER_API_KEY", "")
|
| 34 |
|
| 35 |
+
# Complete model list with context sizes - as per requested list
|
| 36 |
MODELS = [
|
| 37 |
+
# 1M+ Context Models
|
| 38 |
+
{"category": "1M+ Context", "models": [
|
| 39 |
("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
|
| 40 |
+
("Google: Gemini 2.0 Flash Thinking Experimental 01-21", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
|
|
|
|
| 41 |
("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
|
| 42 |
+
("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
|
| 43 |
("Google: Gemini Flash 1.5 8B Experimental", "google/gemini-flash-1.5-8b-exp", 1000000),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
]},
|
| 45 |
|
| 46 |
+
# 100K-1M Context Models
|
| 47 |
+
{"category": "100K+ Context", "models": [
|
| 48 |
+
("DeepSeek: DeepSeek R1 Zero", "deepseek/deepseek-r1-zero:free", 163840),
|
| 49 |
+
("DeepSeek: R1", "deepseek/deepseek-r1:free", 163840),
|
| 50 |
+
("DeepSeek: DeepSeek V3 Base", "deepseek/deepseek-v3-base:free", 131072),
|
| 51 |
+
("DeepSeek: DeepSeek V3 0324", "deepseek/deepseek-chat-v3-0324:free", 131072),
|
| 52 |
+
("Google: Gemma 3 4B", "google/gemma-3-4b-it:free", 131072),
|
| 53 |
+
("Google: Gemma 3 12B", "google/gemma-3-12b-it:free", 131072),
|
| 54 |
+
("Nous: DeepHermes 3 Llama 3 8B Preview", "nousresearch/deephermes-3-llama-3-8b-preview:free", 131072),
|
| 55 |
+
("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
|
| 56 |
+
("DeepSeek: DeepSeek V3", "deepseek/deepseek-chat:free", 131072),
|
| 57 |
+
("NVIDIA: Llama 3.1 Nemotron 70B Instruct", "nvidia/llama-3.1-nemotron-70b-instruct:free", 131072),
|
| 58 |
+
("Meta: Llama 3.2 1B Instruct", "meta-llama/llama-3.2-1b-instruct:free", 131072),
|
| 59 |
+
("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
|
| 60 |
+
("Meta: Llama 3.1 8B Instruct", "meta-llama/llama-3.1-8b-instruct:free", 131072),
|
| 61 |
+
("Mistral: Mistral Nemo", "mistralai/mistral-nemo:free", 128000),
|
| 62 |
]},
|
| 63 |
|
| 64 |
+
# 64K-100K Context Models
|
| 65 |
+
{"category": "64K-100K Context", "models": [
|
|
|
|
|
|
|
|
|
|
| 66 |
("Mistral: Mistral Small 3.1 24B", "mistralai/mistral-small-3.1-24b-instruct:free", 96000),
|
| 67 |
+
("Google: Gemma 3 27B", "google/gemma-3-27b-it:free", 96000),
|
| 68 |
+
("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
|
| 69 |
+
("DeepSeek: R1 Distill Qwen 14B", "deepseek/deepseek-r1-distill-qwen-14b:free", 64000),
|
| 70 |
+
("Qwen: Qwen2.5-VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
|
| 71 |
]},
|
| 72 |
|
| 73 |
+
# 32K-64K Context Models
|
| 74 |
+
{"category": "32K-64K Context", "models": [
|
|
|
|
|
|
|
| 75 |
("Google: LearnLM 1.5 Pro Experimental", "google/learnlm-1.5-pro-experimental:free", 40960),
|
| 76 |
+
("Qwen: QwQ 32B", "qwen/qwq-32b:free", 40000),
|
| 77 |
+
("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp-1219:free", 40000),
|
| 78 |
+
("Bytedance: UI-TARS 72B", "bytedance-research/ui-tars-72b:free", 32768),
|
| 79 |
+
("Qwerky 72b", "featherless/qwerky-72b:free", 32768),
|
| 80 |
+
("OlympicCoder 7B", "open-r1/olympiccoder-7b:free", 32768),
|
| 81 |
+
("OlympicCoder 32B", "open-r1/olympiccoder-32b:free", 32768),
|
| 82 |
+
("Google: Gemma 3 1B", "google/gemma-3-1b-it:free", 32768),
|
| 83 |
+
("Reka: Flash 3", "rekaai/reka-flash-3:free", 32768),
|
| 84 |
+
("Dolphin3.0 R1 Mistral 24B", "cognitivecomputations/dolphin3.0-r1-mistral-24b:free", 32768),
|
| 85 |
+
("Dolphin3.0 Mistral 24B", "cognitivecomputations/dolphin3.0-mistral-24b:free", 32768),
|
| 86 |
+
("Mistral: Mistral Small 3", "mistralai/mistral-small-24b-instruct-2501:free", 32768),
|
| 87 |
+
("Qwen2.5 Coder 32B Instruct", "qwen/qwen-2.5-coder-32b-instruct:free", 32768),
|
| 88 |
+
("Qwen2.5 72B Instruct", "qwen/qwen-2.5-72b-instruct:free", 32768),
|
| 89 |
]},
|
| 90 |
|
| 91 |
+
# 8K-32K Context Models
|
| 92 |
+
{"category": "8K-32K Context", "models": [
|
| 93 |
+
("Meta: Llama 3.2 3B Instruct", "meta-llama/llama-3.2-3b-instruct:free", 20000),
|
| 94 |
+
("Qwen: QwQ 32B Preview", "qwen/qwq-32b-preview:free", 16384),
|
| 95 |
+
("DeepSeek: R1 Distill Qwen 32B", "deepseek/deepseek-r1-distill-qwen-32b:free", 16000),
|
| 96 |
+
("Qwen: Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
|
| 97 |
+
("Moonshot AI: Moonlight 16B A3B Instruct", "moonshotai/moonlight-16b-a3b-instruct:free", 8192),
|
| 98 |
+
("DeepSeek: R1 Distill Llama 70B", "deepseek/deepseek-r1-distill-llama-70b:free", 8192),
|
| 99 |
+
("Qwen 2 7B Instruct", "qwen/qwen-2-7b-instruct:free", 8192),
|
| 100 |
+
("Google: Gemma 2 9B", "google/gemma-2-9b-it:free", 8192),
|
| 101 |
+
("Mistral: Mistral 7B Instruct", "mistralai/mistral-7b-instruct:free", 8192),
|
| 102 |
+
("Microsoft: Phi-3 Mini 128K Instruct", "microsoft/phi-3-mini-128k-instruct:free", 8192),
|
| 103 |
+
("Microsoft: Phi-3 Medium 128K Instruct", "microsoft/phi-3-medium-128k-instruct:free", 8192),
|
| 104 |
+
("Meta: Llama 3 8B Instruct", "meta-llama/llama-3-8b-instruct:free", 8192),
|
| 105 |
+
("OpenChat 3.5 7B", "openchat/openchat-7b:free", 8192),
|
| 106 |
+
("Meta: Llama 3.3 70B Instruct", "meta-llama/llama-3.3-70b-instruct:free", 8000),
|
| 107 |
+
]},
|
| 108 |
+
|
| 109 |
+
# <8K Context Models
|
| 110 |
+
{"category": "4K Context", "models": [
|
| 111 |
("AllenAI: Molmo 7B D", "allenai/molmo-7b-d:free", 4096),
|
| 112 |
+
("Rogue Rose 103B v0.2", "sophosympatheia/rogue-rose-103b-v0.2:free", 4096),
|
| 113 |
+
("Toppy M 7B", "undi95/toppy-m-7b:free", 4096),
|
| 114 |
+
("Hugging Face: Zephyr 7B", "huggingfaceh4/zephyr-7b-beta:free", 4096),
|
| 115 |
+
("MythoMax 13B", "gryphe/mythomax-l2-13b:free", 4096),
|
| 116 |
]},
|
| 117 |
|
| 118 |
+
# Vision-capable Models
|
| 119 |
+
{"category": "Vision Models", "models": [
|
| 120 |
+
("Meta: Llama 3.2 11B Vision Instruct", "meta-llama/llama-3.2-11b-vision-instruct:free", 131072),
|
| 121 |
+
("Qwen: Qwen2.5 VL 72B Instruct", "qwen/qwen2.5-vl-72b-instruct:free", 131072),
|
| 122 |
+
("Qwen: Qwen2.5 VL 32B Instruct", "qwen/qwen2.5-vl-32b-instruct:free", 8192),
|
| 123 |
+
("Qwen: Qwen2.5-VL 7B Instruct", "qwen/qwen-2.5-vl-7b-instruct:free", 64000),
|
| 124 |
+
("Qwen: Qwen2.5 VL 3B Instruct", "qwen/qwen2.5-vl-3b-instruct:free", 64000),
|
| 125 |
+
("Google: Gemini Pro 2.0 Experimental", "google/gemini-2.0-pro-exp-02-05:free", 2000000),
|
| 126 |
+
("Google: Gemini Pro 2.5 Experimental", "google/gemini-2.5-pro-exp-03-25:free", 1000000),
|
| 127 |
+
("Google: Gemini 2.0 Flash Thinking Experimental", "google/gemini-2.0-flash-thinking-exp:free", 1048576),
|
| 128 |
+
("Google: Gemini Flash 2.0 Experimental", "google/gemini-2.0-flash-exp:free", 1048576),
|
| 129 |
+
("AllenAI: Molmo 7B D", "allenai/molmo-7b-d:free", 4096),
|
| 130 |
]},
|
| 131 |
]
|
| 132 |
|
| 133 |
# Flatten model list for easy searching
|
| 134 |
ALL_MODELS = []
|
| 135 |
for category in MODELS:
|
| 136 |
+
for model in category["models"]:
|
| 137 |
+
if model not in ALL_MODELS: # Avoid duplicates
|
| 138 |
+
ALL_MODELS.append(model)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
def format_to_message_dict(history):
|
| 141 |
"""Convert history to proper message format"""
|
|
|
|
| 150 |
return messages
|
| 151 |
|
| 152 |
def encode_image_to_base64(image_path):
|
| 153 |
+
"""Encode an image file to base64 string"""
|
| 154 |
try:
|
| 155 |
if isinstance(image_path, str): # File path as string
|
| 156 |
with open(image_path, "rb") as image_file:
|
| 157 |
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
|
| 158 |
file_extension = image_path.split('.')[-1].lower()
|
| 159 |
mime_type = f"image/{file_extension}"
|
| 160 |
+
if file_extension == "jpg" or file_extension == "jpeg":
|
| 161 |
mime_type = "image/jpeg"
|
| 162 |
elif file_extension == "png":
|
| 163 |
mime_type = "image/png"
|
| 164 |
+
elif file_extension == "webp":
|
| 165 |
+
mime_type = "image/webp"
|
|
|
|
|
|
|
| 166 |
return f"data:{mime_type};base64,{encoded_string}"
|
| 167 |
+
else: # Pillow Image or file-like object
|
| 168 |
+
if Image is not None:
|
| 169 |
+
buffered = io.BytesIO()
|
|
|
|
| 170 |
image_path.save(buffered, format="PNG")
|
| 171 |
+
encoded_string = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
| 172 |
+
return f"data:image/png;base64,{encoded_string}"
|
| 173 |
+
else:
|
| 174 |
+
logger.error("PIL is not installed, cannot process image object")
|
| 175 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
except Exception as e:
|
| 177 |
logger.error(f"Error encoding image: {str(e)}")
|
| 178 |
return None
|
| 179 |
|
| 180 |
def extract_text_from_file(file_path):
|
| 181 |
+
"""Extract text from various file types"""
|
| 182 |
try:
|
| 183 |
file_extension = file_path.split('.')[-1].lower()
|
| 184 |
|
| 185 |
if file_extension == 'pdf':
|
| 186 |
+
if PyPDF2 is not None:
|
| 187 |
+
text = ""
|
| 188 |
+
with open(file_path, 'rb') as file:
|
| 189 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
| 190 |
+
for page_num in range(len(pdf_reader.pages)):
|
| 191 |
+
page = pdf_reader.pages[page_num]
|
| 192 |
+
text += page.extract_text() + "\n\n"
|
| 193 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
else:
|
| 195 |
+
return "PDF processing is not available (PyPDF2 not installed)"
|
| 196 |
|
| 197 |
elif file_extension == 'md':
|
| 198 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
| 199 |
+
md_text = file.read()
|
| 200 |
+
return md_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
elif file_extension == 'txt':
|
| 203 |
with open(file_path, 'r', encoding='utf-8') as file:
|
|
|
|
| 241 |
return text
|
| 242 |
|
| 243 |
# If we have images, create a multimodal content array
|
| 244 |
+
content = [{"type": "text", "text": text}]
|
| 245 |
|
| 246 |
# Add images if any
|
| 247 |
if images:
|
|
|
|
| 258 |
|
| 259 |
return content
|
| 260 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
def filter_models(search_term):
|
| 262 |
"""Filter models based on search term"""
|
| 263 |
if not search_term:
|
|
|
|
| 286 |
return f"{context_formatted} tokens"
|
| 287 |
return "Unknown"
|
| 288 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
def update_category_models(category):
|
| 290 |
+
"""Update models list when category changes"""
|
| 291 |
for cat in MODELS:
|
| 292 |
if cat["category"] == category:
|
| 293 |
return gr.Radio.update(choices=[model[0] for model in cat["models"]], value=cat["models"][0][0])
|
| 294 |
return gr.Radio.update(choices=[], value=None)
|
| 295 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
def ask_ai(message, chatbot, model_choice, temperature, max_tokens, top_p,
|
| 297 |
frequency_penalty, presence_penalty, repetition_penalty, top_k,
|
| 298 |
min_p, seed, top_a, stream_output, response_format,
|
|
|
|
| 428 |
|
| 429 |
return chatbot, ""
|
| 430 |
|
| 431 |
+
def process_uploaded_images(files):
|
| 432 |
+
"""Process uploaded image files"""
|
| 433 |
+
return [file.name for file in files]
|
| 434 |
+
|
| 435 |
def clear_chat():
|
| 436 |
+
"""Reset all inputs"""
|
| 437 |
return [], "", [], [], 0.7, 1000, 0.8, 0.0, 0.0, 1.0, 40, 0.1, 0, 0.0, False, "default", "none", "", []
|
| 438 |
|
| 439 |
+
# Create requirements.txt content
|
| 440 |
+
requirements = """
|
| 441 |
+
gradio>=4.44.1
|
| 442 |
+
requests>=2.28.1
|
| 443 |
+
Pillow>=9.0.0
|
| 444 |
+
PyPDF2>=3.0.0
|
| 445 |
+
markdown>=3.4.1
|
| 446 |
+
"""
|
| 447 |
+
|
| 448 |
+
# Main application
|
| 449 |
+
def create_app():
|
| 450 |
+
with gr.Blocks(css="""
|
| 451 |
+
.context-size {
|
| 452 |
+
font-size: 0.9em;
|
| 453 |
+
color: #666;
|
| 454 |
+
margin-left: 10px;
|
| 455 |
+
}
|
| 456 |
+
footer { display: none !important; }
|
| 457 |
+
.model-selection-row {
|
| 458 |
+
display: flex;
|
| 459 |
+
align-items: center;
|
| 460 |
+
}
|
| 461 |
+
.parameter-grid {
|
| 462 |
+
display: grid;
|
| 463 |
+
grid-template-columns: 1fr 1fr;
|
| 464 |
+
gap: 10px;
|
| 465 |
+
}
|
| 466 |
+
""") as demo:
|
| 467 |
+
gr.Markdown("""
|
| 468 |
+
# CrispChat
|
| 469 |
+
|
| 470 |
+
Chat with various AI models from OpenRouter with support for images and documents.
|
| 471 |
+
""")
|
| 472 |
+
|
| 473 |
+
with gr.Row():
|
| 474 |
+
with gr.Column(scale=2):
|
| 475 |
+
chatbot = gr.Chatbot(
|
| 476 |
+
height=500,
|
| 477 |
+
show_copy_button=True,
|
| 478 |
+
show_label=False,
|
| 479 |
+
avatar_images=(None, "https://upload.wikimedia.org/wikipedia/commons/0/04/ChatGPT_logo.svg"),
|
| 480 |
+
type="messages" # Fixed: Use messages format instead of tuples
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
with gr.Row():
|
| 484 |
+
message = gr.Textbox(
|
| 485 |
+
placeholder="Type your message here...",
|
| 486 |
+
label="Message",
|
| 487 |
+
lines=2
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
with gr.Row():
|
| 491 |
+
with gr.Column(scale=3):
|
| 492 |
+
submit_btn = gr.Button("Send", variant="primary")
|
| 493 |
+
|
| 494 |
+
with gr.Column(scale=1):
|
| 495 |
+
clear_btn = gr.Button("Clear Chat", variant="secondary")
|
| 496 |
+
|
| 497 |
+
with gr.Row():
|
| 498 |
+
# Image upload
|
| 499 |
+
with gr.Accordion("Upload Images (for vision models)", open=False):
|
| 500 |
+
images = gr.Gallery(
|
| 501 |
+
label="Uploaded Images",
|
| 502 |
+
show_label=True,
|
| 503 |
+
columns=4,
|
| 504 |
+
height="auto",
|
| 505 |
+
object_fit="contain"
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
image_upload_btn = gr.UploadButton(
|
| 509 |
+
label="Upload Images",
|
| 510 |
+
file_types=["image"],
|
| 511 |
+
file_count="multiple"
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
+
# Document upload
|
| 515 |
+
with gr.Accordion("Upload Documents (PDF, MD, TXT)", open=False):
|
| 516 |
+
documents = gr.File(
|
| 517 |
+
label="Uploaded Documents",
|
| 518 |
+
file_types=[".pdf", ".md", ".txt"],
|
| 519 |
+
file_count="multiple"
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
+
with gr.Column(scale=1):
|
| 523 |
+
with gr.Group():
|
| 524 |
+
gr.Markdown("### Model Selection")
|
| 525 |
+
|
| 526 |
+
with gr.Row(elem_classes="model-selection-row"):
|
| 527 |
+
model_search = gr.Textbox(
|
| 528 |
+
placeholder="Search models...",
|
| 529 |
+
label="",
|
| 530 |
+
show_label=False
|
| 531 |
+
)
|
| 532 |
+
|
| 533 |
+
with gr.Row(elem_classes="model-selection-row"):
|
| 534 |
+
model_choice = gr.Dropdown(
|
| 535 |
+
[model[0] for model in ALL_MODELS],
|
| 536 |
+
value=ALL_MODELS[0][0],
|
| 537 |
+
label="Model"
|
| 538 |
+
)
|
| 539 |
+
context_display = gr.Textbox(
|
| 540 |
+
value=update_context_display(ALL_MODELS[0][0]),
|
| 541 |
+
label="Context",
|
| 542 |
+
interactive=False,
|
| 543 |
+
elem_classes="context-size"
|
| 544 |
+
)
|
| 545 |
+
|
| 546 |
+
# Model category selection
|
| 547 |
+
with gr.Accordion("Browse by Category", open=False):
|
| 548 |
+
model_categories = gr.Radio(
|
| 549 |
+
[category["category"] for category in MODELS],
|
| 550 |
+
label="Categories",
|
| 551 |
+
value=MODELS[0]["category"]
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
category_models = gr.Radio(
|
| 555 |
+
[model[0] for model in MODELS[0]["models"]],
|
| 556 |
+
label="Models in Category"
|
| 557 |
+
)
|
| 558 |
+
|
| 559 |
+
with gr.Accordion("Generation Parameters", open=False):
|
| 560 |
+
with gr.Group(elem_classes="parameter-grid"):
|
| 561 |
+
temperature = gr.Slider(
|
| 562 |
+
minimum=0.0,
|
| 563 |
+
maximum=2.0,
|
| 564 |
+
value=0.7,
|
| 565 |
+
step=0.1,
|
| 566 |
+
label="Temperature"
|
| 567 |
+
)
|
| 568 |
+
|
| 569 |
+
max_tokens = gr.Slider(
|
| 570 |
+
minimum=100,
|
| 571 |
+
maximum=4000,
|
| 572 |
+
value=1000,
|
| 573 |
+
step=100,
|
| 574 |
+
label="Max Tokens"
|
| 575 |
+
)
|
| 576 |
+
|
| 577 |
+
top_p = gr.Slider(
|
| 578 |
+
minimum=0.1,
|
| 579 |
+
maximum=1.0,
|
| 580 |
+
value=0.8,
|
| 581 |
+
step=0.1,
|
| 582 |
+
label="Top P"
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
frequency_penalty = gr.Slider(
|
| 586 |
+
minimum=-2.0,
|
| 587 |
+
maximum=2.0,
|
| 588 |
+
value=0.0,
|
| 589 |
+
step=0.1,
|
| 590 |
+
label="Frequency Penalty"
|
| 591 |
+
)
|
| 592 |
+
|
| 593 |
+
presence_penalty = gr.Slider(
|
| 594 |
+
minimum=-2.0,
|
| 595 |
+
maximum=2.0,
|
| 596 |
+
value=0.0,
|
| 597 |
+
step=0.1,
|
| 598 |
+
label="Presence Penalty"
|
| 599 |
+
)
|
| 600 |
+
|
| 601 |
+
reasoning_effort = gr.Radio(
|
| 602 |
+
["none", "low", "medium", "high"],
|
| 603 |
+
value="none",
|
| 604 |
+
label="Reasoning Effort"
|
| 605 |
+
)
|
| 606 |
+
|
| 607 |
+
with gr.Accordion("Advanced Options", open=False):
|
| 608 |
+
with gr.Row():
|
| 609 |
+
with gr.Column():
|
| 610 |
+
repetition_penalty = gr.Slider(
|
| 611 |
+
minimum=0.1,
|
| 612 |
+
maximum=2.0,
|
| 613 |
+
value=1.0,
|
| 614 |
+
step=0.1,
|
| 615 |
+
label="Repetition Penalty"
|
| 616 |
+
)
|
| 617 |
+
|
| 618 |
+
top_k = gr.Slider(
|
| 619 |
+
minimum=1,
|
| 620 |
+
maximum=100,
|
| 621 |
+
value=40,
|
| 622 |
+
step=1,
|
| 623 |
+
label="Top K"
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
min_p = gr.Slider(
|
| 627 |
+
minimum=0.0,
|
| 628 |
+
maximum=1.0,
|
| 629 |
+
value=0.1,
|
| 630 |
+
step=0.05,
|
| 631 |
+
label="Min P"
|
| 632 |
+
)
|
| 633 |
+
|
| 634 |
+
with gr.Column():
|
| 635 |
+
seed = gr.Number(
|
| 636 |
+
value=0,
|
| 637 |
+
label="Seed (0 for random)",
|
| 638 |
+
precision=0
|
| 639 |
+
)
|
| 640 |
+
|
| 641 |
+
top_a = gr.Slider(
|
| 642 |
+
minimum=0.0,
|
| 643 |
+
maximum=1.0,
|
| 644 |
+
value=0.0,
|
| 645 |
+
step=0.05,
|
| 646 |
+
label="Top A"
|
| 647 |
+
)
|
| 648 |
+
|
| 649 |
+
stream_output = gr.Checkbox(
|
| 650 |
+
label="Stream Output",
|
| 651 |
+
value=False
|
| 652 |
+
)
|
| 653 |
+
|
| 654 |
+
with gr.Row():
|
| 655 |
+
response_format = gr.Radio(
|
| 656 |
+
["default", "json_object"],
|
| 657 |
+
value="default",
|
| 658 |
+
label="Response Format"
|
| 659 |
+
)
|
| 660 |
+
|
| 661 |
+
gr.Markdown("""
|
| 662 |
+
* **json_object**: Forces the model to respond with valid JSON only.
|
| 663 |
+
* Only available on certain models - check model support on OpenRouter.
|
| 664 |
+
""")
|
| 665 |
+
|
| 666 |
+
# Custom instructing options
|
| 667 |
+
with gr.Accordion("Custom Instructions", open=False):
|
| 668 |
+
system_message = gr.Textbox(
|
| 669 |
+
placeholder="Enter a system message to guide the model's behavior...",
|
| 670 |
+
label="System Message",
|
| 671 |
+
lines=3
|
| 672 |
+
)
|
| 673 |
+
|
| 674 |
+
transforms = gr.CheckboxGroup(
|
| 675 |
+
["prompt_optimize", "prompt_distill", "prompt_compress"],
|
| 676 |
+
label="Prompt Transforms (OpenRouter specific)"
|
| 677 |
+
)
|
| 678 |
+
|
| 679 |
+
gr.Markdown("""
|
| 680 |
+
* **prompt_optimize**: Improve prompt for better responses.
|
| 681 |
+
* **prompt_distill**: Compress prompt to use fewer tokens without changing meaning.
|
| 682 |
+
* **prompt_compress**: Aggressively compress prompt to fit larger contexts.
|
| 683 |
+
""")
|
| 684 |
+
|
| 685 |
+
# Add a model information section
|
| 686 |
+
with gr.Accordion("About Selected Model", open=False):
|
| 687 |
+
model_info_display = gr.HTML(
|
| 688 |
+
value="<p>Select a model to see details</p>"
|
| 689 |
+
)
|
| 690 |
+
|
| 691 |
+
# Add usage instructions
|
| 692 |
+
with gr.Accordion("Usage Instructions", open=False):
|
| 693 |
+
gr.Markdown("""
|
| 694 |
+
## Basic Usage
|
| 695 |
+
1. Type your message in the input box
|
| 696 |
+
2. Select a model from the dropdown
|
| 697 |
+
3. Click "Send" or press Enter
|
| 698 |
+
|
| 699 |
+
## Working with Files
|
| 700 |
+
- **Images**: Upload images to use with vision-capable models
|
| 701 |
+
- **Documents**: Upload PDF, Markdown, or text files to analyze their content
|
| 702 |
+
|
| 703 |
+
## Advanced Parameters
|
| 704 |
+
- **Temperature**: Controls randomness (higher = more creative, lower = more deterministic)
|
| 705 |
+
- **Max Tokens**: Maximum length of the response
|
| 706 |
+
- **Top P**: Nucleus sampling threshold (higher = consider more tokens)
|
| 707 |
+
- **Reasoning Effort**: Some models can show their reasoning process
|
| 708 |
+
|
| 709 |
+
## Tips
|
| 710 |
+
- For code generation, use models like Qwen Coder
|
| 711 |
+
- For visual tasks, choose vision-capable models
|
| 712 |
+
- For long context, check the context window size next to the model name
|
| 713 |
+
""")
|
| 714 |
+
|
| 715 |
+
# Add a footer with version info
|
| 716 |
+
footer_md = gr.Markdown("""
|
| 717 |
+
---
|
| 718 |
+
### OpenRouter AI Chat Interface v1.0
|
| 719 |
+
Built with ❤️ using Gradio and OpenRouter API | Context sizes shown next to model names
|
| 720 |
+
""")
|
| 721 |
+
|
| 722 |
+
# Connect model search to dropdown filter
|
| 723 |
+
model_search.change(
|
| 724 |
+
fn=filter_models,
|
| 725 |
+
inputs=[model_search],
|
| 726 |
+
outputs=[model_choice]
|
| 727 |
+
)
|
| 728 |
+
|
| 729 |
+
# Update context display when model changes
|
| 730 |
+
model_choice.change(
|
| 731 |
+
fn=update_context_display,
|
| 732 |
+
inputs=[model_choice],
|
| 733 |
+
outputs=[context_display]
|
| 734 |
+
)
|
| 735 |
+
|
| 736 |
+
# Update model list when category changes
|
| 737 |
+
model_categories.change(
|
| 738 |
+
fn=update_category_models,
|
| 739 |
+
inputs=[model_categories],
|
| 740 |
+
outputs=[category_models]
|
| 741 |
+
)
|
| 742 |
+
|
| 743 |
+
# Update main model choice when category model is selected
|
| 744 |
+
category_models.change(
|
| 745 |
+
fn=lambda x: x,
|
| 746 |
+
inputs=[category_models],
|
| 747 |
+
outputs=[model_choice]
|
| 748 |
+
)
|
| 749 |
+
|
| 750 |
+
# Process uploaded images
|
| 751 |
+
image_upload_btn.upload(
|
| 752 |
+
fn=process_uploaded_images,
|
| 753 |
+
inputs=[image_upload_btn],
|
| 754 |
+
outputs=[images]
|
| 755 |
+
)
|
| 756 |
+
|
| 757 |
+
# Update model info when model changes
|
| 758 |
+
def update_model_info(model_name):
|
| 759 |
+
model_info = get_model_info(model_name)
|
| 760 |
+
if model_info:
|
| 761 |
+
name, model_id, context_size = model_info
|
| 762 |
+
return f"""
|
| 763 |
+
<div class="model-info">
|
| 764 |
+
<h3>{name}</h3>
|
| 765 |
+
<p><strong>Model ID:</strong> {model_id}</p>
|
| 766 |
+
<p><strong>Context Size:</strong> {context_size:,} tokens</p>
|
| 767 |
+
<p><strong>Provider:</strong> {model_id.split('/')[0]}</p>
|
| 768 |
+
</div>
|
| 769 |
+
"""
|
| 770 |
+
return "<p>Model information not available</p>"
|
| 771 |
+
|
| 772 |
+
model_choice.change(
|
| 773 |
+
fn=update_model_info,
|
| 774 |
+
inputs=[model_choice],
|
| 775 |
+
outputs=[model_info_display]
|
| 776 |
+
)
|
| 777 |
+
|
| 778 |
+
# Set up events for the submit button
|
| 779 |
+
submit_btn.click(
|
| 780 |
+
fn=ask_ai,
|
| 781 |
+
inputs=[
|
| 782 |
+
message, chatbot, model_choice, temperature, max_tokens,
|
| 783 |
+
top_p, frequency_penalty, presence_penalty, repetition_penalty,
|
| 784 |
+
top_k, min_p, seed, top_a, stream_output, response_format,
|
| 785 |
+
images, documents, reasoning_effort, system_message, transforms
|
| 786 |
+
],
|
| 787 |
+
outputs=[chatbot, message]
|
| 788 |
+
)
|
| 789 |
+
|
| 790 |
+
# Set up events for message submission (pressing Enter)
|
| 791 |
+
message.submit(
|
| 792 |
+
fn=ask_ai,
|
| 793 |
+
inputs=[
|
| 794 |
+
message, chatbot, model_choice, temperature, max_tokens,
|
| 795 |
+
top_p, frequency_penalty, presence_penalty, repetition_penalty,
|
| 796 |
+
top_k, min_p, seed, top_a, stream_output, response_format,
|
| 797 |
+
images, documents, reasoning_effort, system_message, transforms
|
| 798 |
+
],
|
| 799 |
+
outputs=[chatbot, message]
|
| 800 |
+
)
|
| 801 |
+
|
| 802 |
+
# Set up events for the clear button
|
| 803 |
+
clear_btn.click(
|
| 804 |
+
fn=clear_chat,
|
| 805 |
+
inputs=[],
|
| 806 |
+
outputs=[
|
| 807 |
+
chatbot, message, images, documents, temperature,
|
| 808 |
+
max_tokens, top_p, frequency_penalty, presence_penalty,
|
| 809 |
+
repetition_penalty, top_k, min_p, seed, top_a, stream_output,
|
| 810 |
+
response_format, reasoning_effort, system_message, transforms
|
| 811 |
+
]
|
| 812 |
+
)
|
| 813 |
+
|
| 814 |
+
return demo
|
| 815 |
|
| 816 |
+
# Launch the app
|
| 817 |
if __name__ == "__main__":
|
| 818 |
+
demo = create_app()
|
| 819 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|