xx
Browse files
app.py
CHANGED
|
@@ -1,22 +1,29 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
from pydantic import BaseModel
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import torch
|
| 5 |
|
| 6 |
app = FastAPI()
|
| 7 |
|
|
|
|
|
|
|
|
|
|
| 8 |
# Charger le modèle
|
| 9 |
model_name = "google/medgemma-4b-pt"
|
| 10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 11 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
class
|
| 15 |
prompt: str
|
| 16 |
|
| 17 |
@app.post("/generate")
|
| 18 |
-
def generate(
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
| 20 |
with torch.no_grad():
|
| 21 |
outputs = model.generate(**inputs, max_new_tokens=100)
|
| 22 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from fastapi import FastAPI, Request, HTTPException, Header
|
| 3 |
from pydantic import BaseModel
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
import torch
|
| 6 |
|
| 7 |
app = FastAPI()
|
| 8 |
|
| 9 |
+
# Récupérer le token depuis les variables d’environnement
|
| 10 |
+
API_TOKEN = os.environ.get("API_TOKEN")
|
| 11 |
+
|
| 12 |
# Charger le modèle
|
| 13 |
model_name = "google/medgemma-4b-pt"
|
| 14 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 15 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
| 16 |
|
| 17 |
+
# Modèle de requête
|
| 18 |
+
class GenerationRequest(BaseModel):
|
| 19 |
prompt: str
|
| 20 |
|
| 21 |
@app.post("/generate")
|
| 22 |
+
async def generate(request_data: GenerationRequest, authorization: str = Header(None)):
|
| 23 |
+
if authorization != f"Bearer {API_TOKEN}":
|
| 24 |
+
raise HTTPException(status_code=401, detail="Unauthorized")
|
| 25 |
+
|
| 26 |
+
inputs = tokenizer(request_data.prompt, return_tensors="pt").to(model.device)
|
| 27 |
with torch.no_grad():
|
| 28 |
outputs = model.generate(**inputs, max_new_tokens=100)
|
| 29 |
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|