Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import torch
|
|
| 3 |
import sys
|
| 4 |
import traceback
|
| 5 |
import os
|
|
|
|
| 6 |
|
| 7 |
def system_info():
|
| 8 |
try:
|
|
@@ -26,162 +27,74 @@ def system_info():
|
|
| 26 |
except Exception as e:
|
| 27 |
return f"Error: {str(e)}\n\n{traceback.format_exc()}"
|
| 28 |
|
| 29 |
-
def
|
| 30 |
try:
|
| 31 |
result = []
|
| 32 |
-
result.append("Testing
|
| 33 |
|
| 34 |
-
#
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
)
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
)
|
| 56 |
|
|
|
|
| 57 |
result.append("Generating text...")
|
| 58 |
prompt = "Write a short poem about artificial intelligence."
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 67 |
-
outputs = model.generate(**inputs, max_new_tokens=100)
|
| 68 |
-
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 69 |
-
|
| 70 |
-
# Extract the assistant's response
|
| 71 |
-
if "<assistant>" in generated_text and "</assistant>" in generated_text:
|
| 72 |
-
response = generated_text.split("<assistant>")[1].split("</assistant>")[0].strip()
|
| 73 |
-
else:
|
| 74 |
-
response = generated_text.replace(prompt, "").strip()
|
| 75 |
-
|
| 76 |
-
result.append(f"Generated text: {response}")
|
| 77 |
-
result.append("Phi-3 Mini test successful!")
|
| 78 |
-
|
| 79 |
-
return "\n".join(result)
|
| 80 |
-
except Exception as e:
|
| 81 |
-
return f"Error: {str(e)}\n\n{traceback.format_exc()}"
|
| 82 |
-
|
| 83 |
-
def test_image_classification():
|
| 84 |
-
try:
|
| 85 |
-
result = []
|
| 86 |
-
result.append("Testing image classification...")
|
| 87 |
-
|
| 88 |
-
# Use a lightweight vision model
|
| 89 |
-
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 90 |
-
|
| 91 |
-
result.append("Loading image processor and model...")
|
| 92 |
-
processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
|
| 93 |
-
model = AutoModelForImageClassification.from_pretrained("microsoft/resnet-50")
|
| 94 |
-
|
| 95 |
-
result.append("Loading test image...")
|
| 96 |
-
import requests
|
| 97 |
-
from PIL import Image
|
| 98 |
-
from io import BytesIO
|
| 99 |
-
|
| 100 |
-
response = requests.get("https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg")
|
| 101 |
-
img = Image.open(BytesIO(response.content))
|
| 102 |
-
|
| 103 |
-
result.append("Processing image...")
|
| 104 |
-
inputs = processor(images=img, return_tensors="pt")
|
| 105 |
-
outputs = model(**inputs)
|
| 106 |
-
|
| 107 |
-
# Get predicted class
|
| 108 |
-
predicted_class_idx = outputs.logits.argmax(-1).item()
|
| 109 |
-
predicted_class = model.config.id2label[predicted_class_idx]
|
| 110 |
-
|
| 111 |
-
result.append(f"Predicted class: {predicted_class}")
|
| 112 |
-
result.append("Image classification test successful!")
|
| 113 |
-
|
| 114 |
-
return "\n".join(result)
|
| 115 |
-
except Exception as e:
|
| 116 |
-
return f"Error: {str(e)}\n\n{traceback.format_exc()}"
|
| 117 |
-
|
| 118 |
-
def test_phi3_with_image():
|
| 119 |
-
try:
|
| 120 |
-
result = []
|
| 121 |
-
result.append("Testing Phi-3 Mini with image description...")
|
| 122 |
-
|
| 123 |
-
# First, classify the image
|
| 124 |
-
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 125 |
-
import requests
|
| 126 |
-
from PIL import Image
|
| 127 |
-
from io import BytesIO
|
| 128 |
-
|
| 129 |
-
result.append("Loading image and classifying it...")
|
| 130 |
-
img_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
|
| 131 |
-
img_model = AutoModelForImageClassification.from_pretrained("microsoft/resnet-50")
|
| 132 |
-
|
| 133 |
-
response = requests.get("https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg")
|
| 134 |
-
img = Image.open(BytesIO(response.content))
|
| 135 |
-
|
| 136 |
-
inputs = img_processor(images=img, return_tensors="pt")
|
| 137 |
-
outputs = img_model(**inputs)
|
| 138 |
-
|
| 139 |
-
predicted_class_idx = outputs.logits.argmax(-1).item()
|
| 140 |
-
predicted_class = img_model.config.id2label[predicted_class_idx]
|
| 141 |
-
|
| 142 |
-
result.append(f"Image classified as: {predicted_class}")
|
| 143 |
-
|
| 144 |
-
# Now use Phi-3 to describe the image based on the classification
|
| 145 |
-
result.append("Loading Phi-3 Mini model...")
|
| 146 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 147 |
-
|
| 148 |
-
model_id = "microsoft/Phi-3-mini-4k-instruct"
|
| 149 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 150 |
-
|
| 151 |
-
quantization_config = BitsAndBytesConfig(
|
| 152 |
-
load_in_4bit=True,
|
| 153 |
-
bnb_4bit_compute_dtype=torch.float16,
|
| 154 |
-
bnb_4bit_quant_type="nf4"
|
| 155 |
-
)
|
| 156 |
-
|
| 157 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 158 |
-
model_id,
|
| 159 |
-
quantization_config=quantization_config,
|
| 160 |
-
device_map="auto"
|
| 161 |
)
|
| 162 |
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
# Format prompt for Phi-3
|
| 167 |
-
messages = [
|
| 168 |
-
{"role": "user", "content": prompt}
|
| 169 |
-
]
|
| 170 |
-
formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False)
|
| 171 |
-
|
| 172 |
-
result.append("Generating description based on image classification...")
|
| 173 |
-
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
|
| 174 |
-
outputs = model.generate(**inputs, max_new_tokens=200)
|
| 175 |
-
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 176 |
-
|
| 177 |
-
# Extract the assistant's response
|
| 178 |
-
if "<assistant>" in generated_text and "</assistant>" in generated_text:
|
| 179 |
-
response = generated_text.split("<assistant>")[1].split("</assistant>")[0].strip()
|
| 180 |
-
else:
|
| 181 |
-
response = generated_text.replace(formatted_prompt, "").strip()
|
| 182 |
-
|
| 183 |
-
result.append(f"Generated description: {response}")
|
| 184 |
-
result.append("Phi-3 with image test successful!")
|
| 185 |
|
| 186 |
return "\n".join(result)
|
| 187 |
except Exception as e:
|
|
@@ -190,7 +103,7 @@ def test_phi3_with_image():
|
|
| 190 |
# Create Gradio interface
|
| 191 |
with gr.Blocks(title="StaffManager AI Assistant") as demo:
|
| 192 |
gr.Markdown("# StaffManager AI Assistant")
|
| 193 |
-
gr.Markdown("Testing
|
| 194 |
|
| 195 |
with gr.Tab("System Info"):
|
| 196 |
with gr.Row():
|
|
@@ -205,56 +118,28 @@ with gr.Blocks(title="StaffManager AI Assistant") as demo:
|
|
| 205 |
outputs=[info_result]
|
| 206 |
)
|
| 207 |
|
| 208 |
-
with gr.Tab("
|
| 209 |
-
with gr.Row():
|
| 210 |
-
with gr.Column():
|
| 211 |
-
phi3_button = gr.Button("Generate Text with Phi-3 Mini")
|
| 212 |
-
with gr.Column():
|
| 213 |
-
phi3_result = gr.Textbox(label="Generated Text", lines=20)
|
| 214 |
-
|
| 215 |
-
phi3_button.click(
|
| 216 |
-
fn=test_phi3_mini,
|
| 217 |
-
inputs=[],
|
| 218 |
-
outputs=[phi3_result]
|
| 219 |
-
)
|
| 220 |
-
|
| 221 |
-
with gr.Tab("Image Classification"):
|
| 222 |
-
with gr.Row():
|
| 223 |
-
with gr.Column():
|
| 224 |
-
image_button = gr.Button("Classify Sample Image")
|
| 225 |
-
with gr.Column():
|
| 226 |
-
image_result = gr.Textbox(label="Classification Results", lines=20)
|
| 227 |
-
|
| 228 |
-
image_button.click(
|
| 229 |
-
fn=test_image_classification,
|
| 230 |
-
inputs=[],
|
| 231 |
-
outputs=[image_result]
|
| 232 |
-
)
|
| 233 |
-
|
| 234 |
-
with gr.Tab("Image Description"):
|
| 235 |
with gr.Row():
|
| 236 |
with gr.Column():
|
| 237 |
-
|
| 238 |
with gr.Column():
|
| 239 |
-
|
| 240 |
|
| 241 |
-
|
| 242 |
-
fn=
|
| 243 |
inputs=[],
|
| 244 |
-
outputs=[
|
| 245 |
)
|
| 246 |
|
| 247 |
with gr.Tab("About"):
|
| 248 |
gr.Markdown("""
|
| 249 |
## About StaffManager AI Assistant
|
| 250 |
|
| 251 |
-
This Space
|
| 252 |
|
| 253 |
-
- **
|
| 254 |
-
- **Image Classification**: Uses Microsoft's ResNet-50 model
|
| 255 |
-
- **Image Description**: Combines both models to classify and describe images
|
| 256 |
|
| 257 |
-
|
| 258 |
""")
|
| 259 |
|
| 260 |
# Launch the app
|
|
|
|
| 3 |
import sys
|
| 4 |
import traceback
|
| 5 |
import os
|
| 6 |
+
from huggingface_hub import login
|
| 7 |
|
| 8 |
def system_info():
|
| 9 |
try:
|
|
|
|
| 27 |
except Exception as e:
|
| 28 |
return f"Error: {str(e)}\n\n{traceback.format_exc()}"
|
| 29 |
|
| 30 |
+
def test_gemma3():
|
| 31 |
try:
|
| 32 |
result = []
|
| 33 |
+
result.append("Testing Gemma 3 model...")
|
| 34 |
|
| 35 |
+
# Get token from environment
|
| 36 |
+
token = os.environ.get("HUGGINGFACE_TOKEN", "")
|
| 37 |
+
if token:
|
| 38 |
+
result.append(f"Token found: {token[:5]}...")
|
| 39 |
+
else:
|
| 40 |
+
result.append("No token found in environment variables!")
|
| 41 |
+
return "\n".join(result)
|
| 42 |
+
|
| 43 |
+
# Login to Hugging Face
|
| 44 |
+
try:
|
| 45 |
+
login(token=token)
|
| 46 |
+
result.append("Successfully logged in to Hugging Face Hub")
|
| 47 |
+
except Exception as e:
|
| 48 |
+
result.append(f"Error logging in: {e}")
|
| 49 |
+
return "\n".join(result)
|
| 50 |
+
|
| 51 |
+
# Use Gemma 3 GGUF model
|
| 52 |
+
model_id = "google/gemma-3-27b-it-qat-q4_0-gguf"
|
| 53 |
+
model_filename = "gemma-3-27b-it-qat-q4_0.gguf"
|
| 54 |
+
|
| 55 |
+
result.append(f"Downloading {model_id} if not already present...")
|
| 56 |
+
from huggingface_hub import hf_hub_download
|
| 57 |
+
|
| 58 |
+
model_path = hf_hub_download(
|
| 59 |
+
repo_id=model_id,
|
| 60 |
+
filename=model_filename,
|
| 61 |
+
token=token
|
| 62 |
)
|
| 63 |
+
result.append(f"Model downloaded to: {model_path}")
|
| 64 |
+
|
| 65 |
+
# Load the model
|
| 66 |
+
result.append("Loading model...")
|
| 67 |
+
try:
|
| 68 |
+
import llama_cpp
|
| 69 |
+
except ImportError:
|
| 70 |
+
result.append("llama-cpp-python not installed. Installing now...")
|
| 71 |
+
import subprocess
|
| 72 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "llama-cpp-python"])
|
| 73 |
+
import llama_cpp
|
| 74 |
+
|
| 75 |
+
from llama_cpp import Llama
|
| 76 |
+
|
| 77 |
+
llm = Llama(
|
| 78 |
+
model_path=model_path,
|
| 79 |
+
n_ctx=2048, # Context window size
|
| 80 |
+
n_gpu_layers=-1 # Use all available GPU layers
|
| 81 |
)
|
| 82 |
|
| 83 |
+
# Generate text
|
| 84 |
result.append("Generating text...")
|
| 85 |
prompt = "Write a short poem about artificial intelligence."
|
| 86 |
|
| 87 |
+
output = llm(
|
| 88 |
+
prompt,
|
| 89 |
+
max_tokens=100,
|
| 90 |
+
temperature=0.7,
|
| 91 |
+
top_p=0.95,
|
| 92 |
+
echo=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
)
|
| 94 |
|
| 95 |
+
generated_text = output["choices"][0]["text"]
|
| 96 |
+
result.append(f"Generated text: {generated_text}")
|
| 97 |
+
result.append("Gemma 3 test successful!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
return "\n".join(result)
|
| 100 |
except Exception as e:
|
|
|
|
| 103 |
# Create Gradio interface
|
| 104 |
with gr.Blocks(title="StaffManager AI Assistant") as demo:
|
| 105 |
gr.Markdown("# StaffManager AI Assistant")
|
| 106 |
+
gr.Markdown("Testing Gemma 3 model for StaffManager application.")
|
| 107 |
|
| 108 |
with gr.Tab("System Info"):
|
| 109 |
with gr.Row():
|
|
|
|
| 118 |
outputs=[info_result]
|
| 119 |
)
|
| 120 |
|
| 121 |
+
with gr.Tab("Gemma 3 Test"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
with gr.Row():
|
| 123 |
with gr.Column():
|
| 124 |
+
gemma_button = gr.Button("Test Gemma 3")
|
| 125 |
with gr.Column():
|
| 126 |
+
gemma_result = gr.Textbox(label="Test Results", lines=20)
|
| 127 |
|
| 128 |
+
gemma_button.click(
|
| 129 |
+
fn=test_gemma3,
|
| 130 |
inputs=[],
|
| 131 |
+
outputs=[gemma_result]
|
| 132 |
)
|
| 133 |
|
| 134 |
with gr.Tab("About"):
|
| 135 |
gr.Markdown("""
|
| 136 |
## About StaffManager AI Assistant
|
| 137 |
|
| 138 |
+
This Space tests the Gemma 3 model for the StaffManager application.
|
| 139 |
|
| 140 |
+
- **Gemma 3**: Google's 27B parameter model in GGUF format for efficient inference
|
|
|
|
|
|
|
| 141 |
|
| 142 |
+
This model requires authentication with a Hugging Face token that has been granted access to the model.
|
| 143 |
""")
|
| 144 |
|
| 145 |
# Launch the app
|