Spaces:
Sleeping
Sleeping
ming
commited on
Commit
·
a36f560
1
Parent(s):
df75294
Switch V4 to GPU INT4 quantization with Qwen-1.5B
Browse files- Upgraded transformers to 4.44+ and accelerate to 0.33+
- Added bitsandbytes for 4-bit NF4 quantization on GPU
- Removed torchao dependency (causes HF Spaces errors)
- Added TRANSFORMERS_NO_TORCHAO=1 to prevent import errors
- Updated to use Qwen/Qwen2.5-1.5B-Instruct model
- GPU: 4-bit NF4 quantization via bitsandbytes
- CPU fallback: FP32 + dynamic INT8 quantization
- Dockerfile +9 -6
- app/services/structured_summarizer.py +80 -30
- requirements.txt +4 -4
Dockerfile
CHANGED
|
@@ -1,14 +1,17 @@
|
|
| 1 |
-
# Hugging Face Spaces compatible Dockerfile -
|
| 2 |
FROM python:3.9-slim
|
| 3 |
|
| 4 |
-
# Set environment variables for
|
| 5 |
ENV PYTHONDONTWRITEBYTECODE=1 \
|
| 6 |
PYTHONUNBUFFERED=1 \
|
| 7 |
PYTHONPATH=/app \
|
| 8 |
ENABLE_V1_WARMUP=false \
|
| 9 |
-
ENABLE_V2_WARMUP=
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# Set work directory
|
| 14 |
WORKDIR /app
|
|
@@ -38,5 +41,5 @@ EXPOSE 7860
|
|
| 38 |
HEALTHCHECK --interval=30s --timeout=30s --start-period=60s --retries=3 \
|
| 39 |
CMD curl -f http://localhost:7860/health || exit 1
|
| 40 |
|
| 41 |
-
# Simple startup -
|
| 42 |
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
|
| 1 |
+
# Hugging Face Spaces compatible Dockerfile - V4 GPU INT4
|
| 2 |
FROM python:3.9-slim
|
| 3 |
|
| 4 |
+
# Set environment variables for V4 GPU deployment
|
| 5 |
ENV PYTHONDONTWRITEBYTECODE=1 \
|
| 6 |
PYTHONUNBUFFERED=1 \
|
| 7 |
PYTHONPATH=/app \
|
| 8 |
ENABLE_V1_WARMUP=false \
|
| 9 |
+
ENABLE_V2_WARMUP=false \
|
| 10 |
+
ENABLE_V4_WARMUP=true \
|
| 11 |
+
V4_MODEL_ID=Qwen/Qwen2.5-1.5B-Instruct \
|
| 12 |
+
V4_ENABLE_QUANTIZATION=true \
|
| 13 |
+
HF_HOME=/tmp/huggingface \
|
| 14 |
+
TRANSFORMERS_NO_TORCHAO=1
|
| 15 |
|
| 16 |
# Set work directory
|
| 17 |
WORKDIR /app
|
|
|
|
| 41 |
HEALTHCHECK --interval=30s --timeout=30s --start-period=60s --retries=3 \
|
| 42 |
CMD curl -f http://localhost:7860/health || exit 1
|
| 43 |
|
| 44 |
+
# Simple startup - V4 model will download during warmup (with GPU INT4 quantization)
|
| 45 |
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
app/services/structured_summarizer.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
"""
|
| 2 |
-
V4 Structured Summarization Service using
|
| 3 |
"""
|
| 4 |
|
| 5 |
import asyncio
|
|
@@ -23,12 +23,20 @@ except ImportError:
|
|
| 23 |
TRANSFORMERS_AVAILABLE = False
|
| 24 |
logger.warning("Transformers library not available. V4 endpoints will be disabled.")
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
class StructuredSummarizer:
|
| 28 |
-
"""Service for streaming structured summarization using
|
| 29 |
|
| 30 |
def __init__(self):
|
| 31 |
-
"""Initialize the
|
| 32 |
self.tokenizer: Optional[AutoTokenizer] = None
|
| 33 |
self.model: Optional[AutoModelForCausalLM] = None
|
| 34 |
|
|
@@ -46,40 +54,82 @@ class StructuredSummarizer:
|
|
| 46 |
trust_remote_code=True,
|
| 47 |
)
|
| 48 |
|
| 49 |
-
#
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
torch_dtype=torch.float32, # Base dtype for CPU
|
| 53 |
-
device_map="auto",
|
| 54 |
-
cache_dir=settings.hf_cache_dir,
|
| 55 |
-
trust_remote_code=True,
|
| 56 |
-
)
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
# Set model to eval mode
|
| 76 |
self.model.eval()
|
| 77 |
|
| 78 |
logger.info("✅ V4 model initialized successfully")
|
| 79 |
logger.info(f" Model ID: {settings.v4_model_id}")
|
| 80 |
-
logger.info(
|
| 81 |
-
f" Quantization: {'INT8 (~4GB)' if quantization_enabled else 'None (FP32, ~15GB)'}"
|
| 82 |
-
)
|
| 83 |
logger.info(f" Model device: {next(self.model.parameters()).device}")
|
| 84 |
logger.info(f" Torch dtype: {next(self.model.parameters()).dtype}")
|
| 85 |
|
|
|
|
| 1 |
"""
|
| 2 |
+
V4 Structured Summarization Service using Qwen-1.5B.
|
| 3 |
"""
|
| 4 |
|
| 5 |
import asyncio
|
|
|
|
| 23 |
TRANSFORMERS_AVAILABLE = False
|
| 24 |
logger.warning("Transformers library not available. V4 endpoints will be disabled.")
|
| 25 |
|
| 26 |
+
# Try bitsandbytes 4-bit config
|
| 27 |
+
try:
|
| 28 |
+
from transformers import BitsAndBytesConfig
|
| 29 |
+
|
| 30 |
+
HAS_BITSANDBYTES = True
|
| 31 |
+
except ImportError:
|
| 32 |
+
HAS_BITSANDBYTES = False
|
| 33 |
+
|
| 34 |
|
| 35 |
class StructuredSummarizer:
|
| 36 |
+
"""Service for streaming structured summarization using Qwen-1.5B."""
|
| 37 |
|
| 38 |
def __init__(self):
|
| 39 |
+
"""Initialize the Qwen model and tokenizer with GPU/INT4 when possible."""
|
| 40 |
self.tokenizer: Optional[AutoTokenizer] = None
|
| 41 |
self.model: Optional[AutoModelForCausalLM] = None
|
| 42 |
|
|
|
|
| 54 |
trust_remote_code=True,
|
| 55 |
)
|
| 56 |
|
| 57 |
+
# Decide device / quantization strategy
|
| 58 |
+
use_cuda = torch.cuda.is_available()
|
| 59 |
+
quantization_desc = "None"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
if use_cuda:
|
| 62 |
+
logger.info("CUDA is available. Using GPU for V4 model.")
|
| 63 |
+
else:
|
| 64 |
+
logger.info("CUDA is NOT available. V4 model will run on CPU.")
|
| 65 |
+
|
| 66 |
+
# ------------------------------------------------------------------
|
| 67 |
+
# Preferred path: 4-bit NF4 on GPU via bitsandbytes
|
| 68 |
+
# ------------------------------------------------------------------
|
| 69 |
+
if (
|
| 70 |
+
use_cuda
|
| 71 |
+
and getattr(settings, "v4_enable_quantization", True)
|
| 72 |
+
and HAS_BITSANDBYTES
|
| 73 |
+
):
|
| 74 |
+
logger.info("Applying 4-bit NF4 quantization (bitsandbytes) to V4 model...")
|
| 75 |
+
quant_config = BitsAndBytesConfig(
|
| 76 |
+
load_in_4bit=True,
|
| 77 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 78 |
+
bnb_4bit_quant_type="nf4",
|
| 79 |
+
bnb_4bit_use_double_quant=True,
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 83 |
+
settings.v4_model_id,
|
| 84 |
+
device_map="auto",
|
| 85 |
+
quantization_config=quant_config,
|
| 86 |
+
cache_dir=settings.hf_cache_dir,
|
| 87 |
+
trust_remote_code=True,
|
| 88 |
+
)
|
| 89 |
+
quantization_desc = "4-bit NF4 (bitsandbytes, GPU)"
|
| 90 |
+
|
| 91 |
+
else:
|
| 92 |
+
# ------------------------------------------------------------------
|
| 93 |
+
# Fallback path:
|
| 94 |
+
# - GPU without bitsandbytes -> FP16
|
| 95 |
+
# - CPU -> FP32 + optional dynamic INT8
|
| 96 |
+
# ------------------------------------------------------------------
|
| 97 |
+
base_dtype = torch.float16 if use_cuda else torch.float32
|
| 98 |
+
logger.info(
|
| 99 |
+
"Loading V4 model without 4-bit bitsandbytes. "
|
| 100 |
+
f"Base dtype: {base_dtype}"
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 104 |
+
settings.v4_model_id,
|
| 105 |
+
torch_dtype=base_dtype,
|
| 106 |
+
device_map="auto" if use_cuda else None,
|
| 107 |
+
cache_dir=settings.hf_cache_dir,
|
| 108 |
+
trust_remote_code=True,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
# Optional dynamic INT8 quantization on CPU
|
| 112 |
+
if getattr(settings, "v4_enable_quantization", True) and not use_cuda:
|
| 113 |
+
try:
|
| 114 |
+
logger.info("Applying dynamic INT8 quantization to V4 model on CPU...")
|
| 115 |
+
self.model = torch.quantization.quantize_dynamic(
|
| 116 |
+
self.model, {torch.nn.Linear}, dtype=torch.qint8
|
| 117 |
+
)
|
| 118 |
+
quantization_desc = "INT8 dynamic (CPU)"
|
| 119 |
+
except Exception as quant_error:
|
| 120 |
+
logger.warning(
|
| 121 |
+
f"⚠️ CPU INT8 quantization failed: {quant_error}. Using base dtype instead."
|
| 122 |
+
)
|
| 123 |
+
quantization_desc = f"None ({base_dtype})"
|
| 124 |
+
else:
|
| 125 |
+
quantization_desc = f"None ({base_dtype})"
|
| 126 |
|
| 127 |
# Set model to eval mode
|
| 128 |
self.model.eval()
|
| 129 |
|
| 130 |
logger.info("✅ V4 model initialized successfully")
|
| 131 |
logger.info(f" Model ID: {settings.v4_model_id}")
|
| 132 |
+
logger.info(f" Quantization: {quantization_desc}")
|
|
|
|
|
|
|
| 133 |
logger.info(f" Model device: {next(self.model.parameters()).device}")
|
| 134 |
logger.info(f" Torch dtype: {next(self.model.parameters()).dtype}")
|
| 135 |
|
requirements.txt
CHANGED
|
@@ -13,13 +13,13 @@ pydantic-settings>=2.0.0,<3.0.0
|
|
| 13 |
python-dotenv>=0.19.0,<1.0.0
|
| 14 |
|
| 15 |
# Transformers for fast summarization
|
| 16 |
-
transformers>=4.
|
| 17 |
torch>=2.0.0,<3.0.0
|
| 18 |
sentencepiece>=0.1.99,<0.3.0
|
| 19 |
-
accelerate>=0.
|
| 20 |
-
|
|
|
|
| 21 |
scipy>=1.10.0,<2.0.0 # Often needed for unquantized models (V4)
|
| 22 |
-
torchao>=0.6.0 # CPU-optimized INT8 quantization for V4 (reduces memory 73%)
|
| 23 |
|
| 24 |
# Testing
|
| 25 |
pytest>=7.0.0,<8.0.0
|
|
|
|
| 13 |
python-dotenv>=0.19.0,<1.0.0
|
| 14 |
|
| 15 |
# Transformers for fast summarization
|
| 16 |
+
transformers>=4.44.0,<5.0.0 # Updated for Qwen-1.5B support (V4)
|
| 17 |
torch>=2.0.0,<3.0.0
|
| 18 |
sentencepiece>=0.1.99,<0.3.0
|
| 19 |
+
accelerate>=0.33.0,<1.0.0 # Required for GPU quantization (V4)
|
| 20 |
+
bitsandbytes>=0.44.0 # 4-bit NF4 quantization for GPU (V4)
|
| 21 |
+
einops>=0.6.0,<1.0.0 # Required for model architecture (V4)
|
| 22 |
scipy>=1.10.0,<2.0.0 # Often needed for unquantized models (V4)
|
|
|
|
| 23 |
|
| 24 |
# Testing
|
| 25 |
pytest>=7.0.0,<8.0.0
|